Where do AMS-02 anti-helium events come from?

Vivian Poulin

Laboratoire Univers et Particules de Montpellier CNRS \& Université de Montpellier

```
w/ P. Salati, I. Cholis, M. Kamionkowoski and J. Silk
    Phys.Rev. D99 (2019) no.2, 023016
```

GReCO seminar series
IAP, 27/01/2020

AMS: A particle physics detector on the ISS

V. Poulin - LUPM (CNRS)

AMS: A TeV precision, magnetic spectrometer

Particles and nuclei are defined by their
Transition Radiation Detector Identify $\mathrm{e}^{+}, \mathrm{e}^{-}$
charge (Z) and
Time of Flight
Z, E

Silicon Tracker Z, R

Electromagnetic Calorimeter E of $\mathrm{e}^{+}, \mathrm{e}^{-}$

The Charge and Energy are measured independently by many detectors

Slide from V. Choutko

The CR spectrum

- Largely dominated by protons $100 p: 10 \mathrm{He}: 1 e^{-}: 10^{-2} e^{+}: 10^{-3} \bar{p}$
- AMS measures at MeV-TeV energies $=>$ Galactic sources.
- AMS provides the most accurate measurement of CR fluxes to date in the $\mathrm{MeV}-\mathrm{TeV}$ range.
- AMS can teach us about astrophysical sources (e.g. pulsars), Dark Matter and other exotic sources of antimatter.

Did AMS see anti-helium events?

- AMS-02 might have identified $6{ }^{3} \overline{\mathrm{He}}$ and $2{ }^{4} \overline{\mathrm{He}}$. The event rate is $\sim 1 \overline{\mathrm{He}}$ for $10^{8} \mathrm{He}$.
- Massive Monte Carlo simulations are carried out to evaluate significance.
- Current event rate is ~ 20 times above the claimed sensitivity.

Anti-matter in the universe

- Baryon asymmetry in the universe is defined: $\left.\quad B \equiv \frac{n_{B}-n_{\bar{B}}}{s_{\gamma}} \sim \eta \equiv \frac{n_{B}}{n_{\gamma}}\right|_{\text {today }} \quad$ e.g. Kolb\&Turner's book
- Assuming homogeneous, baryon-symmetric universe and no B-violation processes

$$
\begin{aligned}
\frac{n_{B}}{n_{\gamma}} & =\frac{n_{\bar{B}}}{n_{\gamma}} \sim 10^{-17} \\
& \eta \equiv \frac{n_{B}}{n_{\gamma}} \sim 6 \cdot 10^{-10} \Rightarrow B>0
\end{aligned}
$$

- In our vicinity: $n_{\bar{p}} \sim 10^{-5} n_{p}$ in cosmic rays, most likely purely secondaries.
- Why is there so much more matter than this naive prediction? Where is the antimatter?
- AMS has detected anti-helium: How can such objects be created? anti-BBN? anti-stars?

Summary

A single ${ }^{4} \mathrm{He}$ could indicate the presence of anti-objects.

I/ Anti-helium flux from standard astrophysical processes

II/ Basics of baryogenesis: How to produce an anti-world?

III/ Constraining the population of anti-objects in the Galaxy / Universe

I/ Anti-helium flux from standard astrophysical processes

Secondary cosmic-ray anti-helium

Fusion of $\bar{p} \& \bar{n}$
Coalescence factor B

The coalescence factor

coalescence \equiv fusion of $\bar{p} \& \bar{n}$ into $\bar{d}, \overline{{ }^{3} \mathrm{He}}$ or ${ }^{4} \mathrm{He}$

coalescence momentum $p_{0}=p_{\text {coal }} / 2$

$$
\begin{gathered}
d^{3} \mathcal{N}_{\bar{d}}(\mathbf{K})=\int d^{6} \mathcal{N}_{\bar{p}, \bar{n}}\left\{\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right\} \times \mathcal{C}(\boldsymbol{\Delta}) \times \delta^{3}\left(\mathbf{K}-\mathbf{k}_{\mathbf{1}}-\mathbf{k}_{\mathbf{2}}\right) \\
B_{2}=\frac{E_{\bar{d}}}{E_{\bar{p}} E_{\bar{n}}} \int d^{3} \boldsymbol{\Delta} \mathcal{C}(\boldsymbol{\Delta}) \simeq \frac{m_{\bar{d}}}{m_{\bar{p}} m_{\bar{n}}}\left\{\frac{4}{3} \pi p_{0}^{3} \equiv \frac{\pi}{6} p_{\text {coal }}^{3}\right\}
\end{gathered}
$$

Coalescence factor B_{2}

$$
\frac{E_{\bar{d}}}{\sigma_{\mathrm{in}}} \frac{d^{3} \sigma_{\bar{d}}}{d^{3} \mathbf{K}}=B_{2}\left\{\frac{E_{\bar{p}}}{\sigma_{\mathrm{in}}} \frac{d^{3} \sigma_{\overline{\bar{p}}}}{d^{3} \mathbf{k}_{1}}\right\}\left\{\frac{E_{\bar{n}}}{\sigma_{\mathrm{in}}} \frac{d^{3} \sigma_{\bar{n}}}{d^{3} \mathbf{k}_{2}}\right\}
$$

The coalescence factor

coalescence \equiv fusion of $\bar{p} \& \bar{n}$ into $\bar{d},{ }^{3} \mathrm{He}$ or ${ }^{4} \mathrm{He}$

coalescence momentum $p_{0}=p_{\text {coal }} / 2$

Production on anti-nuclei with mass A

$$
\frac{E_{\bar{A}}}{\sigma_{\text {in }}} \frac{d^{3} \sigma_{\bar{A}}}{d^{3} \boldsymbol{k}_{\bar{A}}}=B_{A}\left\{\frac{E_{\bar{p}}}{\sigma_{\text {in }}} \frac{d^{3} \sigma_{\overline{\bar{p}}}}{d^{3} \boldsymbol{k}_{\bar{p}}}\right\}^{Z}\left\{\frac{E_{\bar{n}}}{\sigma_{\text {in }}} \frac{d^{3} \sigma_{\bar{n}}}{d^{3} \boldsymbol{k}_{\bar{n}}}\right\}^{A-Z} \text { with } \boldsymbol{k}_{\bar{p}}=\boldsymbol{k}_{\bar{n}}=\boldsymbol{k}_{\bar{A}} / A
$$

Coalescence factor B_{A}

$$
B_{A}=\frac{m_{A}}{m_{p}^{Z} m_{n}^{A-Z}}\left\{\frac{\pi}{6} p_{\text {coal }}^{3}\right\}^{A-1}
$$

Determination of the coalescence momentum

- Monte Carlo simulations show different results depending on simulator / data sets $/ \sqrt{s}$

Fitting p_{0} to data on \bar{d} production

Ibarra \& Wild, JCAP 1302 (2013)
Dal \& Raklev, PRD89 (2014)
ANTIDEUTERONS

Gomez-Coral ++ PRD98 (2018)

Alice can measure the coalescence factor

- Collaborations (e.g. Alice) provide us with measurements of the coalescence factor B

$$
E_{A} \frac{d^{3} N_{A}}{d p_{A}^{3}}=B_{A}\left(E_{p} \frac{d^{3} N_{p}}{d p_{p}^{3}}\right)^{Z}\left(E_{n} \frac{d^{3} N_{n}}{d p_{n}^{3}}\right)^{N}
$$

Acharya++ PRDC97 (2018)

What about ${ }^{4} \overline{\mathrm{He}}$?

- First measurement of ${ }^{4} \overline{\mathrm{He}}$ by the STAR collaboration in $\mathrm{Au}-\mathrm{Au}$ collision at $\sqrt{s}=200 \mathrm{GeV} / \mathrm{n}$
- ${ }^{4} \overline{\mathrm{He}} /{ }^{3} \overline{\mathrm{He}} \simeq 10^{-3}$

STAR Collaboration, Nature 473 (2011)

Source term for production by spallation

$$
q_{\mathrm{sec}}\left(\overline{\mathrm{He}} \mid E_{\overline{\mathrm{He}}}, \boldsymbol{x}\right)=\sum_{i \in \mathrm{p}, \alpha} \sum_{j \in \mathrm{H}, \mathrm{He}} 4 \pi \int d E_{i} \Phi_{i}\left(E_{i}, \boldsymbol{x}\right) n_{j}(\boldsymbol{x}) \frac{d \sigma_{i j \rightarrow \overline{\mathrm{He}}}}{d E_{\overline{\mathrm{He}}}}\left(E_{i}, E_{\overline{\mathrm{He}}}\right)
$$

V. Poulin et al., Phys. Rev. D99 (2019) 023016 M. Korsmeier et al., Phys. Rev. D97 (2018) 103011

$$
7.7 \times 10^{-7} \leq \frac{B_{4}}{\mathrm{GeV}^{6}} \leq 3.9 \times 10^{-6}
$$

Cosmic-ray anti-nuclei Galactic propagation

Based on code by M. Boudaud e.g. Genolini, Boudaud et al. 2019

$$
\begin{gathered}
\psi=\frac{d n}{d E}=\frac{d^{4} N}{d^{3} x d E} \\
\Phi=\frac{1}{4 \pi} v \psi \\
(\mathrm{GeV} / \mathrm{nuc})^{-1} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}
\end{gathered}
$$

ISM spallation

$$
\begin{gathered}
\dot{\psi}+\nabla \cdot\left\{-K \nabla \psi+\psi \boldsymbol{V}_{C}\right\}+\frac{\partial}{\partial E}\left\{b \psi-D_{E E} \frac{\partial \psi}{\partial E}\right\}=q-\left(\sigma v n_{\mathrm{H}}\right) \psi \\
\text { Eonvection } \begin{array}{c}
\text { E losses }
\end{array}=q_{\mathrm{acc}}, q_{\mathrm{sec}}, q_{\mathrm{DM}}
\end{gathered}
$$

\boldsymbol{x} diffusion

$$
K=K_{0} \beta \mathcal{R}^{\delta}\left\{1+\left(\frac{\mathcal{R}}{\mathcal{R}_{b}}\right)^{\Delta \delta / s}\right\}^{-s}
$$

Secondaries cannot explain ${ }^{4} \overline{\mathrm{He}}$

- The coalescence scenario predicts a hierarchy in the flux of anti-nuclei $\Phi_{\mathrm{A}+1} \approx 10^{-3}-10^{-4} \Phi_{\mathrm{A}}$
- AMS measurement is ~ 6 orders of magnitude above ${ }^{4} \overline{\mathrm{He}}$ "secondary" prediction
- Where is the anti-De???

VP, Salati++ PRD99 (2019)

All (recent) predictions agree!

- Blum++ 2017: AMS (5yrs) could detect 1 or 2 events if B3 $=10 *$ B3 from Alice! AMS has detected ~ 6 events. probability $->0$.
- Korsmeier++ 2017: ~1-2 orders of magnitude below measurement.
- Same conclusions in Cirelli++ 2014, Herms++2016 etc...

What about Dark Matter?

- The Dark Matter explanation suffers from very similar issues! Anti-He produced via coalescence of anti-proton and anti-neutron.

$$
q_{\mathrm{DM}}\left(E_{\bar{D}}, \vec{x}\right)=\frac{1}{2}\left(\frac{\rho(\vec{x})}{m_{\mathrm{DM}}}\right)^{2}\langle\sigma v\rangle_{b \bar{b}} \frac{d N_{\bar{D}}^{b \bar{b}}}{d E_{\bar{D}}}
$$

- Coalescence factor can change: very different kinematic + non-nuclear material. It leads to typically smaller values of B_{A}.

(a) Coalescence model

Dark Matter is at odds with AMS-02 events

CooganEProfumo, PRD96 (2017)

Korsmeier++ 1711.08465

- The Dark Matter flux peaks at low kinetic energy compared to the background.
- AMS should see associated $\overline{\mathrm{De}}$ and \bar{p} : Most of the parameter space is ruled out by \bar{p}.
- Dark Matter models cannot produce ${ }^{4} \overline{\mathrm{He}}$ via coalescence.

II/ Basics of baryogenesis: how to produce an anti-world

Three types of cosmological baryon asymmetry

η is homogeneous, the universe is 100% matter dominated;

- average η is 0 but there are very large domains of matter and anti-matter;
η is not spatially constant: there are lumps of antimatter in a matter dominated universe.

AMS-02 can typically probe scenario iii)

Sakharov Conditions

See Kolb\&Turner for pedagogic discussion

A successful baryogenesis requires

Sakharov 1967

- Baryon number violation: if $B=0$ at an initial time, and there are not B-violating processes, non-zero B cannot be generated.
$n b$: inflation makes sure that $B=0$ initially.
- P and CP violation: ensure that opposite B-violating processes do not take place with an equal rate, resulting in no net Baryon asymmetry.

$$
\Gamma\left(i \rightarrow f ; p_{i}, s_{i} ; p_{f}, s_{f}\right) \neq \Gamma\left(f \rightarrow i ;-p_{f},-s_{f} ;-p_{i},-s_{i}\right)
$$

- Departure from equilibrium (or CPT violation): at equilibrium distribution are Fermi-Dirac or Bose-Einstein at temperature T. B-violating processes leads to $\mu=0$. Because CPT ensure that $m_{B}=m_{\bar{B}}$, there cannot be any net Baryon asymmetry.

$$
f_{ \pm}=\frac{1}{e^{(E-\mu) / T} \pm 1} \quad n(t)=\frac{g}{(2 \pi)^{3}} \int d^{3} p f_{s}(t, p)
$$

Two types of scenarios

- Cosmic phase transition

Electroweak baryogenesis,...

- Decay of new particles

Anti-matter

Matter

GUT baryogenesis, leptogenesis...

Standard scenario predicts homogeneous baryon number, no anti-objects

Baryogenesis in the standard model

- Maximal P violation: SM is a chiral theory! Right-handed fermions (Left-handed anti-fermions) are gauge singlets w / r to $S U(2)_{L}$.
- CP violation:
- first detected in observing neutral K meson decay, now also established in B meson decays.
- All CP -breaking effects in the quark sector can be understood in terms of the phase δ which appears in the CKM matrix.
- What about the neutrino sector?
- B-violation: B - and L-number global symmetry are accidental in the SM. Only violated via nonperturbative effects: 'instantons' and 'sphalerons'. Rate is negligible today huge before EWPT.

$$
\emptyset \leftrightarrow 2 u+d+2 c+s+t+2 b+e^{-}+v_{\mu}+\tau^{-}
$$

$n b: B+L$ violated, but $B-L$ still a symmetry

- Out-of-equilibrium: Provided by the expansion of the universe, when $\mathrm{H}>\Gamma$.

Electro-Weak baryogenesis

- Occurs during the EW phase-transition, i.e., when $S U(2)_{L} \times U(1)_{Y}$ is broken to $U(1)_{e m}$ at $\mathrm{T} \sim 100 \mathrm{GeV}$.

$$
V_{e f f}(\phi, T) \simeq D\left(T^{2}-T_{0}^{2}\right) \phi^{2}-E T \phi^{3}+\frac{\bar{\lambda}}{4} \phi^{4}
$$

Problems with SM EW Baryogenesis

- Too little CP violation: $\epsilon_{\mathrm{CP}} \sim 10^{-20} \ll \eta$

$$
\epsilon_{\mathrm{CP}} \sim J \frac{\left(m_{t}^{2}-m_{c}^{2}\right)\left(m_{t}^{2}-m_{u}^{2}\right)\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{b}^{2}-m_{s}^{2}\right)\left(m_{b}^{2}-m_{d}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right)}{E^{12}},
$$

$J=-\operatorname{Im}\left[V_{u s} V_{c d} V_{c s}^{*} V_{u d}^{*}\right]=c_{12} c_{23} c_{13}^{2} s_{12} s_{23} s_{13} s_{\delta} \sim 3 \times 10^{-5} . \quad E_{\mathrm{EW}} \sim v \sim 10^{2} \mathrm{GeV}$

- Too strong Sphaleron rate in the broken phase: EWPT is not strongly first order (crossover), Higgs is too heavy.

Baldes, COSMO19
$\phi[\mathrm{GeV}]$

Inhomogeneous baryon number

$$
U_{\chi}(\chi, \Phi)=\lambda_{1}\left(\Phi-\Phi_{1}\right)^{2}|\chi|^{2}+\lambda_{2}|\chi|^{4} \ln \frac{|\chi|^{2}}{\sigma^{2}}+m_{0}^{2}|\chi|^{2}+m_{1}^{2} \chi^{2}+m_{1}^{* 2} \chi^{* 2}
$$

- Modified "Affleck-Dine" baryogenesis: a complex scalar field carrying a non-zero baryon number coupled to the inflaton.
- Time-dependent effective mass allows for formation of 'bubbles' with high baryon number in some regions of space + overall homogeneous baryon number.
- After inflation, at horizon re-entry bubble collapse into compact objects (black holes, stars...)

We know almost nothing about small scales

- Could there be pocket of antimatter at small scales?
- AMS probes antimatter at sub-galactic scales (i.e, $k>10^{2} \mathrm{Mpc}^{-1}$).

III/ Constraining the population of anti-objects

What can we learn from current data?

- AMS-02 might have identified $6{ }^{3} \overline{\mathrm{He}}$ and $2^{4} \overline{\mathrm{He}}$. The event rate is $\sim 1 \overline{\mathrm{He}}$ for $10^{8} \mathrm{He}$.
- Questions: i) what population do we need to explain the measurements?
ii) Can such objects survive over cosmological timescale?
iii) How can such objects accelerate CRs?

Clouds of anti-matter in our Galaxy?

- How many of them? What are their densities? What volume would they occupy?
- AMS-02 measurements can help us answer these questions.

Assumption: acceleration and propagation of Cosmic Rays are identical for matter and anti-matter.

- Are there small, very dense objects or large, very dilute anti-domains?

Anisotropic BBN and the isotopic ratio

- Standard BBN predicts in the ISM: ${ }^{4} \mathrm{He} /{ }^{3} \mathrm{He} \sim 10^{4}$. Within CRs, spallation leads to ${ }^{4} \mathrm{He} /{ }^{3} \mathrm{He} \sim 5$.

Problem: observed isotopic ratio is 0.3 .

- Solution: anisotropic BBN! if η is not homogeneous, there could be pockets dominated by antimatter with very low density.

Correct isotopic ratio if anti- $\eta=10^{-3} \eta$
produced with AlterBBN Arbey 1106.1363
Checked with PRIMAT
Pitrou++ 1909.12046

Some implications of the BBN calculation

- This immediately predicts density ratio: $\quad \frac{N\left({ }^{4} \overline{\mathrm{He}}\right)}{N\left({ }^{3} \mathrm{He}\right)} \simeq 0.3 \Rightarrow \frac{N(\overline{\mathrm{p}})}{N\left({ }^{3} \mathrm{He}\right)} \simeq 10^{5}$
- We predict $\sim 10^{4}$ primary anti-proton and ~ 0.1 De event.

This is potentially detectable with AMS-02!

- Moreover, we know in the ISM: $\mathrm{n}_{\mathrm{p}}=10 \mathrm{n}_{\mathrm{He}}$. AMS-02 therefore implies:

$$
\frac{\phi_{\overline{\mathrm{He}}}}{\phi_{\mathrm{He}}} \simeq \frac{n_{\overline{\mathrm{He}}} V_{\mathrm{He}}}{n_{\mathrm{He}} V_{\mathrm{He}}} \simeq 10^{-8} \Rightarrow\left(\frac{n_{\bar{p}}}{n_{p}}\right)\left(\frac{V_{\overline{\mathrm{M}}}}{V_{\mathrm{M}}}\right) \simeq 10^{-4}
$$

- If we assume anti-clouds are spherical with radius 1 parsec (arbitrary)

$$
n_{\bar{p}} \simeq 10^{5}-10^{6.5} N_{\overline{\mathrm{c}}}^{-1}\left(\frac{n_{p}}{1 \mathrm{~cm}^{-3}}\right)\left(\frac{r_{\bar{c}}}{1 \mathrm{pc}}\right)^{-3} \mathrm{~cm}^{-3} .
$$

A few, very dense anti-clouds could explain AMS events!

- Question: can such objects survive in our galaxy? can we see them in γ-rays?

Anti-cloud cannot survive in our Galaxy

- \bar{p} can annihilate with p in the ISM at a rate: $\tau_{\text {ann }}^{-1}=\left(n_{p}\left\langle\sigma_{p \bar{p}} \nu\right\rangle\right)$

$$
\left\langle\sigma_{p \bar{p}} v\right\rangle \simeq\left\{\begin{array}{lr}
1.5 \times 10^{-15} \mathrm{~cm}^{3} / \mathrm{s} & T>10^{10} \mathrm{~K}, \\
10^{-10}\left(\frac{\mathrm{~K}}{T}\right)^{1 / 2} \mathrm{~cm}^{3} / \mathrm{s} & 10^{10} \mathrm{~K}>T>10^{4} \mathrm{~K}, \\
10^{-10} \mathrm{~cm}^{3} / \mathrm{s} & 10^{4} \mathrm{~K}>T .
\end{array}\right.
$$

- Our Galaxy exists since roughly $t_{\mathrm{gal}} \simeq 2.8 \times 10^{17} \mathrm{~s}$ and $n_{p}^{\text {ism }}=1 \mathrm{~cm}^{-3}$
- Requiring tann $>$ tgal leads to $n_{p}^{\text {cold }}<3.5 \times 10^{-8} \mathrm{~cm}^{-3} \quad n_{p}^{\text {hot }}<6.1 \times 10^{-5} \mathrm{~cm}^{-3}$.

Anti-clouds cannot survive unless there is a segregation between matter and anti-matter

Survival rate in the Early Universe

- In the early universe, larger densities lead to larger annihilation rate and stronger constraints.
- The hubble time before matter-radiation equality $\left(\mathrm{Z}_{\mathrm{eq}}>3500\right)$ is $t_{H} \simeq 5 \times 10^{19}(1+z)^{-2} \mathrm{~s}$
- Before BBN $\left(z \sim 10^{9}\right)$, annihilation happens in the relativistic regime. The constraint on the local proton density from requiring $\mathrm{t}_{\mathrm{ann}}>\mathrm{t}_{\mathrm{H}}$ is:

$$
n_{p}^{\text {local }}\left(z_{\mathrm{BBN}}\right)<1.9 \times 10^{-8} n_{p}^{\text {cosmo }}\left(z_{\mathrm{BBN}}\right)
$$

- Below Zeq , the constraint relaxes to

$$
\frac{n_{p}^{\text {local }}}{n_{p}^{\text {cosmo }}}\left(z<z_{\mathrm{eq}}\right)<\frac{6.3 \times 10^{-2}}{(1+z)^{3 / 2}}
$$

$$
\begin{aligned}
& \text { If anti-domains were formed before BBN, } \\
& \text { there must be less than } 1 \text { baryon per } 10^{8} \text { anti-baryons within them! }
\end{aligned}
$$

γ-Ray constraints

- Annihilations lead to γ-rays that can be detected.
- There are three types of searches that can provide strong constraints:
i) searches for distinctive spectral features such as a gamma-ray line;
ii) searches for morphological features localized on the sky, either from extended or point sources;
iii) searches for a continuous spectrum of gamma-rays extending over large area on the sky (e.g. extragalactic γ-ray background).
- Type i) and iii) can provide very strong constraints on the overlap of matter/anti-matter region. Type ii) could explain some unassociated sources in the 3FGL catalog.
- Line search in FermiLAT allows to set (for a cold cloud) $n_{p}^{\text {local }} \lesssim 10^{-10}-2 \times 10^{-9} \mathrm{~cm}^{-3}$.

$$
\text { FermiLAT can be used to improve constraints by } 2 \text { orders of magnitude! }
$$

Anti-stars in the galaxy?

- Alternatively, anti-domains could have formed compact objects: naturally free of normal matter! Annihilations only occur at the surface of these objects.
- A one solar-mass would survive if formed at $\mathrm{z}<10^{16}$

Anti-stars cannot form from a anti-cloud because it would not survive in the early universe: they have to be primordial!

- The Dolgov \& Silk scenario could produce such objects. How many of them? What mass \& composition? What is the acceleration mechanism?
- Massive stars are short-lived compared to tgal: they would require anti-stars to form again from a cloud. This is excluded!

High-energy cosmic rays from anti-stars

- Even if such objects were created in the early universe, it is unclear how they can lead to high-energy cosmic rays.
- Do they lead to supernovae explosion that accelerate the surrounding medium? Do they experience solar flares? Could there be thermo-nuclear explosions from annihilations at the surface?
- Parametrically we can estimate that from a single event occurring at a given time:

$$
\Phi_{\overline{\mathrm{He}}}=\left(\frac{c}{V_{\mathrm{gal}}}\right)\left(\frac{f_{\overline{\mathrm{He}}} M_{\bar{*}}}{m_{\overline{\mathrm{He}}}}\right) f_{\mathrm{acc}}=10^{-9}\left(\frac{(4 \pi / 3)(10 \mathrm{kpc})^{3}}{V_{\mathrm{gal}}}\right)\left(\frac{M_{\bar{*}}}{M_{\odot}}\right)\left(\frac{f_{\mathrm{acc}}}{10^{-8}}\right)\left(\frac{f_{\overline{\mathrm{He}}}}{1}\right) \overline{\mathrm{He}} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

If 10^{-8} of the mass of a single anti-helium star with $\mathrm{M}=\mathrm{M} \circ$ is ejected in the galaxy, it can explain AMS-02 events!

- Helium would escape the galaxy in 10^{8} yrs $\sim 10^{-3} \mathrm{tgal}$: there might be a population of stars!

A coherent scenario for AMS-02 anti-stars

- One possible scenario: White dwarf anti-stars were form in the early universe in clusters.
- Binary of (long-lived) white dwarfs can lead to type Ia supernovae! Measurements of such events indicate a rate: $1.4 \times 10^{-13} \mathrm{yr}^{-1} M_{\odot}^{-1}$

Badenes\&maoz 1202.5472

- Requiring one such event over one CR diffusion time scale leads to a total anti-star mass of

$$
\sum M_{\bar{*}}=10^{-5}-10^{-6} \sum M_{*}
$$

- If anti-stars are heavier than 0.6 Msun , producing the correct isotopic ratio requires spallation around the anti-star.
- We can compute the grammage required to inverse the isotopic ratio from the result of the LEAR collaboration measuring

$$
\bar{p}^{4} \mathrm{He} \rightarrow{ }^{3} \mathrm{He}+X
$$

- We find that it requires $20 \mathrm{~g} / \mathrm{cm}^{2}$. For comparison: this represents $1 / 50$ th of our atmosphere.

How to see an anti-star

- Normal matter falling onto the anti-star could lead to characteristic annihilation spectra (line and continuum below the proton mass).
- Within 150 pc from the Sun, non-observation of such event from Bondi accretion leads to $N_{\bar{*}}<4 \times 10^{-5} N_{*}$.

Von Ballmoos, 1401.7258

- We can check the 3FGL catalog for un-associated sources: the brightest source can be used to estimate the closest distance at which an anti-star could be.
- Luminosity from annihilations to pions and subsequent decay

$$
L_{\bar{*}}=8 \pi R_{\bar{*}}^{2} v n_{p} \simeq 10^{31}\left(\frac{R_{\bar{*}}}{10^{11} \mathrm{~cm}}\right)^{2}\left(\frac{v}{300 \mathrm{~km} \mathrm{~s}^{-1}}\right)\left(\frac{n_{p}}{1 \mathrm{~cm}^{-3}}\right) \# \gamma \mathrm{~s}^{-1}
$$

- Assuming isotropic emission, the 3FGL constrains: $\quad \frac{L_{\bar{x}}}{4 \pi d_{\bar{*}}^{2}} \leq 2 \times 10^{-8} \# \gamma \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- And therefore: $\quad d_{\bar{*}} \geq 6 \times 10^{18} \sqrt{\left(\frac{R_{\bar{x}}}{10^{11} \mathrm{~cm}}\right)\left(\frac{v}{300 \mathrm{~km} \mathrm{~s}^{-1}}\right)\left(\frac{n_{p}}{1 \mathrm{~cm}^{-3}}\right)} \mathrm{cm}$

There could be an anti-star at ~ 1 pc from us!

Conclusions

- AMS-02 has tentatively measured 6 anti- 3 He and 2 anti- ${ }^{-} \mathrm{He}$: These events cannot be explained by the standard spallation and coalescence scenario. Dark Matter faces similar difficulty.

AMS-02 (tentative) discovery has major consequences for our understanding of baryogenesis in the early universe: it is far from trivial to explain these events.

- Anti-clouds might explain AMS but cannot sursyive unless they are almost free of normal matter along cosmic history: segregation mechanism?
- Alternatively, primordial anti-stars could be formed in the early universe from strong iso-curvature perturbations at small scales.
- Depending on the (unknown) acceleration mechanism, it is conceivable that a single near-by antistar contributes to the AMS-02 observation.

Back-up

A common explanation to CR/ γ-rays anomalies?

Cholis, Linden, Hooper 2001.08749

- Where is the \bar{d} ??
- How to produce ${ }^{4} \overline{\mathrm{He}}$? ?

What could be wrong?

- The measurements could be problematic:
- Sensitivity to anti-De is much worse than that to anti-3 He : did we miss them?
- The mass of the anti- ${ }^{4} \mathrm{He}$ could have been mis-reconstructed.
- Of course, the sign could be wrong...

Reconstructed Cherenkov cone

Constraints from a γ-ray line

- γ-ray constraints can be much stronger than the survival rate. Let's see for instance the case of a line from $\quad p \bar{p} \rightarrow \pi^{0} \gamma, \eta \gamma, \omega \gamma, \eta^{\prime} \gamma, \phi \gamma, \gamma \gamma$.
- These processes produce line with energy between 0.66 GeV and 0.933 GeV . Decay of mesons will lead to continuum below the proton mass. We ignore this for simplicity.
- Using the FermiLAT data and the largest region "R180", we calculate

$$
\Phi_{\pi^{0} \gamma}^{m_{p}}=\frac{\int^{R 180} d \ell d \Omega \rho_{\pi^{0} \gamma}^{\mathrm{MW}}}{\int^{R 180} d \Omega}<6.8 \times 10^{-7} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

Ackermann++ 1506.00013

- We assume clouds homogeneously distributed in the disk, with a small thickness of 0.1 kpc perpendicular to the disk.
- FermiLAT allows to set (in the case of a cold cloud)

$$
n_{p}^{\text {local }} \lesssim 10^{-10}-2 \times 10^{-9} \mathrm{~cm}^{-3} .
$$

$$
\text { FermiLAT can be used to improve constraints by } 2 \text { orders of magnitude! }
$$

CMB constraints

- From Planck data we have:

$$
\begin{aligned}
& \left.\frac{\mathrm{d}^{2} E}{\mathrm{~d} V \mathrm{~d} t}\right|_{\mathrm{ann}}<8.1 \times 10^{-31}(1+z)^{6} \mathrm{~J} \mathrm{~m}^{-3} \mathrm{~s}^{-1} . \\
& \left.\left.\frac{\mathrm{d}^{2} E}{\mathrm{~d} V \mathrm{~d} t}\right|_{b \bar{b}-\mathrm{ann}}=\left\langle\sigma_{p \bar{p}}\right\rangle\right\rangle n_{p} n_{\bar{p}} 2 m_{p} c^{2}
\end{aligned}
$$

- This leads to $n_{\bar{p}}^{0}<1.35 \times 10^{-10} \mathrm{~cm}^{-3}$ on cosmological scales: ok for AMS02.
- Similarly, for anti-stars we find (assuming annihilation to pion injects energy).

$$
\left.\frac{\mathrm{d}^{2} E}{\mathrm{~d} V \mathrm{~d} t}\right|_{\bar{\star}}=8 \pi R_{\bar{\aleph}}^{2} v n_{p} m_{p} c^{2} n_{\bar{\nwarrow}} \simeq 10^{13} n_{\bar{\star}} \mathrm{J} \mathrm{~s}^{-1} \times\left(\frac{R_{\bar{\nwarrow}}}{10^{11} \mathrm{~cm}}\right)\left(\frac{v}{30 \mathrm{~km} \mathrm{~s}^{-1}}\right)\left(\frac{n_{p}^{0}}{2 \times 10^{-7} \mathrm{~cm}^{-3}}\right) .
$$

- And therefore $n_{\text {天 }} \lesssim 10^{24}(1+z)^{3} \mathrm{Mpc}^{-3}$

