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Motivation: geophysical flows

Geophysical flows self-organize into large-scale coherent structures, which play
a major part in weather/climate.

Rare events may matter in geophysical fluid dynamics
Large deviation theory and rare transitions

Numerical computation of rare events

Rare transitions between two attractors
Rare events that have a huge impact

Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter’s atmosphere
Jupiter’s zonal winds (Voyager and

Cassini, from Porco et al 2003)

F. Bouchet CNRS–ENSL Large deviation theory and GFD.

They fluctuate and undergo abrupt transitions.

FIG. 3. Yearly paths of the Kuroshio and Kuroshio Extension defined by the 170-cm contours in the weekly SSH fields.
Here paths are plotted every 14 days.
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Kuroshio path

Laboratory experiments in rotating an-
nuli with a radial temperature gradient have
helped in the understanding of the mecha-
nism of baroclinic instability and the atmo-
sphere’s general circulation (17). Introduc-
ing wavenumber 2 topography in such an-
nuli produced new phenomena (18) but did
not adequately explain the spatiotemporal
features of the atmosphere’s observed and
modeled low-frequency variability (19).

To further understand the dynamics of
zonal flow over topography, we carried out
laboratory experiments on a barotropic rotat-
ing annulus (20, 21) with two mountain ridg-
es. The flow was produced by mechanical
pumping and suction rather than by differen-
tial heating of the side walls (17). With the
rapid rotation and absence of buoyant driving
forces, the flow in the annulus was essentially
two-dimensional (21) and could be compared
with barotropic model results. These experi-
ments facilitate exploration of the flow’s be-
havior over a wide parameter range: an hour
at a rotation frequency of 2 Hz corresponds to
20 simulated years.

The annular tank’s inner radius r1 !
10.8 cm, its outer radius r2 ! 4r1, and its
height varied linearly from 17.1 cm at the
inner to 20.3 cm at the outer radius. Flow
was produced by pumping fluid in through a
ring of 120 holes (0.26 cm in diameter) at
rsource ! (3.25)r1 and out through a ring of
holes at rsink ! (1.75)r1. The annulus was
filled with water (kinematic viscosity " !

0.009 cm2 s–1) up to a flat lid. When the
tank rotated rapidly, the action of the Co-
riolis force on the radial flow resulted in a
corotating (eastward) jet with a much high-
er velocity than the radial flow generated
directly by the pumping (20, 21). The slop-
ing bottom of the annulus models the

change in Coriolis force as a function of
latitude for spherical planets [the # effect,
which in the present case is given by # !
2$s/h, where s ! 0.1 is the slope, h ! 18.7
cm is the mean height of the annulus, and
$ is the angular velocity of the annulus
(21)]. Two radial aluminum ridges were

Fig. 1. Atmospheric pictures of (A) zonal and (B) blocked flow, showing
contour plots of the height (m) of the 700-hPa (700 mbar) surface, with a
contour interval of 60 m for both panels. The plots were obtained by averag-
ing 10 days of twice-daily data for (A) 13 to 22 December 1978 and (B) 10 to
19 January 1963; the data are from the National Oceanic and Atmospheric

Administration’s Climate Analysis Center. The nearly zonal flow of (A) includes
quasi-stationary, small-amplitude waves (32). Blocked flow advects cold
Arctic air southward over eastern North America or Europe, while decreasing
precipitation in the continent’s western part (26).

Fig. 2. Time-averaged stream function contours calculated from experimental data for (A) zonal and (B)
blocked flow. The peaks of the ridges are indicated by dashed lines, and the profile of each ridge is
shown by black curves outside the rim of the round panels. The contour interval is 15 cm2 s–1 for both
plots. The annulus rotates counterclockwise, and the flow is in the direction of rotation (eastward). The
Rossby numbers Ro for the zonal and blocked flows are 0.33 % 0.02 and 0.22 % 0.02, respectively
(pump flux F ! 390 and 260 cm3 s–1, respectively); for both flows, the Ekman number Ek ! 4.8 & 10'4

($ ! 3( rad s–1). A video camera was used to track neutrally buoyant particles of 1 mm diameter, and
time-averaged stream functions were determined by averaging the particle trajectories in time (23) and
fitting the results to basis functions. The highs and lows of the stream function are indicated by bold
letters H and L, respectively. The black dots indicate the horizontal location of the hot-film probe.
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Zonal/blocked Jet Stream transition
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Kuroshio path1
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features of the atmosphere’s observed and
modeled low-frequency variability (19).
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1B Qiu and S. M. Chen (2005).. J. Phys. Oceanogr.
2E. R. Weeks et al. (1997).. Science
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Turbulent flows and degrees of freedom

Navier-Stokes equations:

∂tu + u ·∇u = −1

ρ
∇P + ν∆u, Re = UL/ν

I Chaotic nature: nonlinear term couples wide range of scales.

I Number of degrees of freedom ∼ Re9/4.

#DOF
108 1012 1016 1020

≈ 40963
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Predictable and unpredictable observables

Velocity measurement; ONERA wind
tunnel (Y. Gagne, E. Hopfinger)

Intermittency in the Joint Cascade of Energy and Helicity

Qiaoning Chen,1 Shiyi Chen,1,2,3 Gregory L. Eyink,4 and Darryl D. Holm2,5
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The statistics of the energy and helicity fluxes in isotropic turbulence are studied using high
resolution direct numerical simulation. The scaling exponents of the energy flux agree with those of
the transverse velocity structure functions through refined similarity hypothesis, consistent with
Kraichnan’s prediction. The helicity flux is even more intermittent than the energy flux. Consistent
with this observation, the spatial helicity-flux structures are finer than those of energy flux and more
tubelike in geometry.

DOI: 10.1103/PhysRevLett.90.214503 PACS numbers: 47.27.Ak, 47.27.Gs

The classical theories of fully developed turbulence [1]
were dominated by the concept of the energy cascade to
small scales. However, kinetic energy is not the only local
conserved integral of the inviscid equations of motion,
the three-dimensional (3D) incompressible Euler equa-
tions. Since the classical theories were developed, it was
discovered [2,3] that there is a second quadratic invariant,
the helicity:

H!t" #
Z

dxu!x; t" $!!x; t": (1)

Here u is the velocity field and ! # r% u is the vorticity
field. Nonzero mean values of the helicity are now known
to occur naturally in a wide variety of geophysical flows,
such as hurricanes and tornadoes [4]. It was proposed in
Refs. [5,6] that, if the large scales of the flow are helical
(parity noninvariant), then there should be a joint cascade
of both energy and helicity to small scales. In that case,
the helicity spectrum as well as the energy spectrum
should satisfy a &5=3 law in the inertial range: H!k" '
CH!!="1=3"k&5=3. Just as for a passive scalar, the spec-
trum of helicity was predicted to be linearly proportional
to its mean flux ! [7]. In the Gledzer-Ohkitani-Yamada
(GOY) shell models, it has been found numerically in
Ref. [8] that the scaling exponents of the energy flux are
nearly identical to those for 3D Navier-Stokes (NS) pre-
cisely for the members of the family which have a ‘‘hel-
icity’’ invariant. The statistics of the ‘‘helicity flux’’ itself
have also been studied in the GOY models [9] and in a
related class of helical shell models [10]. However, so far
the statistics of the helicity flux have yet to be explored in
3D turbulence. It is the purpose of this Letter to study the
statistics of energy and helicity fluxes in 3D hydrody-
namical turbulence by direct numerical simulations, both
with and without a nonzero mean helicity.

We have simulated the NS equation in a 5123 domain at
Re# # 210. The kinetic energy is forced in the first two

shells [11]. To add positive mean helicity into the flow, we
rotate the real and imaginary parts of the velocity vector
Fourier amplitude also in the first two shells to be always
perpendicular to each other with the same handedness
[12]. The NS equation was solved using a pseudospectral
parallel code with full dealiasing and time stepping by a
second-order Adam-Bashforth method. A statistical sta-
tionary state was achieved after ten large-eddy turnover
times. In Fig. 1 we plot the energy and helicity spectra of
this final steady state, in the case with mean helicity
input. (See Ref. [13] for appropriate definitions.) Both
spectra have about a decade and a half where a &5=3
power law holds. In the inset we show for the same
simulation the mean spectral fluxes of energy and helicity
as a function of wave number, normalized by mean en-
ergy dissipation " # $hjruj2i and mean helicity dissipa-
tion ! # 2$hru:r!i. There is about a decade of inertial
range where these fluxes are constant.
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FIG. 1. Energy and helicity spectra. In the inset is shown
normalized energy and helicity fluxes.

P H Y S I C A L R E V I E W L E T T E R S week ending
30 MAY 2003VOLUME 90, NUMBER 21

214503-1 0031-9007=03=90(21)=214503(4)$20.00  2003 The American Physical Society 214503-1

Universal kinetic energy spectrum in a
DNS3.

Can we find a probability distribution describing the system?
Very difficult task!

3Q. Chen et al. (2003).. Phys. Rev. Lett.
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Universal kinetic energy spectrum in a
DNS3.

Kolmogorov theory Probability distribution respects symmetries (homogeneity,
isotropy, scale invariance)
Not true: e.g. scale invariance is spontaneously broken (intermittency).

Geophysical flows break the symmetries of classical turbulence, which allows for
new theoretical approaches.

3Q. Chen et al. (2003).. Phys. Rev. Lett.
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Dynamical Models: 2D and Geophysical Turbulence

Model for incompressible turbulent flows (Navier-Stokes equation):

∂tu + u ·∇u = −1

ρ
∇P + ν∆u + F,

∇ · u = 0.

When ν = F = 0 (no forcing and no dissipation), we have the Euler equations.

In terms of vorticity ω = ∇× u,

I For a 2D domain, ω = ωn, vorticity is conserved along trajectories
(Lagrangian invariant):

∂tω + u ·∇ω = 0.

I For a 3D domain, it is not:

∂tω + u ·∇ω = ω ·∇u.
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Dynamical Models: 2D and Geophysical Turbulence

Model for incompressible turbulent flows (Navier-Stokes equation):

∂tu + u ·∇u = −1

ρ
∇P + ν∆u + F,

∇ · u = 0.

When ν = F = 0 (no forcing and no dissipation), we have the Euler equations.

Invariants:

3D HIT

Energy E = 1
2

∫
u2(r)dr

2D Turbulence

Energy E = 1
2

∫
ω(r)ψ(r)dr (ω = −∆ψ)

Casimir invariants
∫
s(ω(r))dr

E.g. enstrophy
∫
ω2(r)dr
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Dynamical Models: 2D and Geophysical Turbulence

Model for incompressible turbulent flows (Navier-Stokes equation):

∂tu + u ·∇u = −1

ρ
∇P + ν∆u + F,

∇ · u = 0.

When ν = F = 0 (no forcing and no dissipation), we have the Euler equations.

I For a 2D domain, ω = ωn, vorticity is conserved along trajectories
(Lagrangian invariant):

∂tω + u ·∇ω = 0.

I Geophysical flows are 3D, but subjected to strong rotation and density
stratification.
Large scales well described by advection of potential vorticity
(quasi-geostrophic):

∂tq + u ·∇q = 0.

E.g. q = ω + ∂z(f 2
0 /N

2∂zψ) + βy .
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Main Questions and Theoretical Tools

Generic questions:

I Can we predict self-organization of geophysical flows into large scale
coherent structures?

I Characterize the attractors of geophysical turbulence

I Study fluctuations around the mean state

I What aspects of transitions in turbulent flows are predictable?

Because of strong nonlinearity/huge number of degrees of freedom, classical
fluid mechanics+direct numerical simulations do not suffice.

Main theoretical tool: Large Deviation Theory

It is a tool to study asymptotic probabilities:

Prob(A[x ] = a) ∼ e−I (a)/ε when ε→ 0.

The small parameter ε can be

I The inverse of the number of degrees of freedom ε = 1/N.

I The amplitude of a noise term (Freidlin-Wentzell theory)

I The inverse of an observation time ε = 1/T (Donsker-Varadhan)
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Advection of the vorticity field in 2D

∂tω + u · ∇ω = 0.

Small-scale vorticity is mixed by the flow while large-scale coherent structures
form.

Direct Numerical Simulation: Vorticity Contours. Courtesy Brad Marston
(Brown University).


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Introduction Equilibrium Theory Perturbative approach Large deviations and transitions Conclusion

The microcanonical measure

Formally, we define the microcanonical measure as

µE ,(Γn)n∈N(dω) =
1

Ω(E , (Γn)n∈N)
δ(E[ω]− E)

+∞∏
k=1

δ(Gk [ω]− Γk)
+∞∏
i=1

dωi .

Mean-field theory (Miller-Robert-Sommeria)

Two levels of description:

I Microstates: fine-grained vorticity
field ω(x).

I Macrostates: fine-grained vorticity
probability distribution ρ(σ, x),∫
ρ(σ, x)dσ = 1.

Mean coarse-grained vorticity:
ω(x) =

∫
σρ(σ, x)dσ.
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The microcanonical measure

Formally, we define the microcanonical measure as

µE ,(Γn)n∈N(dω) =
1

Ω(E , (Γn)n∈N)
δ(E[ω]− E)

+∞∏
k=1

δ(Gk [ω]− Γk)
+∞∏
i=1

dωi .

I Invariant measure of the Euler equations4.
I Difficult to manipulate: e.g.

E[ω] = 0.

Spontaneous symmetry breaking.

Mean-field theory (Miller-Robert-Sommeria)

Two levels of description:

I Microstates: fine-grained vorticity
field ω(x).

I Macrostates: fine-grained vorticity
probability distribution ρ(σ, x),∫
ρ(σ, x)dσ = 1.

Mean coarse-grained vorticity:
ω(x) =

∫
σρ(σ, x)dσ.

4R. Robert (2000).. Commun. Math. Phys. F. Bouchet and M. Corvellec (2010).. J. Stat. Mech.
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+∞∏
i=1

dωi .

Can we compute macrostates?

Mean-field theory (Miller-Robert-Sommeria)

Two levels of description4:

I Microstates: fine-grained vorticity
field ω(x).

I Macrostates: fine-grained vorticity
probability distribution ρ(σ, x),∫
ρ(σ, x)dσ = 1.

Mean coarse-grained vorticity:
ω(x) =

∫
σρ(σ, x)dσ.

4R. Robert and J. Sommeria (1991).. J. Fluid Mech. J. Miller (1990).. Phys. Rev. Lett.
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+∞∏
k=1

δ(Gk [ω]− Γk)
+∞∏
i=1

dωi .

Can we compute macrostates?

Mean-field theory (Miller-Robert-Sommeria)

Two levels of description4:

I Microstates: fine-grained vorticity
field ω(x).

I Macrostates: fine-grained vorticity
probability distribution ρ(σ, x),∫
ρ(σ, x)dσ = 1.

Mean coarse-grained vorticity:
ω(x) =

∫
σρ(σ, x)dσ.

We want to compute the most probable macrostates ρ

4R. Robert and J. Sommeria (1991).. J. Fluid Mech. J. Miller (1990).. Phys. Rev. Lett.
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The mean-field approach: counting the microstates5

Let us consider a square
lattice with N sites, and a
“coarse-grained” lattice of
M boxes containing
n = N/M sites each.

i = 1

i = M

Finite number of vorticity levels S = {σ1, . . . , σK}.
I Microstates:

ω̂ = (ωiα)1≤i≤M
1≤α≤n

∈ SN .

I Macrostates:

P = (pik)1≤i≤M
1≤k≤K

∈ [0, 1]MK ,
K∑

k=1

pik = 1.

I Coarse-grained vorticity field:

ωi ≡
1

n

n∑
α=1

ωiα =
K∑

k=1

σkpik .

Number of microstates which realize a given macrostate:

W (P) =
M∏
i=1

n!∏K
k=1(npik)!

5C. Herbert (2015).. In: Stochastic Equations for Complex Systems: Theoretical and Computational Topics. Ed. by S. Heinz and
H. Bessaih. Springer
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The mean-field approach: large deviation of the macrostate probability6

Conservation constraints:

I Vorticity distribution (i.e. Casimir invariants) depends only on P

I Energy depends only on P in the limit N → +∞.

Probability of a given macrostate P with energy E :

Prob(P) =
W (P)

ΩN(E , γ)
,

1

N
ln Prob(P) = − 1

M

M∑
i=1

K∑
k=1

pik ln pik︸ ︷︷ ︸
entropy SM,K [P]

−S(E , γ) + o(1).

This is a large deviation property.

6C. Herbert (2015).. In: Stochastic Equations for Complex Systems: Theoretical and Computational Topics. Ed. by S. Heinz and
H. Bessaih. Springer
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The mean-field approach: variational problem7

Equilibrium states = most probable macrostates. They must minimize the large
deviation rate function, while satisfying the global constraints.
Microcanonical variational problem

S(E , γ) = max
ρ
{S [ρ] | E [ρ] = E , ∀σ ∈ R,Dσ[ρ] = γ(σ)}.

Critical points:

ρ(σ, r) =
e−βσψ(r)−α(σ)

Zβ,α(ψ(r))
(Gibbs states),

with

ω ≡ −∆ψ, Zβ,α(u) ≡
∫
R
e−βσu−α(σ)dσ.

Mean-field equation:

ω(r) = Fβ,α(ψ(r)), with Fβ,α(u) ≡ − 1

β

d lnZβ,α(u)

du
.

7C. Herbert (2015).. In: Stochastic Equations for Complex Systems: Theoretical and Computational Topics. Ed. by S. Heinz and
H. Bessaih. Springer
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Exemple: Equilibrium flows on the sphere

Stable equilibrium states8

I Solid body rotations: ψ = Ω∗ cos θ

I Dipoles: ψ = Ω∗ cos θ +
√

3(E − E∗(L)) sin θ cos(φ− φ0)

I Quadrupoles:
ψ∞ = ψ20(3 cos2 θ− 1) +ψ21 sin(2θ) sin(φ− φ1) +ψ22 sin2 θ sin(2(φ− φ2))

Theoretical Equilibrium: Quadrupole

8C. Herbert et al. (2012).. J. Stat. Mech. C. Herbert (2013).. J. Stat. Phys.
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Theoretical Equilibrium: Quadrupole DNS Final State9

8C. Herbert et al. (2012).. J. Stat. Mech. C. Herbert (2013).. J. Stat. Phys.
9W. Qi and J. B. Marston (2014).. J. Stat. Mech.
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Exemple: Equilibrium flows on the sphere

Stable equilibrium states8

I Solid body rotations: ψ = Ω∗ cos θ

I Dipoles: ψ = Ω∗ cos θ +
√

3(E − E∗(L)) sin θ cos(φ− φ0)

I Quadrupoles:
ψ∞ = ψ20(3 cos2 θ− 1) +ψ21 sin(2θ) sin(φ− φ1) +ψ22 sin2 θ sin(2(φ− φ2))

Theoretical Equilibrium: Quadrupole DNS Final State9

Generalization to more realistic geophysical flows10

8C. Herbert et al. (2012).. J. Stat. Mech. C. Herbert (2013).. J. Stat. Phys.
9W. Qi and J. B. Marston (2014).. J. Stat. Mech.

10F. Bouchet and A. Venaille (2012).. Phys. Rep. C. Herbert (2014).. Phys. Rev. E; V. Lucarini et al. (2014).. Rev. Geophys.
A. Renaud et al. (2016).. J. Stat. Phys.
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Summary

Achievements

I The Microcanonical measure can be built without UV divergences.

I Mean-field theory is exact: in the microcanonical ensemble, vorticity at
two different points behaves as statistically independent random variables.

I Macrostates statisfy a large deviation property. Equilibrium states can be
computed as solutions of a variational problem.

I They are in qualitative agreement with stationary state of numerical
simulations.

I (Interesting thermodynamical properties (long-range interactions):
non-equivalence of ensembles, negative temperatures, etc)

I Non-ergodicity
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The effect of rotation (DNS results11)

When the Rossby waves are sufficiently slow, the system relaxes towards its
equilibrium state. Hyperviscosity and statistical equilibria of Euler turbulence

39doi:10.1088/1742-5468/2014/07/P07020

J. S
tat. M

ech. (2014) P
07020

systems with initial spectra of high-wavenumber bands, cpn010 does not show stron-
gest circumpolar jets for the fastest rotation. Their integration time corresponds to only 
O~t (10) here, and seems insufficient to develop the flow to coherent state because the 

vorticity fields are still developing at that time [57]. Of course the choice of integration 
time depends on the evolution of the specific physical quantities under investigation. 
This paper focuses on the relative vorticity field which is a reasonable choice for the 
purpose of comparing with the equilibrium solution ρ σr( , ) and revealing the structure 
unobscured by the 2Ω cos θ term, whereas the physical-space quantity that previous 
studies have mostly focused on is the velocity field [51, 54–57].

We investigate how the equilibrium-like features of coherent structures depend on 
rotation, by time evolving the same initial state on spheres with different rotation rates. 

Figure 14. Numerical simulation snapshots of the relative vorticity field ζ r( ) show 
that the same initial state evolves differently on spheres rotating at different 
rates. Details of the six runs are listed in table 4. For each run, the north-pole 
(upper row) and south-pole (lower row) views are shown. High rotation rates 
tend to arrest the energy inverse cascade at larger wavenumbers and create more 
anisotropic zonal flows.

“North Pole”

“South Pole”

11W. Qi and J. B. Marston (2014).. J. Stat. Mech.
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The effect of rotation (DNS results11)
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Summary

Achievements

I The Microcanonical measure can be built without UV divergences.

I Mean-field theory is exact: in the microcanonical ensemble, vorticity at
two different points behaves as statistically independent random variables.

I Macrostates statisfy a large deviation property. Equilibrium states can be
computed as solutions of a variational problem.

I They are in qualitative agreement with stationary state of numerical
simulations.

I (Interesting thermodynamical properties (long-range interactions):
non-equivalence of ensembles, negative temperatures, etc)

Limitations

I Non-ergodicity

I Quantitative predictions are difficult. The set of MRS equilibria is huge.
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Vortex profile and higher-order invariants

Comparing the equilibrium states with numerical simulations12: NOT FOR DISTRIBUTION JSTAT_045P_1213 v2

Hyperviscosity and statistical equilibria of Euler turbulence 22

Figure 3: Scatter plots of the radial vorticity profiles !(r) of a typical positive vortex

obtained from numerical simulation and in MRS-2. Black: numerical simulation of

Sphere (ã) (similar to Sphere (a)) and Torus (a). Red: MRS-2 symmetric quadrupole

and symmetric dipole solutions based upon the initial energies of the corresponding

numerical simulations.

with the straight line of MRS-2 equilibria. That the scatter plot for Sphere (a) shows two

branches is related to the dynamically-trapped asymmetry between the two same-signed

coherent vortices: for example, one of the negative vortex is much weaker than the other

one. The asymmetry indicates that the coherent structures still retain some memory of

the details of the initial states; it cannot be related to equilibrium features. The scatter

plots also show that the vorticity along each streamline of the fluid is approximately

single-valued. Upon reaching such a state, the nonlinear advection term in the EOM

becomes small, energy redistribution among di↵erent scales due to nonlinear interaction

has almost stopped, and the structure decays linearly under hyperviscosity. Thus the

energy in the higher-wavenumber modes will never completely go to the lowest modes

to agree with MRS-2. This is confirmed by extending the integration time of Torus

(a): figure 6 shows that during the long time period from t = 3500 to t = 10 000, the

coherent vortices drift slowly around but the shape of the radial vorticity profile !(r)

maintains the same sharp peak.

The shape of the radial vorticity profile !(r) and the vorticity-streamfunction

relationship for the coherent structure are insensitive to changes in the initial resolved

Casimirs, when the odd-order resolved Casimirs are close to zero initially. This contrasts

with the findings in conservative simulations that !(r) and !- relationship vary with

initial Casimirs [40, 41]. There is no contradiction because the resolved Casimirs in non-

conservative simulations are not the exact Casimirs of the underlying Euler flows. Here

numerical simulation for the torus is performed again but with two di↵erent random

initial states. The initial states of the three runs have the same energy but di↵erent

will be mentioned later can refer to ± tanh-like.

Perturbative expansion leads to core sharpening, but it is difficult to make
quantitative predictions.
The set of MRS equilibria is huge.

12W. Qi and J. B. Marston (2014).. J. Stat. Mech.



Introduction Equilibrium Theory Perturbative approach Large deviations and transitions Conclusion

Summary

Achievements

I The Microcanonical measure can be built without UV divergences.

I Mean-field theory is exact: in the microcanonical ensemble, vorticity at
two different points behaves as statistically independent random variables.

I Macrostates statisfy a large deviation property. Equilibrium states can be
computed as solutions of a variational problem.

I They are in qualitative agreement with stationary state of numerical
simulations.

I (Interesting thermodynamical properties (long-range interactions):
non-equivalence of ensembles, negative temperatures, etc)

Limitations

I Non-ergodicity

I Quantitative predictions are difficult. The set of MRS equilibria is huge.

I Forcing and dissipation not taken into account
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The closure problem for Homogeneous Isotropic Turbulence

Incompressible Navier-Stokes equation in Fourier space:

(∂t + νk2)ûi (k) =
∑
p,q

P jl
i (k)δ(k− p− q)ûj(p)ûl(q), k i ûi (k) = 0.

Formally,

[∂t + ν(k2 + p2)]〈û(k)û(p)〉 = 〈û ? û ? û〉,

[∂t + ν(k2 + p2 + q2)]〈û(k)û(p)û(q)〉 = 〈û ? û ? û ? û〉,
. . .

Closing the hierarchy requires arbitrary hypothesis (e.g. Gaussianity, etc)Turbulence in Fluids 251

Figure 7.1. Map of the analytical statistical theories and stochastic models land
(see text for comments).

constitute a first step towards an analytical understanding of these theories,
which in turn will enable us to understand more deeply the phenomenological
analysis of turbulence presented in Chapter 6 . We will concentrate on isotropic
turbulence without helicity. In this case, Eq. (7.22) permits to calculate the
E.D.Q.N.M. energy flux

Π(K) =

∫ ∞

K

dk

∫∫

∆k

dp dqθkpq(t)

k

pq
b(k, p, q)E(q, t)[k2E(p, t) − p2E(k, t)]. (7.31)

We are looking for an inertial range, where viscous effects can be neglected,
and where Π(K) will be independent of K and equal to ϵ. It has been shown by
Kraichnan [354] (see also André and Lesieur [7]) that, within the E.D.Q.N.M.
or the T.F.M. theories, and in the Kolmogorov inertial range, wave numbers
in a spectral vicinity of one decade about K participate in more than 80% of
the energy flux across K. This allows us to assume that, to a first approx-
imation, the integral (7.31) is dominated by wave numbers k, p, q, of order K
(i.e. comprised for instance between K/10 and 10K). Assuming also that the
quantities under the integral vary as powers of k, p, q, and remembering a re-

mark already made in Chapter 6 that
∫ K

K/10 E(k)dk is of the order of KE(K),

we finally obtain
Π(k) ∼ θ(k)k4E(k)2 (7.32)

where θ(k) is the value taken by θkpq for k = p = q. We notice also that
if k is smaller than the Kolmogorov dissipative wave number, and for large

Analytical closure theories13

13M. Lesieur (2008). Turbulence in Fluids. 4th edition. Springer-Verlag, New York.
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The closure problem for Homogeneous Isotropic Turbulence

Reynolds decomposition:

ui = ūi + u′i ,

where ·̄ is a projection operator.
The Navier-Stokes equations become:

∂t ūi + ūj∂
j ūi = −∂i P̄ + ν∂j∂

j ūi−∂ ju′i u
′
j ,

∂tu
′
i + ūj∂

ju′i + u′j∂
j ūi = −∂iP ′ + ν∂j∂

ju′i − ∂ ju′i u
′
j + ∂ ju′i u

′
j .

Modeling approaches:

I Large Eddy Simulations: spatial filtering

ūi (x, t) =

∫
G(x− y)ui (y, t)dy

I Reynolds Average Navier-Stokes: time filtering

These are phenomenological models.
The major difficulty is to compute the Reynolds stress tensor −∂ ju′i u

′
j .
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Timescale separation in geophysical flows

In some flows, there is a natural timescale separation, usually associated to a
broken symmetry of the Navier-Stokes equations.

E.g. Jupiter14:

Cassini Imaging of Jupiter’s
Atmosphere, Satellites, and Rings

Carolyn C. Porco,1* Robert A. West,2 Alfred McEwen,3

Anthony D. Del Genio,4 Andrew P. Ingersoll,5 Peter Thomas,6

Steve Squyres,6 Luke Dones,1 Carl D. Murray,7

Torrence V. Johnson,2 Joseph A. Burns,6 Andre Brahic,8

Gerhard Neukum,9 Joseph Veverka,6 John M. Barbara,4

Tilmann Denk,10 Michael Evans,1 Joseph J. Ferrier,4

Paul Geissler,3 Paul Helfenstein,6 Thomas Roatsch,10

Henry Throop,1 Matthew Tiscareno,3 Ashwin R. Vasavada11

The Cassini Imaging Science Subsystem acquired about 26,000 images of the
Jupiter system as the spacecraft encountered the giant planet en route to
Saturn. We report findings on Jupiter’s zonal winds, convective storms, low-
latitude upper troposphere, polar stratosphere, and northern aurora. We also
describe previously unseen emissions arising from Io and Europa in eclipse, a
giant volcanic plume over Io’s north pole, disk-resolved images of the satellite
Himalia, circumstantial evidence for a causal relation between the satellites
Metis and Adrastea and the main jovian ring, and information on the nature of
the ring particles.

The Cassini spacecraft was launched in
October 1997 and, en route to Saturn, en-
countered Jupiter in December 2000. Dur-
ing this event, the Cassini Imaging Science
Subsystem (ISS), the highest resolution
two-dimensional imager on the Cassini or-
biter (1), collected !26,000 images of Ju-
piter, its satellites, and its rings. Scientific
objectives at Jupiter included investigation
of its three-dimensional cloud structure,
global meteorology, and auroras; imaging
of known satellites, especially during
eclipse; searching for previously unseen
satellites; and determining the structure,
particle properties, and temporal variability
of the jovian rings.

The Cassini Jupiter flyby was slow and nearly
equatorial (1). Data collection began on 1 Octo-
ber 2000 with the spacecraft 3.8° above Jupiter’s
equatorial plane and approaching the planet from
a phase (Sun-Jupiter-spacecraft) angle of 20° and
a distance of 84.7 million km. By the middle of
December, the phase dropped to 0°, and the
spacecraft began a month-long sweep through a
large range of phase angles. By 15 January 2001,
the spacecraft was on an asymptotic trajectory
out of the jovian system, looking back on a
crescent Jupiter from a distance of 18 million km,
a phase angle of 120°, and an elevation of 3°
below the plane of the equator. The last Jupiter
images were taken on 22 March 2001.

Cassini’s closest approach distance to Jupi-
ter’s cloud tops (30 December 2000, 10:05 UTC)
was 136 jovian radii RJ, or 9.72 million km, and
resulted in an image scale in the narrow-angle
camera (NAC) of 58 km/pixel. Thus, Cassini
images did not have the exquisitely high resolu-
tion of Voyager and Galileo images. However,
the long duration of the flyby, the large data
storage capacity and high transmission rate of the
spacecraft, and the photometric sensitivity, lin-
earity, spectral range, and numerous data collec-
tion modes of the ISS (2) made it possible to
acquire many high-quality time-lapse images of
Jupiter’s changing atmosphere between 1 Octo-
ber 2000 and 22 March 2001 and to image dy-
namic processes within the jovian satellite and
ring systems.
Jupiter’s atmosphere. The lengthy 6-

month baseline of Cassini Jupiter observations
and the wide spectral range of the ISS from the
ultraviolet (UV) into the near-infrared (near-IR)

were critical for discriminating Jupiter’s multi-
level clouds, aerosols, and hazes and for moni-
toring the evolving cloud structures and winds
that reveal underlying atmospheric dynamics
and chemistry (1). The stability of Jupiter’s zonal
winds, given the turbulent nature of its cloud
patterns, is a remarkable feature of its atmo-
sphere. Nonetheless, the zonal wind profile as
observed by the ISS (3) (Fig. 1) shows small
changes in the shape and speed (less than or
equal to !40 m/s) of some of the zonal jets, as
compared to those observed by Voyager (4),
consistent with recent analyses from Galileo and
the Hubble Space Telescope (HST ) (5–7). It
also reveals polar jets in each hemisphere that
were not previously detected in the visible-
wavelength Voyager data. Toward the polar
regions in each hemisphere, the banded patterns
that characterize Jupiter’s appearance gradually
give way to a seemingly chaotic pattern of
hundreds of interacting vortices. However,
Cassini movies of the jovian atmosphere reveal
that near the poles, as at lower latitudes, the

1Department of Space Sciences, Southwest Research
Institute, 1050 Walnut Street, Suite 400, Boulder, CO
80302, USA. 2Jet Propulsion Laboratory, California Insti-
tute of Technology, 4800 Oak Grove Drive, Pasadena,
CA 91109, USA. 3Department of Planetary Sciences,
University of Arizona, 1629 East University Boulevard,
Tucson, AZ 85721, USA. 4Goddard Institute for Space
Studies, NASA, 2880 Broadway, New York, NY 10025,
USA. 5Division of Geological and Planetary Sciences,
California Institute of Technology, 150-21, Pasadena, CA
91125, USA. 6Department of Astronomy, Cornell Uni-
versity, Space Sciences Building, Ithaca, NY 14853, USA.
7Astronomy Unit, Queen Mary, University of London,
London E1 4NS, UK. 8Centre d’Etudes de Saclay, Univer-
sity of Paris, L’Orme des Merisiers, 91191 Gif-sur-Yvette
Cedex, France. 9Department of Earth Sciences, Freie
Universität, 12249 Berlin, Germany. 10Institute for Space
Sensor Technology and Planetary Exploration, German
Aerospace Center, Rutherfordstrasse 2, 12489 Berlin,
Germany. 11Department of Earth and Space Sciences,
University of California, Los Angeles, CA 90095, USA.

*To whom correspondence should be addressed. E-
mail: carolyn@ciclops.swri.edu

Fig. 1. (Left) The black line is the average of wind
speeds measured with an automatic correlation
technique on 29 pairs of Cassini images separated
by 10 hours (3); the red line is derived from
Voyager 2 images (4). The eastward jet at 23°N
has slowed from 180 to 140 m/s. The westward
jet at 30°N and the jets between 40° and 55°N
also show changes of 10 to 20 m/s and small
shifts in latitude. (Right) Latitudinal distribution of
convective feature occurrence. Latitudes are esti-
mates in planetocentric coordinates obtained by
visually mapping a grid to the limb. Estimated
accuracies are !1° near the equator and degrade
with increasing latitude. Gray regions are belts;
white regions are zones.
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Zonal wind measured by Voyager 2 (1979,
red) and Cassini (2000, black).

1.2. PHENOMENOLOGY OF MID–LATITUDE ZONAL JETS

(a) (b)

Figure 1.1: (a) Zonal velocity profile from Voyager 2 in 1979 (red curve) and from
Cassini in 2000 (black curve). (b) Picture of the small-scale turbulence at different
dates [90]. The small-scale turbulent eddies clearly evolve much faster than the
zonal jets.

also been reproduced in numerical simulations of simplified models [27, 57, 111].

It has been suggested that planetary zonal jets may also have a large impact on
abrupt climate changes [28, 107]. Such abrupt change has been observed on Jupiter
in the end of the 40’s [95, 118], and the relevance of such abrupt changes for past
and future Earth climate changes is still an open question.

1.2 Phenomenology of mid–latitude zonal jets

1.2.1 Basic equations of large scale mid–latitude atmospheric
dynamics

Climate dynamics involves many different phenomena, occuring over a wide range
of temporal and spatial scales [88]. For this reason, the theoretical description of the
climate system involves a large set of coupled equations. For practical reasons, and
in order to extract the basic ingredients responsible for the phenomenon of interest,
we have to use simplified equations.

In the study of atmospheric flows, the basic equations are the three-dimensional
Navier-Stokes equations in the rotating frame of reference of the planet. Dimensional
analysis of the different terms involved in these equations allow to perform major
simplification [110]

• If the typical length scale of the horizontal motion L is much larger than the
depth of the atmosphere, then the vertical motion resumes to the hydrostatic

12

Cassini

14C. C. Porco et al. (2003).. Science.
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Adiabatic elimination of fast variables15 (stochastic averaging)

Slow-fast SDE:

dXt = f (Xt ,Yt)dt +
√

2εdWt ,

dYt = α−1g(Xt ,Yt)dt +
√
α−1h(Xt ,Yt)dWt .

I Joint PDF P(x , y ; t); Fokker-Planck equation ∂tP = (α−1L0 + L1)P.
I Stationary distribution for fast modes at fixed x and projection operator:

L0P
x
∞(y) = 0, Pφ = Px

∞(y)

∫
dyφ(x , y).

I Write Ps = PP, Pf = (1− P)P. We have
∂tPs = P(α−1L0 + L1)P = PL1P.

I At lowest order, ∂tPs = PL1Ps + O(α) and Ps(x , y) = Px
∞(y)Q(x) with

∂Q

∂t
= − ∂

∂x
[Ex
∞[f ]Q(x)] + ε

∂2

∂x2
Q + O(α).

Finally, after adiabatic reduction:

dXt = EXt
∞[f ]dt +

√
2εdWt .

15e.g. C. W. Gardiner (2009). Handbook of Stochastic Methods for physics, chemistry, and the natural sciences. 4th edition. Springer,
Berlin.
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Adiabatic elimination of fast variables: zonal jets

Reynolds decomposition for the zonal jets

ω = ω̄ + ω′, with ·̄ the projection on the (slow) zonal modes.
Formally,

∂t ω̄ + Lω̄[ω̄] = −∂ iu′iω
′ + η̄,

∂tω
′ + L′ω̄[ω′] = −u′i ∂ iω′ + ∂ iu′iω

′ + η′.

Adiabatic reduction at lowest order16:

∂t ω̄ + Lω̄[ω̄] = −∂ iEω̄[u′iω
′] + η̄,

∂tω
′ + L′ω̄[ω′] = η′.

I No UV divergences
I Eddy-eddy interactions do not contribute at leading order.

The fluctating vorticity field is an Ornstein-Uhlenbeck process characterized by
the two-point correlation function g(r1, r2, t) = Eω̄[ω′(r1, t)ω′(r2, t)], which
satisfies the Lyapunov equation:

∂tg + L′
(1)
ω̄ g + L′

(2)
ω̄ g = C ′,

with C ′(r1, r2, t) = E[η′(r1, t)η′(r2, t)] the correlation matrix of the Gaussian
white noise η′.

16F. Bouchet et al. (2013).. J. Stat. Phys.
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Adiabatic elimination of fast variables: zonal jets

Reynolds decomposition for the zonal jets

ω = ω̄ + ω′, with ·̄ the projection on the (slow) zonal modes.
Formally,

∂t ω̄ + Lω̄[ω̄] = −∂ iu′iω
′ + η̄,

∂tω
′ + L′ω̄[ω′] = −u′i ∂ iω′ + ∂ iu′iω

′ + η′.

Adiabatic reduction at lowest order16:

∂t ω̄ + Lω̄[ω̄] = −∂ iEω̄[u′iω
′] + η̄,

∂tω
′ + L′ω̄[ω′] = η′.

I No UV divergences

I Eddy-eddy interactions do not contribute at leading order.

Numerical simulations in the quasi-linear framework:

I Stochastic Structural Stability Theory17

I Cumulant Expansion “CE2”18

16F. Bouchet et al. (2013).. J. Stat. Phys.
17B. F. Farrell and P. J. Ioannou (2003).. J. Atmos. Sci.
18S. M. Tobias and J. B. Marston (2013).. Phys. Rev. Lett. J. B. Marston et al. (2016).. Phys. Rev. Lett.
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Explicit computations in the vortex condensate19

Let us go back to the periodic square box with small-scale random forcing:

v = U + u, with U = Ueθ, u = ueθ + ver and 〈u〉 = 0,

ω = Ω + ω′, with 〈ω′〉 = 0.

∂tΩ + U ·∇Ω = −αΩ−∇ · 〈uω′〉.

DNS: 10242, kf = 100, hyperviscosity, α = 1.1× 10−4.

19C. Herbert, A. Frishman and G. Falkovich, to appear
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Explicit computations in the vortex condensate19

Let us go back to the periodic square box with small-scale random forcing:

v = U + u, with U = Ueθ, u = ueθ + ver and 〈u〉 = 0,

ω = Ω + ω′, with 〈ω′〉 = 0.

∂tΩ + U ·∇Ω = −αΩ−∇ · 〈uω′〉.

Ω ω′

DNS: 10242, kf = 100, hyperviscosity, α = 1.1× 10−4.

19C. Herbert, A. Frishman and G. Falkovich, to appear
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Explicit computations in the vortex condensate20

Let us go back to the periodic square box with small-scale random forcing:

v = U + u, with U = Ueθ, u = ueθ + ver and 〈u〉 = 0,

ω = Ω + ω′, with 〈ω′〉 = 0.

∂tΩ + U ·∇Ω = −αΩ−∇ · 〈uω′〉.

Timescale separation

Perturbative expansion of the equations of motion in δ = αL2/3/ε1/3 � 1 leads
at first order to (Momentum and energy balance)19:

r−1∂r (r
2〈uv〉) = −αrU,

r−1∂r (rU〈uv〉) + αU2 = ε.

Solution:
U =

√
3ε/α, 〈uv〉 = −r

√
αε/3.

Therefore Ω(r) =
√

3ε/αr−1.

Global energy balance neglecting small-scale dissipation yields Urms =
√
ε/α.

19J. Laurie et al. (2014).. Phys. Rev. Lett.
20C. Herbert, A. Frishman and G. Falkovich, to appear
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Explicit computation for the mean vorticity profile (DNS)21

Theoretical prediction: Ω(r) =
√

3ε/αr−1

10−2 10−1
100

101

102

103

r−1

r/L

(α
L
2
/ε

)1
/
2
Ω

α = 2 · 10−4

α = 1.1 · 10−4

α = 5.5 · 10−5

α = 2.5 · 10−5

α = 1.25 · 10−5

α = 6.25 · 10−6

Theory

Our DNS (5122 and 10242) support the α-scaling on a wide range of α, and
seem compatible with the r -scaling.

21C. Herbert, A. Frishman and G. Falkovich, to appear
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Explicit computation for the Reynolds tensor (DNS)22

〈uv〉/U2 = O(δ3/2) and not sign definite.

10−2 10−1 100

−4

−2

0

2

4

r/L

3
〈u
v
〉/
(α
rU

)

α = 2 · 10−4

α = 1.1 · 10−4

α = 5.5 · 10−5

α = 2.5 · 10−5

α = 1.25 · 10−5

α = 6.25 · 10−6

Theory

DNS: 5122, kF = 100, hyperviscosity, ∼ 300000 turnover times.

22C. Herbert, A. Frishman and G. Falkovich, to appear
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Summary & Prospects

Due to the existence of a small parameter, we can close asymptotically the
hierarchy of moments for the 2D Navier-Stokes equations, and compute the
statistics of the mean-flow (e.g. vortex condensate, jets) and fluctuations.

Salient features of the theory

I Theoretical and Numerical arguments support the timescale separation
hypothesis.

I Explicit formula for the mean-flow in the vortex condensate

I Explicit computation of the average Reynolds stress tensor agrees with
long time DNS.

I Dominant interactions are non-local between mean-flow and fluctuations.

Prospects

I Slow dynamics of large-scale flow (e.g. zonal jets): attractors,
fluctuations,. . .

I Large deviations of the Reynolds tensor

What do we learn about mean-flow-turbulence interactions in general flows?
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Transitions in the stochastic 2D Navier-Stokes equations

Stochastic 2D Navier-Stokes equations on a double periodic domain with
aspect ratio close to one23.

z1 =

∫
dxdye iyω(x , y)

282 F. Bouchet, A. Venaille / Physics Reports 515 (2012) 227–295

time *ν

δ=1.02 δ=1.04

|z
1|

|z
1|

time *ν

Fig. 24. Dynamics of the 2D Navier–Stokes equations with stochastic forces in a doubly periodic domain of aspect ratio �, in a non-equilibrium
phase transition regime. The two main plots are the time series and probability density functions (PDFs) of the modulus of the Fourier component
z1 = 1

(2⇡)2

R
D

dr!(x, y) exp(iy) illustrating random changes between dipoles (|z1| ' 0.55) and unidirectional flows (|z1| ' 0.55). As discussed in
Section 6.4.3, the existence of such a non-equilibrium phase transition can be guessed from equilibrium phase diagrams (see Fig. 6).

Y.Tian and others
Eastward jet over topography
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Fig. 25. Bistability in a rotating tank experiment with topography (shaded area) [189,200]. The dynamics in this experiment would be well modeled by a
2D barotropic model with topography (the quasi-geostrophic model with R = 1). The flow is alternatively close to two very distinct states, with random
switches from one state to the other. Left: the stream function of each of these two states. Right: the time series of the velocity measured at the location of
the black square on the left figure, illustrating clearly the bistable behavior. The similar theoretical structures for the 2D Euler equations on one hand and
the quasi-geostrophic model on the other hand, suggest that the bistability in this experiment can be explained as a non-equilibrium phase transition, as
done in Section 6.4.3 (see also Fig. 24).

Fig. 26. Kuroshio: sea surface temperature of the pacific ocean east of Japan, February 18, 2009, infra-red radiometer from satellite (AVHRR, MODIS) (New
Generation Sea Surface Temperature (NGSST), data from JAXA (Japan Aerospace Exploration Agency)).
The Kuroshio is a very strong current flowing along the coast, south of Japan, before penetrating into the Pacific ocean. It is similar to the Gulf Stream in the
North Atlantic. In the picture, The strong meandering color gradient (transition from yellow to green) delineates the path of the strong jet (the Kuroshio
extension) flowing eastward from the coast of Japan into the Pacific ocean.
South of Japan, the yellowish area is the sign that, at the time of this picture, the path of the Kuroshio had detached from the Japan coast and was in a
meandering state, like in the 1959–1962 period (see Fig. 27). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

I Unidirectional flows: |z1| ≈ 0.

I Dipoles: |z1| > 0.

Both states are close to stationary states of the Euler equations.

23F. Bouchet and E. Simonnet (2009).. Phys. Rev. Lett.
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Zonal-Blocked transitions

Transitions between zonal and blocked states in rotating tank experiments24:
Laboratory experiments in rotating an-

nuli with a radial temperature gradient have
helped in the understanding of the mecha-
nism of baroclinic instability and the atmo-
sphere’s general circulation (17). Introduc-
ing wavenumber 2 topography in such an-
nuli produced new phenomena (18) but did
not adequately explain the spatiotemporal
features of the atmosphere’s observed and
modeled low-frequency variability (19).

To further understand the dynamics of
zonal flow over topography, we carried out
laboratory experiments on a barotropic rotat-
ing annulus (20, 21) with two mountain ridg-
es. The flow was produced by mechanical
pumping and suction rather than by differen-
tial heating of the side walls (17). With the
rapid rotation and absence of buoyant driving
forces, the flow in the annulus was essentially
two-dimensional (21) and could be compared
with barotropic model results. These experi-
ments facilitate exploration of the flow’s be-
havior over a wide parameter range: an hour
at a rotation frequency of 2 Hz corresponds to
20 simulated years.

The annular tank’s inner radius r1 !
10.8 cm, its outer radius r2 ! 4r1, and its
height varied linearly from 17.1 cm at the
inner to 20.3 cm at the outer radius. Flow
was produced by pumping fluid in through a
ring of 120 holes (0.26 cm in diameter) at
rsource ! (3.25)r1 and out through a ring of
holes at rsink ! (1.75)r1. The annulus was
filled with water (kinematic viscosity " !

0.009 cm2 s–1) up to a flat lid. When the
tank rotated rapidly, the action of the Co-
riolis force on the radial flow resulted in a
corotating (eastward) jet with a much high-
er velocity than the radial flow generated
directly by the pumping (20, 21). The slop-
ing bottom of the annulus models the

change in Coriolis force as a function of
latitude for spherical planets [the # effect,
which in the present case is given by # !
2$s/h, where s ! 0.1 is the slope, h ! 18.7
cm is the mean height of the annulus, and
$ is the angular velocity of the annulus
(21)]. Two radial aluminum ridges were

Fig. 1. Atmospheric pictures of (A) zonal and (B) blocked flow, showing
contour plots of the height (m) of the 700-hPa (700 mbar) surface, with a
contour interval of 60 m for both panels. The plots were obtained by averag-
ing 10 days of twice-daily data for (A) 13 to 22 December 1978 and (B) 10 to
19 January 1963; the data are from the National Oceanic and Atmospheric

Administration’s Climate Analysis Center. The nearly zonal flow of (A) includes
quasi-stationary, small-amplitude waves (32). Blocked flow advects cold
Arctic air southward over eastern North America or Europe, while decreasing
precipitation in the continent’s western part (26).

Fig. 2. Time-averaged stream function contours calculated from experimental data for (A) zonal and (B)
blocked flow. The peaks of the ridges are indicated by dashed lines, and the profile of each ridge is
shown by black curves outside the rim of the round panels. The contour interval is 15 cm2 s–1 for both
plots. The annulus rotates counterclockwise, and the flow is in the direction of rotation (eastward). The
Rossby numbers Ro for the zonal and blocked flows are 0.33 % 0.02 and 0.22 % 0.02, respectively
(pump flux F ! 390 and 260 cm3 s–1, respectively); for both flows, the Ekman number Ek ! 4.8 & 10'4

($ ! 3( rad s–1). A video camera was used to track neutrally buoyant particles of 1 mm diameter, and
time-averaged stream functions were determined by averaging the particle trajectories in time (23) and
fitting the results to basis functions. The highs and lows of the stream function are indicated by bold
letters H and L, respectively. The black dots indicate the horizontal location of the hot-film probe.

REPORTS
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symmetrically placed on the bottom of the
annulus, each having a Gaussian profile
h(r,!) " h(!) " h0 exp[–(!/!0)2] with h0 "
1.5 cm and !0 " 21°. This profile extends
over 72°; at 72° the Gaussian profile is
smoothly tapered to zero.

Our two control parameters were the
pump flux rate F, which ranged from 0 to 400
cm3 s#1, and $, which ranged from 2% to 6%
rad s#1 (1 to 3 Hz). These two control param-
eters determine the nondimensional Rossby
(Ro) and Ekman (Ek) numbers. The Rossby
number Ro " U/2$L is given in terms of L,
the spacing between the forcing rings (1.5r1),
and the maximum velocity U that would
result from a steady, axisymmetric flow in
the absence of topography, U " (F/2%)-
($/&)1/2rsink

#1 (21). The Ekman number is
Ek " (Tannulus/TEkman)2, where Tannulus "
2%/$ is the annulus rotation period and
TEkman " h/2(&$)1/2 is the relaxation time
for unforced disturbances (22); hence, Ek "
(4%/h)2 (&/$). In these experiments, 0.10 '
Ro ' 0.35 and 0.4 ( 10–3 ' Ek ' 10–3.

In the absence of topography, the flow in
this parameter range was characterized by
eastward-propagating Rossby waves (21).
With the topography in place, however, we
observed two stationary wave patterns that
had markedly different characteristics, as illus-
trated by the contour plots of typical time-
averaged stream functions (Fig. 2) (23). At
high Rossby numbers (that is, high pumping
or low rotation), a nearly zonal flow (Fig. 2A),
resembling the more frequently occurring at-
mospheric patterns (Fig. 1A), was observed: a
strong corotating jet flowed smoothly around
the annulus; it had a small-amplitude wave of
zonal wavenumber 2 induced by the two
mountains. At lower Rossby numbers, a
blocked flow was observed (Fig. 2B); the jet
was wavier, and its speed was much lower (see
also Fig. 3, A and C). The azimuthal flux
carried by the blocked jet was typically one-
third that in the zonal jet, even for similar
pumping rates and Ekman number (24). A
strong wavenumber 4 component of the flow
field arose; one anticyclone (counterrotating

vortex) formed upstream of each mountain,
and the other formed downstream, like in a
Rossby lee wave (25). In the atmosphere,
though, unlike in our experiment, it is the
upstream ridge (poleward curvature of the jet)
that is more pronounced.

Blocking anticyclones appear in the atmo-
sphere most often separately, in either the
Pacific–North American or the North Atlan-
tic–European sector, although double-block-
ing episodes (Fig. 1B) do occur (4, 5, 7, 26).
The twofold symmetry of the apparatus pre-
sumably favors a double-blocking pattern.
The drop in jet intensity, increase in wave
amplitude, and upstream shift of the two
stronger highs that we observed for blocked
flow are in agreement with the simplified
barotropic models (8, 10, 12, 27), which are
supported by general circulation model results
(13). Still, direct comparison of the experi-
mental observations with the atmosphere is
not possible, because the spectrum of North-
ern Hemisphere topography is dominated by
wavenumbers 2 and 3, and thermal contrasts
between continents and oceans also play an
important role, as do baroclinic phenomena
(10, 11, 14, 16).

The variability of the blocked flow in the
experiments was much higher than that of the
zonal flow. For zonal flow (Fig. 2A), the vari-
ations from the mean spatial pattern were
small, and the instantaneous stream function
resembled the time average. For blocked flow
(Fig. 2B), the instantaneous patterns differed
considerably from the time average over most
of the parameter range investigated. The ve-
locity time series for zonal flow, measured at a
fixed point in the fluid, also showed that
nearly periodic variations (with a period of 17
annulus rotations) were superimposed on a
noisy background (Fig. 3, A and B) (16). The
blocked flow had a broad-band spectrum, with
spectral power P decreasing with frequency f
(Fig. 3D). However, its fluctuations decreased
with Ro and, at Ro ' 0.02, the blocked flow
became time-independent and exhibited two-
fold symmetry in space.

In a regime intermediate between that of

nearly zonal and blocked flows (Fig. 4), spon-
taneous transitions occurred between distinct
zonal and blocked flows (Fig. 5A) for fixed
experimental conditions (Ro and Ek). Similar
spontaneous transitions appear in the atmo-
sphere (4, 5), as well as in simple determin-
istic models with a sufficient number of de-
grees of freedom (12, 14, 16). Our blocked
and zonal flows, however, both persisted for
many more annulus rotation periods than did

Fig. 3. (A and C) Velocity
time series and (B and D) as-
sociated power spectra ob-
tained from a hot-film probe
located in the lid at r " 2.5r1.
Zonal (A and B) and blocked
(C and D) flows correspond
to Ro " 0.332 ) 0.005 and
0.124 ) 0.005, respectively
(pump flux F " 320 and 120
cm3 s–1, respectively), with
Ek " 7.2 ( 10–4 for both
flows ($ " 2% rad s#1).

Fig. 4. Diagram showing boundaries between the
three observed flow regimes: pure zonal, pure
blocked, and intermittent regime. In the intermit-
tent regime, spontaneous switching between
blocked and zonal flows occurs at irregular inter-
vals. Stars indicate the positions in this diagram of
the experimental runs used for Fig. 2, A and B; Fig.
3, A through D; and Fig. 5A. Multiple stable equi-
libria were not observed.

Fig. 5. (A) Velocity time series showing intermit-
tent transitions between zonal and blocked flow
(compare Figs. 3 and 4); Ro " 0.237 ) 0.005 and
Ek " 4.8 ( 10–4 (pump flux F " 280 cm3 s–1 and
$ " 3% rad s–1). (B) The fraction of time spent in
the blocked state as a function of the Rossby
number [compare with similar plots for the atmo-
sphere (4) and barotropic models (12)]; Ek "
7.2 ( 10#4 ($ " 2% rad s–1). To guide the eye, the
straight line shows the least-squares fit to the in-
termittent data.

SCIENCE ! VOL. 278 ! 28 NOVEMBER 1997 ! www.sciencemag.org1600

Connecting blocking and bistability is an old idea25.

24E. R. Weeks et al. (1997).. Science; Y. D. Tian et al. (2001).. J. Fluid Mech.
25J. Charney and J DeVore (1979).. J. Atmos. Sci.
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Rare transitions in jet dynamics

Zonal jets in the stochastic barotropic vorticity equation:

Introduction
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Figure 3: Zonal jets in a numerical simulation of the stochastic quasi-geostrophic
barotropic equation. Top pannel: Hovmöller (spatio-temporal) diagram of the zon-
ally averaged vorticity, showing rare and abrupt transitions between two-jets and
three-jets configurations. Bottom pannel: time series of the vorticity Fourier compo-
nents, showing both typical fluctuations and large fluctuations leading to transitions.
Courtesy Eric Simonnet.

ear dynamics is stochastically forced but not dissipated. The question of whether
this linear dynamics actually reaches a stationary state or not is thus crucial for
the self-consistency of our theory, answering this question is a central point of this
thesis.

In the case of the stochastic two-dimensional Navier-Stokes equation (i.e. with no
differential rotation), the linearized dynamics actually leads to an inviscid damping
of turbulent perturbations, known as the Orr mechanism [11, 82], even in the absence
of external dissipation. Using the Orr mechanism, we will study the mathematical
properties of the linear stochastic dynamics. In particular, we will study the low-
order statistics (average and covariance) of Reynolds’ stresses, which are the terms
appearing in the kinetic equation for zonal jets.

We will see that the inviscid damping ensures the self-consistency of the kinetic
theory at leading order (deterministic part of the kinetic equation involving the
average Reynolds’ stress). At next order (stochastic part of the kinetic equation
involving the typical fluctuations of Reynolds’ stresses), the issue is more subtle and
we will see that some quantities of interest converge to finite values in the limit
of small dissipation, while some other quantities diverge. More precisely, we will
obtain results of convergence in a weak sense, i.e. in the sense of distributions. An
important physical consequence of those results is that the typical fluctations of
Reynolds’ stresses cannot be neglected in the effective dynamics of zonal jets. All
those theoretical results will also be confronted with numerical computations.

In the limit of no forcing and dissipation, approaches through equilibrium statis-

9

Simulations by Eric Simonnet (INLN).
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Theoretical framework for noise induced transitions: the Kramers problem26

Overdamped Langevin dynamics:

ẋ = −V ′(x) +
√

2εη, V (x) = (x2 − 1)2, E[η(t)η(t′)] = δ(t − t′).
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x

V
(x
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∆V

26H. A. Kramers (1940).. Physica.
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Theoretical framework for noise induced transitions: the Kramers problem26

Overdamped Langevin dynamics:

ẋ = −V ′(x) +
√

2εη, V (x) = (x2 − 1)2, E[η(t)η(t′)] = δ(t − t′).
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∆V

Transition probability

In the weak noise limit, transition times form a Poisson point process with
transition rate λ, given by

λ = τ−1e−∆V/ε

This is a large deviation result.

26H. A. Kramers (1940).. Physica.
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Theoretical framework for noise induced transitions: the Kramers problem26

Overdamped Langevin dynamics:

ẋ = −V ′(x) +
√

2εη, V (x) = (x2 − 1)2, E[η(t)η(t′)] = δ(t − t′).
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Rare transitions of atmosphere jets: numerics
Rare transitions of atmosphere jets: theory

Freidlin–Wentzell theory and Eyring–Kramers law

Freidlin-Wentzell theory
Transition rates for non-gradient dynamics
Sketch of the proof

Most Reactive Paths Follow the Instanton

In the weak noise limit, most transitions (reactive paths)
follow the most probable path (instanton)

Figure by Eric
Vanden Eijnden

For gradient dynamics, instantons are time reversed relaxation
paths from a saddle point to an attractor. Arrhenius law then
follows

logP (x1,T ;x�1,0) ⇠
kBTe
�V !0

� �V
kBTe

.

F. Bouchet CNRS–ENSL Large deviation theory and GFD

Fig. E. Vanden-Eijnden (Courant)

Instantons

Path integral formalism

E[O] =

∫
D[x ]O[x ] exp(−A[x ]/ε), Action: A[x ] =

1

4

∫
dt(ẋ + V ′(x))2.

Instanton: most probable path: minx{A[x ]|x(−T ) = −1, x(T ) = 1}.
26H. A. Kramers (1940).. Physica.
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Arrhenius law and Instantons in jet transitions

Numerical algorithms to compute large deviations: dynamics biased in a
controlled way27.
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CPU time for computing 2000 reactive trajectories with 200 procs

α AMS DNS
1.20 · 10−3 1.0 d 21 d
0.90 · 10−3 1.4 d ∼ 200 d
0.60 · 10−3 2.2 d ∼ 70 y
0.45 · 10−3 3.4 d ∞
0.22 · 10−3 25.0 d ∞

Arrhenius law “Instantons”

Jet transition simulations with rare event algorithm (AMS) by Eric Simonnet
(INLN).

27C Giardina et al. (2011).. J. Stat. Phys. F. Cérou and A. Guyader (2007).. Stoch. Anal. Appl.



Introduction Equilibrium Theory Perturbative approach Large deviations and transitions Conclusion

Summary and Prospects

Theoretical and numerical tools have recently been developped to study abrupt
transitions in a statistical manner.

Exemples of quantities we can compute

I Probability of transition between attractors

I Most probable path (instanton theory)

I Large deviations of any observable

Recent developments

I More complex dynamics: bifurcations28, non-gradient dynamics29

I Large deviations and return time for time-averaged observables30:
applications for heat waves, cold spells, etc

I . . .

28C. Herbert and F. Bouchet, to appear.
29F. Bouchet and J. Reygner (2016).. Ann. Henri Poincaré.
30T. Lestang, F. Ragone, C. Herbert and F. Bouchet, to appear



Introduction Equilibrium Theory Perturbative approach Large deviations and transitions Conclusion

Summary

Developping statistical theory for 2D and geophysical turbulence

I The mean-field theory allows one to compute statistical equilibrium states,
which correspond to observed large-scale structures.

I Time scale separation allows for perturbative closure of hierarchy of
moments. Explicit computation for fundamental quantities in turbulence:
mean flow and Reynolds tensor.

I Abrupt transitions in turbulent flows can be studied with large deviations
theory and rare event algorithms.
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Canonical distribution for Galerkin-truncated 3D flows

Invariants: energy E = 1/2
∫

u2 and helicity H =
∫

u ·ω.
The Liouville theorem holds31.
Canonical probability density:

ρ({u+(k), u−(k)}) =
1

Z e−βE−αH ,

=
1

Z e−
∑

k[(β+αk)|u+(k)|2+(β−αk)|u−(k)|2].

Partition Function: Z =
∏

k
2π√

β2−α2k2
. β > |α|kmax > 0.

α

β−αkmax αkmax

k
2

k
4

10-1 1 10 102
10-3

1

103

106

109

k

E
Hk

L,
H

Hk
L

〈E〉 = −∂ lnZ
∂β

,

=
∑

k

β

β2 − α2k2
,

〈E(k)〉 =
4πβk2

β2 − α2k2
.

Ultraviolet Divergence32

31T. D. Lee (1952).. Q. Appl. Math.
32R. H. Kraichnan (1973).. J. Fluid Mech.
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Canonical distribution for Galerkin-truncated 2D flows

Invariants: Energy and Enstrophy:

E[ω] =
1

2

∫
D
ωψ =

1

2

∑
k∈B

|ωk|2

k2
,

G2[ω] =
1

2

∫
D
ω2 =

1

2

∑
k∈B

|ωk|2.
α

β

−αk2
min

−αk2
max

Canonical probability density33:

ρ({ωk}k∈B) =
1

Z e−βE[ω]−αG2[ω],

=
1

Z e
−

∑
k∈B(β+αk2)

|ωk|
2

2k2 ,

〈E(k)〉 =
πk

β + αk2
.
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Infrared divergence in the β < 0 regime. Inverse cascade for 2D Turbulence.
33R. H. Kraichnan (1967).. Phys. Fluids; R. H. Kraichnan (1975).. J. Fluid Mech.
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α

β

−αk2
min min(N2, f 2)

−αk2
max max(N2, f 2)

Accessible thermodynamic space for rotating-stratified flows, waves (red) and
slow manifold (blue).
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The helical decomposition for the 3D Euler equation

Euler equations for 3D homogeneous isotropic turbulence:

∂tu + u ·∇u = −∇P,

∇ · u = 0.

Helical decomposition in Fourier space34: ∇× h±(k) = ±kh±(k),

u(x) =
∑

k

[u+(k)h+(k) + u−(k)h−(k)]e ik·x,

ω(x) = ∇× u =
∑

k

k[u+(k)h+(k)− u−(k)h−(k)]e ik·x

Automatically enforces incompressibility: k · h±(k) = 0.
Energy and Helicity:

E =
1

2

∫
u(x)2dx =

1

2

∑
k

[|u+(k)|2 + |u−(k)|2],

H =
1

2

∫
u(x) · ω(x)dx =

1

2

∑
k

k[|u+(k)|2 − |u−(k)|2].

34A Craya (1958).. Publ. Sci. Tech. Ministère de l’Air; J. R. Herring (1974).. Phys. Fluids; F. Waleffe (1992).. Phys. Fluids A



References Appendix

Macrostates and global constraints35

Coarse-grained vorticity field:

ωi =
1

n

n∑
α=1

ωiα =
K∑

k=1

σkpik .

I The energy does not depend on the microstate but only on the macrostate

E[ω̂] =
1

2N2

∑
(i,α) 6=(j,β)

Giα,jβωiαωjβ ,

=
1

2M2

∑
i 6=j

Gijωiωj + o

(
1

n

)
.

I For ω̂ ∈M(P),

νTk [ω̂] =
N∑
i=1

νik [ω̂] = n
N∑
i=1

pik ,

Global vorticity distribution constraints:

νTk [P]

N
= γk .

35C. Herbert (2015).. In: Stochastic Equations for Complex Systems: Theoretical and Computational Topics. Ed. by S. Heinz and
H. Bessaih. Springer
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The mean-field approach: thermodynamic limit

Microstates

ω̂ = (ωiα)1≤i≤M
1≤α≤n

∈ SN −→
n,M,K→+∞

ω(r) ∈ L2(D)

Macrostates

P = (pik)1≤i≤M
1≤k≤K

∈ [0, 1]MK −→
n,M,K→+∞

ρ(σ, r)

∀i ∈ J1,MK,
K∑

k=1

pik = 1 −→
n,M,K→+∞

∀r ∈ D,
∫
R
ρ(σ, r)dσ = 1

ωi =
1

n

n∑
α=1

ωiα =
K∑

k=1

σkpik −→
n,M,K→+∞

ω(r) =

∫
R
σρ(σ, r)dσ

SM,K [P] = − 1

M

M∑
i=1

K∑
k=1

pik ln pik −→
n,M,K→+∞

S [ρ] ≡ −
∫
D
dr

∫
R
dσρ(σ, r) ln ρ(σ, r)

Constraints

1

2

M∑
i,j=1

Gijωiωj = E −→
n,M,K→+∞

E [ρ] ≡ 1

2

∫
D2

drdr′G(r, r′)ω(r)ω(r′) = E

∀k ∈ J1,KK,
1

M

M∑
i=1

pik = γ(σk) −→
n,M,K→+∞

∀σ ∈ R,Dσ[ρ] ≡
∫
D
ρ(σ, r)dr = γ(σ)
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The mean-field equation for the coarse-grained vorticity field

Mean-field equation:

ω(r) = Fβ,α(ψ(r)), with Fβ,α(u) = − 1

β

d lnZβ,α(u)

du
.

In particular, the equilibrium coarse-grained vorticity field is a stationary
solution of the 2D Euler equation. Further, it is dynamically stable.
In general, this equation is difficult to solve:

I Nonlinear partial differential equation.
I Analytic computation of the partition function Zβ,α(u) is rarely possible.
I Relate a posteriori the Lagrange parameters β, α(σ) to invariants E , γ(σ).

Numerical methods: relaxation equations36, Turkington-Whitaker
algorithm37,...
When the function Fβ,α is linear, the mean-field equation can be solved
analytically. When does this happen?

I “Strong mixing” limit38: β → 0, or “low-energy” limit: ψ → 0.
I Energy-enstrophy variational problem
I Subclass of the full MRS equilibrium states39.

Then analytical computations are possible, by introducing the eigenmodes of
the Laplacian on the domain D.

36R. Robert and J. Sommeria (1992).. Phys. Rev. Lett. P.-H. Chavanis (2009).. Eur. Phys. J. B
37B. Turkington and N. Whitaker (1996).. SIAM J. Sci. Comput.
38P.-H. Chavanis and J. Sommeria (1996).. J. Fluid Mech.
39F. Bouchet (2008).. Physica D
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Microcanonical Phase Diagram

-2 -1 1 2
L

1

2

E

E=E* HLL

Second-order phase transition with spontaneous symmetry breaking.40

40C. Herbert et al. (2012).. J. Stat. Mech.
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