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We want to model the gravitational dynamics of 
matter in the late universe in a way that is…

RELATIVISTIC & REALISTIC 
• Solving  for arbitrary matter distributions 

is… VERY HARD
Gμν + Λgμν = κTμν

• So our notion of “realism” becomes a question of 
approximation…

• What are the most physical simplifying approximations we can 
make?
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STANDARD METHOD

4

Assume fluctuations are small relative to a known 
exact “background” solution (usually FLRW)

• Solving first order becomes easy

• Equations linearise at ALL ORDERS in  ϵ

• Smaller corrections can be calculated by considering 
inhomogeneous linear problem with higher order ( ) 
source terms

ϵn>1

δgμν ∼ δTμν ∼ ϵ ∼ 10−4
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SUCCESS!
THIS APPROACH IS EXTREMELY SUCCESSFUL

Image taken from - Durrer. R. (2015) - The Cosmic Microwave Background - Class. Quant. Grav. 32
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Small fluctuation assumption breaks down in the late 
universe due to GRAVITATIONAL COLLAPSE on 
small scales!

We want to do the same kind of analysis as we did 
with the CMB but with Large Scale Structure surveys!

BUT…
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This

is not very well modelled by
+ρ̄ δρ ∼ ϵρ̄

…more like…
ρ̄ + δρ ∼ ρ̄
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Traditionally - use simulations to model small scales 
and rely on perturbation theory for larger scales…

BUT NONLINEARITY COUPLES SCALES!

ϕ2(k) ∼ ∫ dq ϕ1(q − k) δ1(q)

Conceivable that large  at small scales could have  
an effect on quantities at larger scales!

δ
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Could try to use renormalisation or EFT…

But post-Newtonian 
gravity is also capable of 
dealing with large density 
contrasts provided…

1. Length scales under 
consideration are no larger  
than:  
                             
LN ∼ 100 Mpc

2. Typical velocities are small:   
                                                          
v ∼ η ∼ 10−2

3. The gravitational field is weak 
everywhere: 
              
U ∼ η2

The classic  
post-Newtonian 

system!



Small velocities and weak fields lead to…

v
c

=
1
c

dx
dt

∼ η ⟹
d
dt

∼ η
d
dx

SMALL TIME DERIVATIVES: 
Equations change structure from 

wave equations to Poisson equations

Can think of 
approximating 

 by 𝒩(x, t) ℳ(x)

ρ ∼ U ∼ η2

v ∼ η

Bi ∼ η3

hij ∼ η4
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Can we use normal perturbation theory on large 
scales…

…whilst using post-Newtonian theory on short 
scales where …δ ∼ 1

…and see how they might interact?
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Choose:



ϵ ∼ η2 ∼
L2

N

L2
C

∼ 10−4

~ Particle Horizon

~ Supercluster scale

Post-Newtonian smallness parameter

Cosmological smallness parameter

However, need a way to compare sizes of terms 
from each sector of the expansion in order to write 

down field equations

This choice is well motivated by physical observations!

Choose:
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We considered SIMPLEST implementation… 
Background = Einstein-deSitter

ds2 = a2(τ)[ − (1 + 2U + 2ϕ)dτ2 + ((1 − 2U − 2ψ)δij)dxidxj]
Tμν = (ρN + ρ) uμuν

uμ =
1
a

(1 − U − ϕ, vi
N + vi)

…where  are treated like the leading order 
parts of a post-Newtonian expansion…

{U, ρN, vNi}

…and  are treated like standard 1st order 
cosmological perturbations.

{ϕ, ψ, ρ, vi}
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ℋ2 =
8πa2ρ̄

3

ρ̄′� + 3ℋρ̄ = 0

ρ(0,2) = ρN = ρ̄ + δρN ∼
η2

L2
N

⟹ δN =
δρN

ρ̄
∼ 1

δ′�N + θN = − ∂i(δNvi
N)

θN + ℋθN + ∇2U = − ∂i(vNj∂ jvNi)

∇2U =
3ℋ2

2
δN

At LEADING ORDER:

Obtain homogeneous  
Friedmann-like behaviour…  

…with inhomogeneities  
governed by NONLINEAR  
Newtonian fluctuations!

 Density contrasts !!!∼ 𝒪(1)
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(ψ + U)′�′� + 3ℋ(ψ + U)′� =
4πa2ρ̄

3
(1 + δN)v2

N + ℋ(ψ′�− ϕ′�) +
1
3

∇2(ψ − ϕ)

+
7
6

(∇U)2 +
2
3

(ϕ + ψ + 2U)∇2U

Di
j(ψ − ϕ) + 2(ϕ + ψ + 2U)Di

jU + 2∂iU∂jU −
2
3

δi
j(∇U)2 =

8πa2ρ̄ (1 + δN)(vi
NvNj −

1
3

δi
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2
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•…get quadratic products of nonlinear Newtonian 
source terms 

• AND spatially varying coefficients in linear 
operator!?!
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Very nice…but what can you actually DO with it?

• Could take solutions for  
from N-body - then try to solve 

numerically? 

{U, ρN, vNi}

• Or…make further approximations 
and try to proceed analytically…

We take approximate solutions from Newtonian 
perturbation theory for   

- see what happens? 
Compare to normal perturbation theory?

{U, ρN, vNi}
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Since the big nasty equations are still LINEAR…

δN = δ(1)
N + δ(2)

N + . . .

θN = θ(1)
N + θ(2)

N + . . .

ψ = ψ(1) + ψ(2) + . . .

δ = δ(1) + δ(2) + . . .

…then if we can split the  
Newtonian quantities as… 

…we can do the same thing  
for the cosmological ones!
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gauge cosmological perturbation theory! 

 

• At second approximation - recover an approximation to 
2nd order perturbation theory (missing some terms) 

 

• At third approximation - recover an approximation to  
3rd order perturbation theory (missing A LOT of terms)
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We plotted tree-level matter bispectrum to compare 
behaviour to full cosmological perturbation theory:

Seem to have good 
agreement  

down to 
k > 10−3 Mpc−1
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WHY?
GR corrections normally scale as   ∼

ℋ2

k2

But in Poisson gauge there are also  

corrections 
 

∼
ℋ4

k4

The 2PPT correctly identifies all the Poisson gauge 

terms scaling as   ∼
ℋ2

k2
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Remember!
2PPT equations are really 1st order cosmological 

perturbation equations!

Higher order terms expected to be large due to short 
scale nonlinearity are “promoted to first order”

We have artificially “re-linearised” these terms by using 
Newtonian perturbation theory solutions

Could recover missing terms by going to second order in 
cosmological perturbations …∼ ϵ2

…BUT then would have to consider even higher order 
products of the nonlinear terms
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But why bother?
1. Acts as a consistency check for the full 2PPT equations 

2. Can think of this as extending Newtonian perturbation 
theory  

3. Much easier to get dominating contributions to  - and 
hence an approximation to the relativistic  

 
 

δ(3)

P1−loop(k) = P22(k) + P13(k)

4.  is expected for surveyskmin ∼ 0.001 Mpc−1
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THE FUTURE…
1. Extend basic formalism to CDM (in progress) Λ

2. Calculate  P1−loop(k) = P22(k) + P13(k)

3. Include induced vectors and tensors  

4. “Upgrade” the Newtonian perturbation theory 
sector (Renormalised PT, EFTofLSS) 

5. Check the soft theorems!
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THE FAR FUTURE…
1. Include post-Newtonian short scale 

corrections  

2. Try to investigate keeping full Newtonian 
nonlinearity using simulations  

3. Lightcone projection effects - observables  

4. Weak lensing



THANK YOU!


