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Introduction: averaging in inhomogeneous cosmology

I – General spatial foliations

II – Averaging: geometric approach

III – Averaging: intrinsic approach and proper-time foliations

● Towards tilted hypersurfaces 
● Buiding a foliation  —  Lapse and Shift
● The fluid flow
● Foliation and fluid — Tilt
● Domain propagation

● Averaging operator and commutation rule
● Averaged Einstein equations and backreaction terms
● Manifestly covariant form — Window function
● Consequences of a geometric approach

● Intrinsic averaging operator
● Intrinsic-average commutation rule
● Intrinsic averaged Einstein equations
● Integrability condition and energy conservation equation
● Effective Friedmannian form
● Time parameter interpretation and application to proper-time foliations
● Manifestly covariant formulation
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Statistical homogeneity ≠ strict local homogeneity:
nonlinear local deviations from homogeneous-isotropic models.

Impact (backreaction) on the large-scale dynamics ?
→ background-free coarse-graining or averaging procedures.

Structures from small to large scales : inhomogeneous distribution of matter
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Nonlinear time evolution and averaging do not commute.
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Spatial volume-averaging scheme for scalars
for a model universe filled with irrotational dust (pressureless matter):

Volume:

→ Average of a scalar

Consider a compact domain     within a 
spatial slice Σ, defined as a global
rest frame for the dust fluid.

Adapted coordinate system:

Conventions: ● c = 1
● metric signature  (–,+,+,+)
● Greek letters for space-time indices (0 to 3), Latin letters for spatial indices (1 to 3)
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Application to a simple framework (T. Buchert, GRG 32, 105 (2000))
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Assume a comoving domain,
following the fluid propagation.

→ Commutation rule for averaging and (Lagrangian) time derivative:

Regional evolution equations: define an effective scale factor for the domain:

expansion scalar
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INTRODUCTION: AVERAGING IN INHOMOGENEOUS COSMOLOGY

Averaging scalar projections
of the Einstein equations:

Kinematical backreaction:

Integrability condition:

Application to a simple framework (T. Buchert, GRG 32, 105 (2000))
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Later generalized to irrotational perfect fluids (T. Buchert, GRG 33, 1381 (2001))

INTRODUCTION: AVERAGING IN INHOMOGENEOUS COSMOLOGY

Averaging scalar projections
of the Einstein equations:

Kinematical backreaction:

Integrability condition:

Compare with Friedmann:

Application to a simple framework (T. Buchert, GRG 32, 105 (2000))
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Fluid-orthogonal foliation
(irrotational fluid)

u

General spatial foliations
Towards tilted hypersurfaces
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S

Fluid-orthogonal foliation
(irrotational fluid)

→ describe any fluid flow; obtain averaged equations in any foliation
(e.g. for numerical simulations); study the consequences of a change of foliation…

u

Arbitrary, tilted foliation

S

u

General spatial foliations
Towards tilted hypersurfaces
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Existing literature on generalizations of the fluid-orthogonal scalar averaging 
procedure of Buchert 2000, 2001 to arbitrary foliations:

Some of these works apply to global averaging domains.
Otherwise, the domain propagation matters.

In the above works, it is never comoving
 → different physical system considered for each foliation...
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Choice of a spatial foliation (slicing)
       Choice of the unit time-like normal vector field n,
irrotational  (Frobenius theorem)

Adapted coordinates set (t, xi):
time is constant on each hypersurface
and used as a label: Σ(t);
arbitrary spatial coordinates xi

→ in these coordinates:

lapse (set by 
foliation choice and 
time normalization)

shift (can be set through 
the propagation of the 
spatial coordinates)

t

S(t
1
)

S(t
2
)

n

Building a foliation  —  Lapse and Shift
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Universe filled with a single fluid, characterized by its 4-velocity field u, 
rest-mass density    and general energy-momentum tensor

energy 
density

heat 
vector

isotropic 
pressure

(traceless) 
anisotropic 
pressure

The fluid flow

u defines a 1D threading congruence (flow lines)

Kinematic variables of the fluid:

u

expansion 
scalar

shearacceleration
vorticity
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with v such that      (tilt vector)

and    (tilt factor or Lorentz factor)

Decomposition of u with respect to the foliation:

Foliation and fluid — Tilt

γ n

S(t)γ v

u
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Domain propagation

In the literature: non-global averaging 
domains    propagate along ∂

t
 or along n.

→non-conservation of the collection of 
fluid elements over the evolution;
dependence of the studied system in the 
foliation (or even coordinates)
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n
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n
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Domain propagation

In the literature: non-global averaging 
domains    propagate along ∂

t
 or along n.

→non-conservation of the collection of 
fluid elements over the evolution;
dependence of the studied system in the 
foliation (or even coordinates)

Instead: physical system as a flow tube: 
given set of fluid elements

Sections by the spatial slices:
comoving domain

→ Preservation of rest mass and fluid 
elements collection, same system 

considered whatever the foliation

u

(t)S(t)

(t ')S(t’)
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Averaging: geometric approach

;   fluid-comoving domain

trace of the 
extrinsic curvature

spatial 
covariant 
derivative

commutation rule:

Using the hypersurface Riemannian volume measure,

Averaging operator and commutation rule
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II – AVERAGING: GEOMETRIC APPROACH

hypersurfaces intrinsic curvature scalar

       with the backreaction terms:

( + integrability condition and averaged energy conservation equation)

kinematical:

stress-energy:

dynamical:

Averaging the scalar 3+1 Einstein equations:

Averaged Einstein equations and backreaction terms

T. Buchert, PM and X. Roy, in prep.
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Manifestly covariant form — Window function

The averages, effective evolution equations and backreactions are covariant.

This can be made explicit by defining the same spatial averages from

(M. Gasperini, G. Marozzi, G. Veneziano, JCAP 02(2010)009  (2010))

with the spatial slice (A=A
0
) and averaging domain (B ≤ B

0
) selected by 

the window function

Comoving domain choice: set by requiring

→ get the same commutation rule, averaged equations, backreactions,
under their manifestly covariant form.

II – AVERAGING: GEOMETRIC APPROACH 16



→ An averaging scheme useful to analyse the behaviour of geometric quantities
of the hypersurfaces such as            but implicit contributions of the fluid
kinematic variables (vorticity ??)

Features curvatures of Σ, hence derivatives of n
→high sensitivity to the foliation choice

The equations can be rewritten in terms of the kinematic variables,
using local relations. But contributions from the tilt still appear…

E.g.:

II – AVERAGING: GEOMETRIC APPROACH

Consequences of the geometric approach
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Define from the fluid not only the domain propagation, but also
the volume measure:

→ Define the fluid proper volume within    , and associated averages:

Still a direct generalization of the fluid-orthogonal framework!

Intrinsic averaging operator

nu

Averaging: intrinsic approach and proper-time foliations

(or                       )

or:
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+   fluid-comoving domain

Intrinsic commutation rule:

III – AVERAGING: INTRINSIC APPROACH AND PROPER-TIME FOLIATIONS

Intrinsic-average commutation rule
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Averaging the Raychaudhuri equation and the Hamilton contraint:

Intrinsic averaged Einstein equations

introducing intrinsic kinematical and dynamical backreactions:

III – AVERAGING: INTRINSIC APPROACH AND PROPER-TIME FOLIATIONS

with the “curvature”

and the rescaled variables
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with

Integrability condition:

Averaged energy conservation equation:

Integrability condition and energy conservation law
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III – AVERAGING: INTRINSIC APPROACH AND PROPER-TIME FOLIATIONS

Effective Friedmannian form

+ Integrability condition:

with                                          and, e.g., 

→ effective energy sources with evolving equation of state, or sum of coupled sources
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III – AVERAGING: INTRINSIC APPROACH AND PROPER-TIME FOLIATIONS

Time parameter interpretation and application to proper-time foliations

                                  may not have an interpretation equivalent to
the comoving proper-time terms                   of the Friedmann equations.
It must be interpreted in relation to the meaning of t, once it is specified.
(The same holds for any similar general averaging formalism...)

Recovering a simple meaning: choice of the normalization of t, in any foliation.

Or: choose a foliation at constant proper time τ of the fluid (starting from a given 
hypersurface) and set t = τ, i.e., N = γ.

For such a choice:

with
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(The same holds for any similar general averaging formalism...)

Recovering a simple meaning: choice of the normalization of t, in any foliation.

Or: choose a foliation at constant proper time τ of the fluid (starting from a given 
hypersurface) and set t = τ, i.e., N = γ.

For such a choice:

with

T. Buchert, PM and X. Roy, arXiv:1805.10455, accepted by CQG (2018);
T. Buchert, PM and X. Roy, in prep.
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A. Heinesen, PM, T. Buchert, in prep.

Manifestly covariant formulation

III – AVERAGING: INTRINSIC APPROACH AND PROPER-TIME FOLIATIONS

We can similarly recover the intrinsic averages and the previous equations under 
a more explicitly covariant form, using

Or: use a more general window function to include any volume measure:

→ Commutation rule:

Comoving domain:                        take Z = u, and V = u or n (or ϱ
 
u…);

apply to the Hamilton and Raychaudhuri equations...
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Summary

● Scalar averaging schemes to describe inhomogeneous universes in any spatial 
foliation, for a general single-fluid model. Resulting averaged equations for a 
comoving domain; always feature backreaction terms of local structures on the 
large-scale evolution.

● Two averaging operators from “natural” volume measures. One using the 
hypersurface volume measure: sheds some light on the geometric properties of 
the slices. The other using the fluid proper volume measure: provides simpler 
average equations that directly show the contributions from the fluid rest-frame 
properties, with less dependence on the foliation choice.

● May be written under an explicitly covariant form; may formally encompass any 
volume measure. 

● In specific applications: choose a suitable foliation and a meaningful t parameter, 
interpret time derivatives (and lapse N) accordingly.

● One choice of particular physical interest: the constant proper time foliation, built 
from the fluid flow, well-suited to the intrinsic approach. Provides simple equations 
and a natural interpretation of “time” and time derivatives.

● More explicit determination of dependence on the foliation? (with Asta Heinesen)  
Application to specific fluid models? Lagrangian approximation schemes?
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Integrability condition:

Averaged energy conservation equation:

+ Rest-mass conservation equation:

Here,

SUPPLEMENTARY MATERIAL

Intrinsic-average integrability condition and energy conservation law
in a proper-time foliation
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