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Context: Gauge symmetries, redundancy or physical?
Textbooks: Redundancy
My answer: Partly physical

Related physical concepts

Asymptotic symmetries, (GR, hep-th)

adiabatic modes, Ward identities (cosmology)

edge states (cond-mat)

Berry phases and Aharanov Bohm effect in QM



Symmetries and conservation
laws



Noether’s Theorem [E.Noether(1918)]
(simplified version) For a continuous symmetry ¢ — ¢ -+ 6.¢ preserving

the Lagrangian §.£ = 0, the following current is conserved
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The Noether charge

e —
QE—/EdS:En;L Jé‘ —

is a constant of motion for closed systems.
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Can we use this for gauge symmetries as well? Let's try an example.



Example: Maxwell theory

The Lagrangian and its symmetry
LAl = ~3FwF™,  6xAu=28,M(2)
Compute Noether current

T = Mg,
= 0y (AF™) = AOLFM ~ 8, (AFMY)

Noether charge

e —
Q= / Brny J* ~ ]{ dSuw AP 5
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Remark) Noether charge is a boundary integral. n
- @@ =

Remark 2) A =1 gives total electric charge.



Asymptotic symmetries

General theorem [Wald'93, Barnich,Brandt'01 |
The charge associated to local symmetries can always be written as
boundary integrals.

Classification of gauge symmetries

e Pure gauge transformations Q) =0
e Large gauge transformations or asymptotic symmetries @y # 0
e () = oo forbidden by boundary conditions
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Credit: [Oblak'16]



Adiabatic modes

Adiabatic modes [Weinberg'05 |
Adiabatic modes are perturbations that in the long wavelength limit
take the form of a gauge transformation

e Example: Maxwell theory in temporal gauge [Mirbabayi,Simonovié '16- AS,van
den Bleeken '17]

e |t turns out that adiabatic modes are given by (see back up slides)
A =0i(tA(x)),  VPA(m)=0

e Remark. Regular harmonic functions cannot vanish at the boundary.
Correspondence between adiabatic modes and asymptotic symmetries.



Hamiltonian approach

Hamiltonian approach provides a great framework to discuss symmetries
and conservation laws [Regge, Teitelboim’74]

e Define algebra of charges
e Hidden symmetries
e More physical expression for charge — E.g. 1/2 discrepancy

betweem mass and angular momentum in Komar integrals

Covariant phase space [Ashtekar '82, Wald '90, Barnich, Brandt '01]



PART IlI:
Asymptotic symmetries in gravity



Asymptotic symmetries in gravity

e Local (gauge) symmetries of GR= Diffeomorphisms, arbitrary
coordinate transformations 2/ — 7/ (x)

e infinitesimal form t — t + e (2)

e Asymptotic symmetries are those coordinate transformations that
preserve the boundary conditions and are associated to finite charges
- preserve the boundary conditions,
- are associated to finite charges.



Asymptotic symmetries and holography

Communications in
Mathematical

Commun. Math. Phys. 104, 207-226 (1986)

© Springer-Verlag 1986

Central Charges in the Canonical Realization of
Asymptotic Symmetries: An Example
from Three Dimensional Gravity

J. D. Brown and Marc Henneaux***
Center for Theoretical Physics, The University of Texas at Austin, Austin, Texas 78712, USA

Abstract. It is shown that the global charges of a gauge theory may yield a
nontrivial central extension of the asymptotic symmetry algebra already at the
classical level. This is done by studying three dimensional gravity with a negative
cosmological constant. The asymptotic symmetry group in that case is either
R x SO(2) or the pseudo-conformal group in two dimensions, depending on the
boundary conditions adopted at spatial infinity. In the latter situation, a
nontrivial central charge appears in the algebra of the canonical generators,
which turns out to be just the Virasoro central charge.

’ (Asymptotic) symmetries of gravity AdS3 = Symmetries of CFT in 2d




Asymptotically flat spacetime

Gravitational waves in general relativity

VII. Waves from axi-symmetric isolated systems

By H. Bonor, F.R.S.,, M. G. J. vaxy DER Bure axp A. W. K. METZNER

(Received 8 January 1962—Revised 2 April 1962)

Gravitational waves in general relativity

VIII. Waves in asymptotically flat space-time

By R. K. Sacns*
King's College, University of London

(Communicated by H. Bondi, F.R.S.—Received 7T May 1962)

Introduction of the “BMS"” symmetries




Asymptotically flat spacetimes

A setup to study gravitational waves from compact sources

G oY
— [
Neakr Zone F&r Zone
. . g &=
Structure of (linearized) wave solution ¢ ~ ft=r)
,

Introduce the null coordinate retarded time uw =t —r + O(G)
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GR in Bondi gauge

Bondi gauge: Use retarded coordinates (u,r,8%) such that

grr = grA = 0, Or det (T_29AB> =0

ds? = — 2 (Udu® + 2dudr) + r2h 4 5 (d0* — U du)(d6F — U du)

Boundary conditions: Tlin;o (gpv — nuv) =0

Einstein equations solve for (8, U, U?, h s p)[Winicour '83]
4 hypersurface equations
2 evolution equations
4 constraint equations

11



Bondi asymptotic expansion

Expansion in 1/r and imposing Einstein equations

ds® = — & du® — 2c dudr + TQ’YAB doae?

—|—Emdu +1§—G\ dudd? +r C 4 ; d02d6P

+ subleading in 1/r

Bondi data: m(u,0?), N4 (u,0%) Bondi mass, angular momentum
aspect, Cap(u,0”) Bondi shear is traceless (= lim hii")

™00
Remaining Einstein equations

CAB

3
__ ¢ = c AB
Oum = 8GCAB + GDADBC

3
OuNpg = 0am+ — (DB(CBCCCA) + QDBCBCCCA)

4G

4
+4C—GDB(DADCOBC B0
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BMS symmetries




BMS symmetries

Definition Tansformations preserving the form of metric in Bondi
gauge but change the Bondi data

Extended BMS generators
A 1 A .
E= T0)0u +Y7(0)04— ETDAY Or + subleading

N——
supertranslation

superLorentz

(a) Supertranslations (b) superlLorentz

They form an infinite dimensional Lie algebra
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BMS symmetries

A vector field on sphere can be expanded as
YA = GABaA(DaB +’}/AB8A\1163
£= T(0M)9. +e Bagda,+0 0o, — 1rD2w,
N——— 2

——

supertranslation superrotation

superboost
Poincare subalgebra
T P 4
Y0,0 time translation - -
Y1,m | spatial translation rotations boosts
Yim supertranslation | superrotations | superboosts
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BMS charges

BMS charges [Campiglia, Laddha 17, Compére et.al. '18]

17
Pr = Ejé Tm, Supermomentum
s
Jo = %f APogeN,, S-angular momentum
s
Ky = %7{ FABopUN, S-center of mass
¢Js

Charge pairs the symmetry parameter with the Bondi aspect

BMS balance equations
BMS charges are NOT conserved charges. Instead they obey certain

balance equations

15



BMS balance equations




Balance equations

No radiation: Conservation laws enough to solve Kepler problem

Radiation: Balance equations replace conservation laws

dEmech —
dt rad

To lowest order approximation

Gmima @ oo owo
Erech = _Tv Frad = 5? Iij Iij
1
.
N\ RO h
® \ | ‘ o
o ( ‘ t
® [ [
S~ — S |
. e 1,

Find balance equations for BMS charges
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BMS flux balance equations

Remind the equation for Bondi mass aspect

i —E CapCAB 4 E D ppeAB
e AB 4G ALB

Flux balance equation for supermomentum Pr = 1 o T'm

@ 8G 4G

) 1 S . ap . - AB
Pr = f?{ T (—701430 + —DyDpC )
S|

Similarly for superLorentz charges
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Multipole expansion




Multipole expansion

e Why multipole expansion? PN hierarchy of fluxes
e Multipole expansion of radiation field (n; = £&, N, = n;, -+ n;,)
+o0 TT
4G by
Gy = Z Tr2g (Nsz Uijr—2— ?NaL—2 Eab(ivj)bL72)
=2 ’
in terms of mass and spin radiative multipole moments.
e STF Multipole expansion of symmetries
A - A — 1 A — 1
T(O%) => TLNy, @0 ):ZZSLNL, (0 ):ZZKLNL
£=0 £=1 =1
e One balance equation for each harmonic of the symmetry parameters
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Poincare flux balance equations

2 1 / ag | c AB
Pr=- T —— — DD
T A ( 8GCABC +4G BC )

Energy and angular momentum [Blanchet, Faye '18]
+oo
; G b
E =— Z mui{ULUL + LZVLVL}
=2
b[b/ .
Ji = —€ijk Z ey Usz— W1 + == 5> Vie-1Vir-1¢,

oo

: G beb . . .

Ps== E W{Z(wa et (UzLUL + = Hl VzLVL) +o¢ EiijjL—lvkL—l}
=2

(E+1)(0+2) _ 8(£+2) by = L

where 1 = e DT %t = TDEGEEDD 71

Similar results for center of mass.
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Radiative vs. source multipoles
G ¢ G
UL =19 = g .
L I +@(C3), Vip=J;,"+0 3

Leading terms

- _G (L) _ G (L W@ 16,0 ;0 -9
£€=-5 (51"1 L") = = \ 1gglintie + 35035 Jis” ) +0()
‘ G (2. @, _GC 1 (3) ,(4) , 32,2 3 9
S (567'“7[.7'1 Ly ) = ik | ggljtmim + 5751 T | 0

s __G (2 @@ 16 @) I
Pi=—— (@Iijk[jk + 5 ikl h +O(C )

=pi= G [ (1152121 4o ().

Matches exactly with standard results|Einstein '18, Epstein, Wagoner '75, Thorne

‘80, Kozameh '16, Blanchet, Faye '18]
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Supermomentum flux

General structure

Pr = |:7.3Li||in + [PL] :uad + |:75L:|<q_uad.

Linear flux

[7%] = Op—o (U+2)(£+1) T,U,,

et 2020+ 1)

Quadratic flux-parity even

. + = G/LZZ/Z// . . b[/b[// . .
|:7jL:|quad = — Z 762”+2/+2TL1L2 <UL1L3UL2L3 +FTVL1L3VL2L3)5Z”7£’,[-
= 5

Leading terms
: 2 . G4 (- . 1. . . _
2 anj = +676 [% (UikUjk - g(sijUklUkz):| + O(c 8)7
: 1 G - _
Pijkl - @Uijk’l = 7076 (315U<¢jUkl>) + O(C 8)
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PN analysis of BMS fluxes

PN order of quadratic fluxes

Supermomentum s-ang.momemtum s-center of mass

¢-pole | PN order ¢-pole | PN order ¢-pole | PN order

K IE Ll 25 |[1BE]| 35

1,35 315 2,4 3 2,4,6 4

Example: Octupolar super angular momentum

2 G 6 : —7
Jijk = 72 5 uVijk = .(gepq(in\p\Uk>(I)+O(c )
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Conclusion

Summary

New flux balance equations
At the same PN order as that of energy and angular momentum

In principle relevant for radiation reaction forces
Outlook

Wrtie BMS charges in terms of source variables

New differential equations for source parameters

Thank you very much
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Back up




Noether’s theorem

Of a theory

- Of a solution
6:8 =0 ZLegw =0
Disgrete Continuous
(parity,...)
Global Loca(le (g auoe)
(Lorentz,...) ’ (A> A+ 04

Noether
theorem
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Adiabatic modes

Adiabatic modes [Weinberg'05 |

Adiabatic modes are perturbations that in the long wavelength limit
take the form of a gauge transformation

o Example: Maxwell theory in temporal gauge [Mirbabayi,Simonovi¢ '16- AS,van
den Bleeken '17]

AO =0 = Az — A, +a,>\(m)
e Gauss equation
V- -E=08;4,=0 trivially solved by A; = 0\ (x)

e Introducing slow time dependence A; = 9;A(¢t, ) and requiring

e.0o.m= O(e?) implies

Aj = di(et X)),  VAx) =0

e Remark. Regular solutions cannot vanish at the boundary.

Correspondence between adiabatic modes and asymptotic symmetries.
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