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AMS: A particle physies detector on the ISS

V. Poulin - LUPM (CNRS) 2 IAP, 27/01/20



AMS: A TeV precision, magnetic spectrometer

Transition Radiation Detector Particles and nuclei are defined by their

dentify e*, e charge (£) and Time of Flight
energy (E) or rigidity (R=p/Z)

Electromagnetic Calorimeter
E of e*, e-

The Charge and Energy are measured .>. '
independently by many detectors | % |
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The GR spectrum

o Largely dominated by protons
100p : 10He : le~ : 107%™ : 10~3p
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Did AMS see anti-helium events?

Latest results from the AMS Experiment

Observation of anti-He events
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AMS-02 might have identified . The event rate is ~ 1He for 10°He.
Massive Monte Carlo simulations are carried out to evaluate significance.

Current event rate 1s Kounine, ICRC 2011
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Anti-matter 1n the universe

o Baryon asymmetry in the universe is defined: p="8""8 _ g = g e.. Kolb&Turner’s book

v 4 today
o Assuming homogeneous, baryon-symmetric universe and no B-violation processes

n np
B B _
L __2 o107V

", Ny

n
o From BBN and CMB we know ﬂEn—BN6'1O_IO=>B>0

Y

o In our vicinity: n; ~ 10_5np in cosmic rays, most likely purely secondaries.

o Why 1s there so much more matter than this naive prediction? Where 1s the antimatter?

o AMS has detected anti-helium: How can such objects be created? anti-BBN? anti-stars?
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could indicate the presence of anti-objects. |

I/ Anti-helium flux from standard astrophysical processes

[1/ Basics of baryogenesis: How to produce an anti-world?

I1I/ Constraining the population of anti-objects in the Galaxy / Universe

V. Poulin - LUPM (CNRS) 7 IAP, 27/01/20



V. Poulin - LUPM (CNRS) 8 IAP, 27/01/20



Secondary cosmic-ray anti-helium

Courtesy Antje Putze & Pierre Salati
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coalescence momentum py = Peoal/2
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Chardonnet, Orloff, Salati, Phys.Lett. B409 (1997) 313-320

Courtesy Pierre Salati
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The coalescence factor

coalescence = fusion of p & n into d, 3He or *He

2A = k; — ko

coalescence momentum py = Peoal/2

Production on anti-nuclei with mass A

E; d’os 7 (130'1-, Z E.d%, A-Z | |
ow d%k; = {E d3k;) \ow d3k; with  kj; = kj = k3/A

Coalescence factor By
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Courtesy Pierre Salati Chardonnet, Orloff, Salati, Phys.Lett. B409 (1997) 313-320
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Determination of the coalescence momentum

< Monte Carlo simulations show different results depending on simulator / data sets / \/E
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Alice can measure the coalescence factor
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© First measurement of *He by the STAR collaboration in Au-Au collision at

o “He/’He ~ 1073
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STAR Collaboration, Nature 473 (2011)
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Source term for production by spallation
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Cosmic-ray anti-nuclel Galactic propagation
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Secondaries cannot explain “He

o The coalescence scenario predicts a hierarchy in the flux of anti-nucler a+1=10-3-10-4Ppa

o AMS measurement is ~ 6 orders of magnitude above “He “secondary” prediction

o Where 1s the anti-De???
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All (recent) predictions agree!
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o Blum++ 2017: AMS (Syrs) could detect~1 or 2 events if B3 = 10*B3 from Alice! AMS has
detected ~6 events. probability -> 0.

o Korsmeier++ 2017: ~1-2 orders of magnitude below measurement.

o Same conclusions in Cirelli++ 2014, Herms++2016 etc...
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What about Dark Matter?

o The Dark Matter explanation suffers from very similar issues! Anti-He produced via
coalescence of anti-proton and anti-neutron.
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o Coalescence factor can change: very different kinematic + non-nuclear material.
It leads to typically smaller values of Ba.
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Dark Matter 1s at odds with AMS-02 events
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o The Dark Matter flux peaks at low kinetic energy compared to the background.
o AMS should see associated De and p: Most of the parameter space is ruled out by p.

o Dark Matter models cannot produce “He via coalescence.




e — e ———
II/ Basics of baryogenesis: how to produce an a,nti-worl
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Three types of Cosmologlcal baryon asymmetry

eg. Bambz&Dol gov‘2007

< 1 1s homogeneous, the universe 1s 100% matter dominated;
o average 7] 1s 0 but there are very large domains of matter and anti-matter;

© 7 1s not spatially constant: there are lumps of antimatter in a matter dominated universe.

| Al\/I 02 can typlcally probe scena,mo 111)
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( Sakharov Conditions

See Kolb& ' Turner for pedagogic discussion

Sakharov 1967
o Baryon number violation: if B = 0 at an 1nitial time, and there are not B-violating processes,

non-zero B cannot be generated.
nb.: inflation makes sure that B = 0 initially.

o Pand CP violation: ensure that opposite B-violating processes do not take place with an equal rate,
resulting in no net Baryon asymmetry.

UG — fipisispr.sp) Z20(f = ii—pyr.—Sspi—pis —Si).

o Departure from equilibrium (or CPT violation): at equilibrium distribution are Fermi-Dirac or
Bose-Einstein at temperature 7. B-violating processes leads to 4 = 0. Because CPT ensure that
mg = mp, there cannot be any net Baryon asymmetry.

1 )
f:t - e(E—n)/T + 1 ’I’L(t) — (27T)3 /d3pf8(t7p)
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Two types of scenarios

< Cosmic phase transition o Decay of new particles

- /N

Anti-matter
Matter

Electroweak baryogenesis,... GUT baryogenesis, leptogenesis...
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Baryogenesis in the standard model

o Maximal P violation: SM is a chiral theory! Right-handed fermions (Left-handed anti-fermions)
are gauge singlets w/r to SU(2), .

o CP violation:
o first detected 1in observing neutral K meson decay, now also established in B meson decays.
o All CP-breaking effects in the quark sector can be understood in terms of the phase o which
appears in the CKM matrix.
< What about the neutrino sector? Christensen et al, 1964

o B-violation: B- and L-number global symmetry are accidental in the SM. Only violated via non-
perturbative effects: ‘instantons’ and ‘sphalerons’. Rate is negligible today huge before EWPT.

he2u+d+2c+s+t+2b+e +v,+1° 't Hooft 1976

nb: B + L violated, but B — L still a symmetry

¢ Qut-of-equilibrium: Provided by the expansion of the universe, when H>1T".
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Electro Weak baryogenesm

o Occurs durmg the EW phase transition, 1.e., when SU(2); X U(1)y is broken to U(l) at T~100 GeV.
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Problems Wlth SM EW Baryogenesm

o Too httle CP Vlolatlon: Ecp ~ 10 20 <7

2 2 2 2 2
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Elz
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o Too strong Sphaleron rate in the broken phase: EWPT i1s not strongly first order (crossover),

Higgs 1s too heavy. 3 . : : . -
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Inhomogeneous loaryon num]oer

" Dolgov&Silk 1994
2
X * *
Uy (6 ®) = M (@ = @02+ Dol In X mdaf? + mix? + mity
(0)l (b)
mZ2
eff Boryogenesis [ (.\ ‘l’)
Bubble formation Y t=t,
$=0
LTl e - —
end of X
* ‘inflotion
cb"@q
t’l t'i tﬂ2 tvg t

o Modified “Affleck-Dine” baryogenesis: a complex scalar field carrying a non-zero baryon number
coupled to the inflaton.

o Time-dependent effective mass allows for formation of "bubbles’ with high baryon number in some
regions of space + overall homogeneous baryon number.

o After 1nﬂat1on at hor1zon re- entry bubble collapse into compact Ob] ects (black holes stars...)
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o Could there be pocket of antimatter at small scales?

IAP, 27/01/20

© AMS probes antimatter at sub-galactic scales (i.e, k > 10*°Mpc™}).
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What can we learn from current data?

> AMS-02 might have 1dentified . The event rate is ~ 1He for 10°He.

Questions: 1) what population do we need to explain the measurements?
11) Can such objects survive over cosmological timescale?
111) How can such objects accelerate CRs?
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o How many of them? What are their densities? What volume would they occupy?

o AMS-02 measurements can help us answer these questions.

Assumption: acceleration and propagation of Cosmic Rays are identical for matter

and anti-matter.

¢He NHe nHeVHe> o S

ST

o Measured by AMS-02: 10-8 o what we want to learn

dme  Nme <nH_eVH_e

o Are there small, very dense objects or large, very dilute anti-domains?

Clouds of anti-matter in our Galaxy?
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Anisotropic BBN and the 1sotopic ratio

o Standard BBN predicts in the ISM: “He/’He ~104. Within CRs, spallation leads to “He/°He~5.

Problem: observed 1sotopic ratio 1s 0.3.

o Solution: anisotropic BBN! if n] 1s not homogeneous, there could be pockets dominated by
antimatter with very low density.

10°
| I
104;
L&) 102_:
8 ]
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§ 100_
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Some 1mphcat10ns of the BBN calculatlon

o This immediately predicts density ratio: ( e) ~ 0.3 > (p ) ~ 10°

N(3He) N(CHe)

o We predict ~ 104 primary anti-proton and ~0.1 De event.

This 1s potentially detectable with AMS-02!

o Moreover, we know in the ISM: np=10nge. AMS-02 therefore implies:

Pre ~ e Ve ~ 108 = < p) (VM> ~ 1074

Pue  MeVie n, V™

o If we assume anti-clouds are spherical with radius 1 parsec (arbitrary)

-3
n =~ 10° — 10%°N;! T =) em.
P lem=3 /\ 1 pc
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Anti-cloud

cannot survive in our Galaxy

Gonmal ]
—_ oq o . . . _1 .
o p can annihilate with p in the ISM at a rate: 7,,, = (1,(0,5V))
1.5 x 107 cm? /s T > 10" K,
(oppv) = ¢ 10710 (%)1/2 cm®/s 101 K >T > 10* K,
10719 cm? /s 10*K>T. Steigman 1976
o Our Galaxy exists since roughly £,,; >~ 2.8 X 10" s and n]ifm =1 cm™’
o Requiring tann > tear leads to n;"ld <35%x107% cm™ n;“’t <6.1x107 cm™.

Anti-clouds cannot survive unless there 1s a segregation between matter and anti-matter
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Survival rate in the Early Universe

o In the early universe, larger densities lead to larger annihilation rate and stronger constraints.

o The hubble time before matter-radiation equality (zeg>3500) is #y ~ 5 x 10P°(1 +2)72% s

o Before BBN (z ~ 10”), annihilation happens in the relativistic regime. The constraint on the
local proton density from requiring tann > tn 1s:

o ) < 1.9 107 nE (g

o Below zeq, the constraint relaxes to

! 6.3 x 1072
o ) S Ty

If anti-domains were formed before BBN,

there must be less than 1 baryon per 108 anti-baryons within them!
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y-Ray constraints

< Annihilations lead to y-rays that can be detected.

o There are three types of searches that can provide strong constraints:
1) searches for distinctive spectral features such as a gamma-ray line;

11) searches for morphological features localized on the sky, either from extended or point
sources;

111) searches for a continuous spectrum of gamma-rays extending over large area on the sky (e.g.
extragalactic y-ray background).

o Type 1) and 111) can provide very strong constraints on the overlap of matter/anti-matter region.
Type 11) could explain some unassociated sources in the 3FGL catalog.

o Line search in FermiLAT allows to set (for a cold cloud) nll,oc"“1 <1071 — 2% 107 cm™3.

FermiL AT can be used to improve constraints by 2 orders of magnitude!
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Anti-stars in the galaxy?

o Alternatively, anti-domains could have formed compact objects: naturally free of normal
matter! Annihilations only occur at the surface of these objects.

o A one solar-mass would survive if formed at z < 1016

Anti-stars cannot form from a anti-cloud because it would not survive in the early universe:

they have to be primordial!

o The Dolgov & Silk scenario could produce such objects. How many of them? What mass
& composition? What is the acceleration mechanism?

o Massive stars are short-lived compared to tg: they would require anti-stars to form again
from a cloud. This 1s excluded!
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High-energy cosmie rays from anti-stars

o Even 1f such objects were created in the early universe, it is unclear how they can
lead to high-energy cosmic rays.

o Do they lead to supernovae explosion that accelerate the surrounding medium? Do they

experience solar flares? Could there be thermo-nuclear explosions from annihilations at the
surface?

o Parametrically we can estimate that from a single event occurring at a given time:

* A - 3 _ S
O = (L) (fHe]w”< >ﬁwc _ 10—9( (47/3)(10 kpc) ) <M* > ( S ) <&) e i
Vgal M. Vgal M 10-8 1

If 10-8 of the mass of a single anti-helium star with M =M@ 1s ejected in the galaxy,

it can explain AMS-02 events!

o Helium would escape the galaxy in 108 yrs ~ 10-3tg.1: there might be a population of stars!
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A coherent scenario for AMS-02 anti-stars

o One possible scenario: White dwarf anti-stars were form in the early universe in clusters.

< Binary of (long-lived) white dwarfs can lead to type Ia supernovae! Measurements of such
events indicate a rate: 1.4 x 10 B3yr! M(Sl

Badenes&maoz 1202.5472

o Requiring one such event over one CR diffusion time scale leads to a total anti-star mass of
Y Mz=107-10"°% M.

o If anti-stars are heavier than 0.6Msun, producing the correct 1sotopic ratio requires spallation
around the anti-star.

o We can compute the grammage required to inverse the 1sotopic ratio from the result of the

LEAR collaboration measurin =4 3
2 p e = bl =R A Balestra++ 1985

@ We find that it requires 20g/cm?2- For comparison: this represents 1/50th of our atmosphere.
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How to see an anti-star

< Normal matter falling onto the anti-star could lead to characteristic annihilation
spectra (line and continuum below the proton mass).

o Within 150 pc from the Sun, non-observation of such event from Bondi accretion
leadsto Nz <4 % 107°N.. Von Ballmoos, 1401.7258

o We can check the 3FGL catalog for un-associated sources: the brightest source can be
used to estimate the closest distance at which an anti-star could be.

o Luminosity from annihilations to pions and subsequent decay

2
R= Vv n
Lz = 87R%vn. ~ 103! P H#y g1
w1 (1011 cm) (300km s—1><1cm—3> 4

Lz

Ardz

Rs 1% n
o And therefore: dz > 6 x 10'8 &
nd therefore \/( 1011 Cm> <300km 51 > ( 1cm—3> -

There could be an anti-star at ~ 1pc from us!
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o Assuming 1sotropic emission, the 3FGL constrains:

<2x10~%#ycm=2s~!




Conclusions

® AMS-02 has tentatively measured 6 anti-3He and 2 anti-*He: These events cannot be
explained by the standard spallation and coalescence scenario. Dark Matter faces similar difficulty.

® Anti-clouds might explain AMS but cannot suigyive unless they are almost free of normal matter
along cosmic history: segregation mechanism?

® Alternatively, primordial anti-stars could be formed in the early universe from strong iso-curvature
perturbations at small scales.

® Depending on the (unknown) acceleration mechanism, it 1s conceivable that a single near-by anti-
star contributes to the AMS-02 observation.
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Back-up
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A common explanation to CR/y-rays anomalies?
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What could be wrong?

< The measurements could be problematic:

e Sensitivity to anti-De 1s much worse than that to anti-3He: did we miss them?
® The mass of the anti-*He could have been mis-reconstructed.
e Of course, the sign could be wrong...

\!
[NEEEEEEEE ENEANNENNNNEEEERE EEEREREEE

= 2.05 = 0.05
Momentum = 32.6+2.5 GeV/c
Charge-sign = - (negative)
h k
Cherenkov cone Velocity = 0.9930=:0.0007¢
Mass = 3.81+ 0.29 GeV/c?
__“*HeMass = 3.73GeV/c? s
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Constraints from a y-ray line

o y-ray constraints can be much stronger than the survival rate. Let’s see for instance
the case of a line from  pp — z°, ny, oy, n'y, ¢y, vy.

o These processes produce line with energy between 0.66 GeV and 0.933 GeV.
Decay of mesons will lead to continuum below the proton mass. We 1gnore this for
simplicity.

o Using the FermiL AT data and the largest region “R180”, we calculate

. IRlSO df dQ p};g;)v -
() 5;/ = IRlSO <6.8%x 107 7cm™3s~
§ dQ

Ackermann—++ 1506.00013

o We assume clouds homogeneously distributed in the disk, with a small thickness of
0.1 kpc perpendicular to the disk.

o FermiLAT allows to set (in the case of a cold cloud) > 510710 — 2% 1077 em ™.

FermiL AT can be used to improve constraints by 2 orders of magnitude!
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CMB constraints

From Planck data we have: d°E
dVdt

<81x10731 (1 +2°Tm3s!.

ann
d’E
dVdr

The annihilation rate is: = (o,;v)n,n;2m, c?

bb—ann

This leads to 13 < 1.35 X 107'%m™ on cosmological scales: ok for AMS02.

Similarly, for anti-stars we find (assuming annihilation to pion injects energy).

E | R? 2~ 1080 T s~ x [ —2 4 i
= o0 vyn..m.C Ny =~ nz S .
dVdz . PP * 10" ¢cm / \ 30km s—! / \ 2 x 10-7cm-3

And therefore  nz S 10%*(1 + z)*Mpc ™
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