

BMS flux balance equations

BMS symmetries and gravitational waves

Ali Seraj

Physique Théorique et Mathématique, Université Libre de Bruxelles

Based on arXiv:1912.03164 with Geoffrey Compère and Roberto Oliveri

Institut d'Astrophysique de Paris (IAP) 9 March 2020 **Context:** Gauge symmetries, redundancy or physical? Textbooks: *Redundancy* My answer: *Partly physical*

Related physical concepts

- Asymptotic symmetries, (GR, hep-th)
- adiabatic modes, Ward identities (cosmology)
- edge states (cond-mat)
- Berry phases and Aharanov Bohm effect in QM

Symmetries and conservation laws

Noether's Theorem [E.Noether(1918)]

(simplified version) For a continuous symmetry $\phi \rightarrow \phi + \delta_{\epsilon} \phi$ preserving the Lagrangian $\delta_{\epsilon} \mathcal{L} = 0$, the following current is conserved

$$J^{\mu}_{\epsilon} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \delta_{\epsilon} \phi, \qquad \partial_{\mu} J^{\mu}_{\epsilon} = 0.$$

The Noether charge

$$Q_{\epsilon} = \int_{\Sigma} d^3 x \, n_{\mu} \, J_{\epsilon}^{\mu}$$

is a constant of motion for closed systems.

Can we use this for gauge symmetries as well? Let's try an example.

The Lagrangian and its symmetry

$$\mathcal{L}[A] = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}, \qquad \delta_{\lambda} A_{\mu} = \partial_{\mu} \lambda(x)$$

Compute Noether current

$$J^{\mu}_{\lambda} = F^{\mu\nu} \partial_{\nu} \lambda$$
$$= \partial_{\nu} (\lambda F^{\mu\nu}) - \lambda \partial_{\nu} F^{\mu\nu} \approx \partial_{\nu} (\lambda F^{\mu\nu})$$

Noether charge

$$Q_{\lambda} = \int_{\Sigma} d^3 x \, n_{\mu} \, J^{\mu} \approx \oint_{\partial \Sigma} dS_{\mu\nu} \lambda F^{\mu\nu}$$

Remark) Noether charge is a boundary integral. Remark 2) $\lambda = 1$ gives total electric charge.

Asymptotic symmetries

General theorem [Wald'93, Barnich, Brandt'01]

The charge associated to local symmetries can always be written as boundary integrals.

Classification of gauge symmetries

- Pure gauge transformations $Q_{\lambda} = 0$
- Large gauge transformations or asymptotic symmetries $Q_{\lambda} \neq 0$
- $Q_{\lambda} = \infty$ forbidden by boundary conditions

Credit: [Oblak'16]

Adiabatic modes [Weinberg'05]

Adiabatic modes are perturbations that in the long wavelength limit take the form of a gauge transformation

- Example: Maxwell theory in temporal gauge [Mirbabayi,Simonović '16- AS,van den Bleeken '17]
- It turns out that adiabatic modes are given by (see back up slides)

$$A_i = \partial_i(t\,\lambda(\boldsymbol{x})), \qquad \nabla^2\lambda(\boldsymbol{x}) = 0$$

• Remark. Regular harmonic functions cannot vanish at the boundary. Correspondence between adiabatic modes and asymptotic symmetries. Hamiltonian approach provides a great framework to discuss symmetries and conservation laws [*Regge, Teitelboim*'74]

- Define algebra of charges
- Hidden symmetries
- More physical expression for charge \rightarrow E.g. 1/2 discrepancy betweem mass and angular momentum in Komar integrals

Covariant phase space [Ashtekar '82, Wald '90, Barnich, Brandt '01]

PART II: Asymptotic symmetries in gravity

- Local (gauge) symmetries of GR= Diffeomorphisms, arbitrary coordinate transformations $x^{\mu} \rightarrow \tilde{x}^{\mu}(x)$
- infinitesimal form $x^{\mu} \rightarrow x^{\mu} + \xi^{\mu}(x)$
- Asymptotic symmetries are those coordinate transformations that preserve the boundary conditions and are associated to finite charges
 - preserve the boundary conditions,
 - are associated to finite charges.

Asymptotic symmetries and holography

Commun. Math. Phys. 104, 207-226 (1986)

Communications in Mathematical Physics © Springer-Verlag 1986

Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three Dimensional Gravity

J. D. Brown and Marc Henneaux***

Center for Theoretical Physics, The University of Texas at Austin, Austin, Texas 78712, USA

Abstract. It is shown that the global charges of a gauge theory may yield a nontrivial central extension of the asymptotic symmetry algebra already at the classical level. This is done by studying three dimensional gravity with a negative cosmological constant. The asymptotic symmetry group in that case is either $R \times SO(2)$ or the pseudo-conformal group in two dimensions, depending on the boundary conditions adopted at spatial infinity. In the latter situation, a nontrivial central charge appears in the algebra of the canonical generators, which turns out to be just the Virasoro central charge.

(Asymptotic) symmetries of gravity AdS_3 = Symmetries of CFT in 2d

Asymptotically flat spacetime

Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems By H. BONDI, F.R.S., M. G. J. VAN DER BURG AND A. W. K. METZNER (Received 8 January 1962—Revised 2 April 1962)

Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time

> By R. K. SACHS* King's College, University of London

(Communicated by H. Bondi, F.R.S.-Received 7 May 1962)

Introduction of the "BMS" symmetries

Asymptotically flat spacetimes

A setup to study gravitational waves from compact sources

Structure of (linearized) wave solution $\psi \sim rac{f(t-r)}{r}$

Introduce the null coordinate retarded time u = t - r + O(G)

GR in Bondi gauge

Bondi gauge: Use retarded coordinates (u, r, θ^A) such that

$$g_{rr} = g_{rA} = 0, \qquad \partial_r \det\left(r^{-2}g_{AB}\right) = 0$$

 $ds^2 = -e^{2\beta}(Udu^2 + 2dudr) + r^2 \frac{h_{AB}}{d\theta^A} - \frac{U^A}{U^A} du)(d\theta^B - \frac{U^B}{U^B} du)$

Boundary conditions: $\lim_{r \to \infty} (g_{\mu\nu} - \eta_{\mu\nu}) = 0$

Einstein equations solve for (β, U, U^A, h_{AB}) [Winicour '83]

- 4 hypersurface equations
- 2 evolution equations
- 4 constraint equations

Bondi asymptotic expansion

Expansion in 1/r and imposing Einstein equations

$$\begin{split} ds^2 &= - c^2 \, du^2 - 2c \, dudr + r^2 \gamma_{AB} \, d\theta^A d\theta^B \\ &+ \frac{2G}{c^2 r} m \, du^2 + \frac{1}{r} \frac{4G}{3c^2} N_A \, dud\theta^A + r \, C_{AB} \, d\theta^A d\theta^B \\ &+ \text{subleading in } 1/r \end{split}$$

Bondi data: $m(u, \theta^A), N_A(u, \theta^A)$ Bondi mass, angular momentum aspect, $C_{AB}(u, \theta^A)$ Bondi shear is traceless $\left(=\lim_{r \to \infty} h_{ij}^{TT}\right)$ Remaining Einstein equations

$$\begin{aligned} \partial_u m &= -\frac{c^3}{8G} \dot{C}_{AB} \dot{C}^{AB} + \frac{c^4}{4G} D_A D_B \dot{C}^{AB}, \\ \partial_u N_A &= \partial_A m + \frac{c^3}{4G} \left(D_B (\dot{C}^{BC} C_{CA}) + 2 D_B \dot{C}^{BC} C_{CA} \right) \\ &+ \frac{c^4}{4G} D^B (D_A D^C C_{BC} - D_B D^C C_{AC}). \end{aligned}$$

BMS symmetries

BMS symmetries

Definition Tansformations preserving the form of metric in Bondi gauge but change the Bondi data

Extended BMS generators

A vector field on sphere can be expanded as

$$Y^A = \epsilon^{AB} \partial_A \Phi \partial_B + \gamma^{AB} \partial_A \Psi \partial_B$$

$$\xi = \underbrace{T(\theta^{A})\partial_{u}}_{\text{supertranslation}} + \underbrace{\epsilon^{AB}\partial_{B}\Phi\partial_{A}}_{\text{superrotation}} + \underbrace{\partial^{A}\Psi\partial_{A} - \frac{1}{2}rD^{2}\Psi\partial_{r}}_{\text{superboost}}$$

Poincare subalgebra

	T	Φ	Ψ
$Y_{0,0}$	time translation	-	-
$Y_{1,m}$	spatial translation	rotations	boosts
$Y_{\ell,m}$	supertranslation	superrotations	superboosts

BMS charges [Campiglia, Laddha '17, Compère et.al. '18]

$$\begin{split} \mathcal{P}_T &= \frac{1}{c} \oint_S T \, \boldsymbol{m} \,, \\ \mathcal{J}_\Phi &= \frac{1}{2} \oint_S \epsilon^{AB} \partial_B \Phi \boldsymbol{N}_A, \\ \mathcal{K}_\Psi &= \frac{1}{2c} \oint_S \gamma^{AB} \partial_B \Psi \boldsymbol{N}_A \end{split}$$

Supermomentum

S-angular momentum

S-center of mass

Charge pairs the symmetry parameter with the Bondi aspect

BMS balance equations

BMS charges are NOT conserved charges. Instead they obey certain balance equations

BMS balance equations

No radiation: Conservation laws enough to solve Kepler problem

Radiation: Balance equations replace conservation laws

$$\frac{dE_{mech}}{dt} = -\mathcal{F}_{rad}$$

To lowest order approximation

Find balance equations for BMS charges

Remind the equation for Bondi mass aspect

$$\dot{m} = -\frac{c^3}{8G}\dot{C}_{AB}\dot{C}^{AB} + \frac{c^4}{4G}D_A D_B\dot{C}^{AB}$$

Flux balance equation for supermomentum $\mathcal{P}_T = \frac{1}{c} \oint_S T \, m$

$$\dot{P}_T = \frac{1}{c} \oint_S T \left(-\frac{c^3}{8G} \dot{C}_{AB} \dot{C}^{AB} + \frac{c^4}{4G} D_A D_B \dot{C}^{AB} \right)$$

Similarly for superLorentz charges

Multipole expansion

Multipole expansion

- Why multipole expansion? PN hierarchy of fluxes
- Multipole expansion of radiation field $(n_i = \frac{x_i}{r}, N_L = n_{i_1} \cdots n_{i_\ell})$

$$C_{ij} = \sum_{\ell=2}^{+\infty} \frac{4G}{c^{\ell+2}\ell!} \left(N_{L-2} \ \boldsymbol{U}_{ijL-2} - \frac{b_{\ell}}{c} N_{aL-2} \ \epsilon_{ab(i} \boldsymbol{V}_{j)bL-2} \right)^{TT}$$

in terms of mass and spin radiative multipole moments.

• STF Multipole expansion of symmetries

$$T(\theta^A) = \sum_{\ell=0}^{\infty} \boldsymbol{T}_L N_L \,, \quad \Phi(\theta^A) = \sum_{\ell=1}^{\infty} \frac{1}{\ell} \boldsymbol{S}_L N_L \,, \quad \Psi(\theta^A) = \sum_{\ell=1}^{\infty} \frac{1}{\ell} \boldsymbol{K}_L N_L$$

• One balance equation for each harmonic of the symmetry parameters

Poincarè flux balance equations

$$\dot{P}_T = \frac{1}{c} \oint_S T \left(-\frac{c^3}{8G} \dot{C}_{AB} \dot{C}^{AB} + \frac{c^4}{4G} D_A D_B \dot{C}^{AB} \right)$$

Energy and angular momentum [Blanchet, Faye '18]

$$\begin{split} \dot{\mathcal{E}} &= -\sum_{\ell=2}^{+\infty} \frac{G}{c^{2\ell+1}} \mu_{\ell} \Big\{ \dot{U}_{L} \dot{U}_{L} + \frac{b_{\ell} b_{\ell}}{c^{2}} \dot{V}_{L} \dot{V}_{L} \Big\}, \\ \dot{\mathcal{J}}_{i} &= -\varepsilon_{ijk} \sum_{\ell=2}^{+\infty} \frac{G}{c^{2\ell+1}} \ell \mu_{\ell} \Big\{ U_{jL-1} \dot{U}_{kL-1} + \frac{b_{\ell} b_{\ell}}{c^{2}} V_{jL-1} \dot{V}_{kL-1} \Big\}, \\ \dot{\mathcal{P}}_{i} &= -\sum_{\ell=2}^{+\infty} \frac{G}{c^{2\ell+3}} \Big\{ 2(\ell+1) \mu_{\ell+1} \left(\dot{U}_{iL} \dot{U}_{L} + \frac{b_{\ell} b_{\ell+1}}{c^{2}} \dot{V}_{iL} \dot{V}_{L} \right) + \sigma_{\ell} \varepsilon_{ijk} \dot{U}_{jL-1} \dot{V}_{kL-1} \Big\} \\ \text{where} \quad \mu_{\ell} &= \frac{(\ell+1)(\ell+2)}{(\ell-1)\ell\ell((2\ell+1)!!}, \quad \sigma_{\ell} = \frac{8(\ell+2)}{(\ell-1)(\ell+1)!(2\ell+1)!!}, \quad b_{\ell} = \frac{\ell}{\ell+1} \end{split}$$

Similar results for center of mass.

Leading terms

Radiative vs. source multipoles

$$\boldsymbol{U}_L = \boldsymbol{I}_L^{(\ell)} + \mathcal{O}\left(\frac{G}{c^3}\right), \qquad \boldsymbol{V}_L = \boldsymbol{J}_L^{(\ell)} + \mathcal{O}\left(\frac{G}{c^3}\right)$$

Leading terms

$$\begin{split} \dot{\mathcal{E}} &= -\frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} \right) - \frac{G}{c^7} \left(\frac{1}{189} I_{ijk}^{(4)} I_{ijk}^{(4)} + \frac{16}{45} J_{ij}^{(3)} J_{ij}^{(3)} \right) + O(c^{-9}) \\ \dot{\mathcal{J}}_i &= -\frac{G}{c^5} \left(\frac{2}{5} \epsilon_{ijk} I_{jl}^{(2)} I_{kl}^{(3)} \right) - \frac{G}{c^7} \epsilon_{ijk} \left(\frac{1}{63} I_{jlm}^{(3)} I_{klm}^{(4)} + \frac{32}{45} J_{jl}^{(2)} J_{kl}^{(3)} \right) + O(c^{-9}) \\ \dot{\mathcal{P}}_i &= -\frac{G}{c^7} \left(\frac{2}{63} I_{ijk}^{(4)} I_{jk}^{(3)} + \frac{16}{45} \epsilon_{ijk} I_{jl}^{(3)} J_{kl}^{(3)} \right) + O\left(c^{-9}\right) . \\ \dot{\mathcal{G}}_i &= \mathcal{P}_i - \frac{G}{c^7} \left[\frac{1}{21} \left(I_{jk}^{(3)} I_{ijk}^{(3)} - I_{jk}^{(2)} I_{ijk}^{(4)} \right) \right] + O\left(c^{-9}\right) . \end{split}$$

Matches exactly with standard results[Einstein '18, Epstein, Wagoner '75, Thorne '80, Kozameh '16, Blanchet, Faye '18]

Supermomentum flux

General structure

$$\dot{\mathcal{P}}_L = \left[\dot{\mathcal{P}}_L\right]_{\mathsf{lin}} + \left[\dot{\mathcal{P}}_L\right]_{\mathsf{quad}}^+ + \left[\dot{\mathcal{P}}_L\right]_{\mathsf{quad}}^-.$$

Linear flux

$$\left[\dot{\mathcal{P}}_L\right]_{\rm lin} = \frac{\Theta_{\ell-2}}{c^{\ell-1}} \frac{(\ell+2)(\ell+1)}{2(2\ell+1)!!} \boldsymbol{T}_L \dot{\boldsymbol{U}}_L,$$

Quadratic flux-parity even

$$\left[\dot{\mathcal{P}}_{L}\right]_{\mathsf{quad}}^{+} = -\sum_{\ell',\ell''=2}^{\infty} \frac{G\,\mu_{\ell\ell'\ell''}}{c^{\ell''+\ell'+2}} T_{L_{1}L_{2}} \Big(\dot{U}_{L_{1}L_{3}}\dot{U}_{L_{2}L_{3}} + \frac{b_{\ell'}b_{\ell''}}{c^{2}}\dot{V}_{L_{1}L_{3}}\dot{V}_{L_{2}L_{3}}\Big)\delta_{\ell'',\ell',\ell}.$$

Leading terms

$$\dot{\mathcal{P}}_{ij} - \frac{2}{5c} \dot{U}_{ij} = +\frac{G}{c^6} \left[\frac{4}{35} \left(\dot{U}_{ik} \dot{U}_{jk} - \frac{1}{3} \delta_{ij} \dot{U}_{kl} \dot{U}_{kl} \right) \right] + \mathcal{O}(c^{-8}),$$

$$\dot{\mathcal{P}}_{ijkl} - \frac{1}{63c^3} \dot{U}_{ijkl} = -\frac{G}{c^6} \left(\frac{2}{315} \dot{U}_{\langle ij} \dot{U}_{kl} \rangle \right) + \mathcal{O}(c^{-8})$$

PN order of quadratic fluxes

Supermomentum		s-ang.momemtum			s-center of mass		
ℓ-pole	PN order	<i>ℓ</i> -pole	PN order		ℓ -pole	PN order	
0, 2, 4	3	1, 3	2.5		1, <mark>3, 5</mark>	3.5	
1, 3, 5	3.5	2, 4	3		2, 4, 6	4	

Example: Octupolar super angular momentum

$$\dot{\mathcal{J}}_{ijk} - \frac{2}{7c^2} \, u \, \dot{\boldsymbol{V}}_{ijk} = -\frac{G}{c^5} \left(\frac{6}{35} \, \epsilon_{pq\langle i} \, \dot{\boldsymbol{U}}_{j|p|} \boldsymbol{U}_{k\rangle q} \right) + \mathcal{O}(c^{-7})$$

Summary

New flux balance equations At the same PN order as that of energy and angular momentum In principle relevant for radiation reaction forces

Outlook

Wrtie BMS charges in terms of source variables New differential equations for source parameters

Thank you very much

Back up

Noether's theorem

Adiabatic modes

Adiabatic modes [Weinberg'05]

Adiabatic modes are perturbations that in the long wavelength limit take the form of a gauge transformation

• Example: Maxwell theory in temporal gauge [Mirbabayi,Simonović '16- AS,van den Bleeken '17]

$$A_0 = 0 \implies A_i \to A_i + \partial_i \lambda(\boldsymbol{x})$$

• Gauss equation

 $abla \cdot E = \partial_i \dot{A}_i = 0$ trivially solved by $A_i = \partial_i \lambda(x)$

Introducing slow time dependence A_i = ∂_iλ(ϵt, x) and requiring
e.o.m= O(ϵ²) implies

$$A_i = \partial_i (\epsilon t \,\lambda(\boldsymbol{x})), \qquad \nabla^2 \lambda(\boldsymbol{x}) = 0$$

Remark. Regular solutions cannot vanish at the boundary.
Correspondence between adiabatic modes and asymptotic symmetries.