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Motivation: geophysical flows

Geophysical flows self-organize into large-scale coherent structures, which play
a major part in weather/climate.
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Motivation: geophysical flows

Geophysical flows self-organize into large-scale coherent structures, which play
a major part in weather/climate.

and undergo abrupt transitions.

—~

Kuroshio path! Zonal/blocked Jet Stream transition?

1B Qiu and S. M. Chen (2005).. J. Phys. Oceanogr.
2E. R. Weeks et al. (1997).. Science
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Turbulent flows and degrees of freedom

Navier-Stokes equations:

Btu+u~Vu:—%VP+l/Au, Re = UL/v

» Chaotic nature: nonlinear term couples wide range of scales.
9/4

> Number of degrees of freedom ~ Re

e

#DOF
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Predictable and unpredictable observables
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Can we find a probability distribution describing the system?
Very difficult task!

3Q. Chen et al. (2003).. Phys. Rev. Lett.
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Predictable and unpredictable observables
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Kolmogorov theory Probability distribution respects symmetries (homogeneity,
isotropy, scale invariance)
Not true: e.g. scale invariance is spontaneously broken (intermittency).

Geophysical flows break the symmetries of classical turbulence, which allows for
new theoretical approaches.

3Q. Chen et al. (2003).. Phys. Rev. Lett.
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Dynamical Models: 2D and Geophysical Turbulence

Model for incompressible turbulent flows (/Navier-Stokes equation):

Ou+u-Vu

—%VP-i— vAu+F,

V.-u=0.

When v = F = 0 (no forcing and no dissipation), we have the Euler equations.

y

In terms of vorticity w =V X u,

» For a 2D domain, w = wn, vorticity is conserved along trajectories
(Lagrangian invariant):
Ow+u-Vw=0.

» For a 3D domain, it is not:

Ohw+u-Vw=w-Vu.
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Dynamical Models: 2D and Geophysical Turbulence

Model for incompressible turbulent flows (/Navier-Stokes equation):

8tu+u-Vu——%VP+1/Au+F,
V. -u=0.

When v = F = 0 (no forcing and no dissipation), we have the Euler equations.

Radically different behavior:
3D HIT 2D Turbulence

Fig. A. Pouquet (NCAR)

Direct cascade Inverse cascade
Intermittency Conformal invariance
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Dynamical Models: 2D and Geophysical Turbulence

Pertur e ach E ons and transitions

Model for incompressible turbulent flows (/Navier-Stokes equation):
1
ou+u-Vu= —;VP—i—z/Au—i—F,
V. -u=0.

When v = F = 0 (no forcing and no dissipation), we have the Euler equations.
v

Invariants:
3D HIT 2D Turbulence
Energy E = %fu2(r)dr Energy E = %fw(r)w(r)dr (w = —Av)
Casimir invariants [ s(w(r))dr

E.g. enstrophy [ w?(r)dr
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Dynamical Models: 2D and Geophysical Turbulence

Model for incompressible turbulent flows (/Navier-Stokes equation):
Ou+u-Vu= —%VP-{-VAU-{-F,
V.u=0.

When v = F = 0 (no forcing and no dissipation), we have the Euler equations.

’

» For a 2D domain, w = wn, vorticity is conserved along trajectories
(Lagrangian invariant):
Orw+u-Vw=0.

» Geophysical flows are 3D, but subjected to strong rotation and density
stratification.
Large scales well described by advection of potential vorticity
(quasi-geostrophic):
0:q+u-Vqg=0.

Eg q=uw+ 0:(f7/N°0:) + By.
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Main Questions and Theoretical Tools

Generic questions:

» Can we predict self-organization of geophysical flows into large scale
coherent structures?

» Characterize the attractors of geophysical turbulence
» Study fluctuations around the mean state
» What aspects of transitions in turbulent flows are predictable?

Because of strong nonlinearity/huge number of degrees of freedom, classical
fluid mechanics+direct numerical simulations do not suffice.
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Main Questions and Theoretical Tools

Generic questions:
» Can we predict self-organization of geophysical flows into large scale
coherent structures?
» Characterize the attractors of geophysical turbulence
» Study fluctuations around the mean state
» What aspects of transitions in turbulent flows are predictable?

Because of strong nonlinearity/huge number of degrees of freedom, classical
fluid mechanics+direct numerical simulations do not suffice.

Main theoretical tool: Large Deviation Theory

It is a tool to study asymptotic probabilities:

Prob(A[x] = a) ~ e /¢ when ¢ — 0.

The small parameter € can be
> The inverse of the number of degrees of freedom ¢ = 1/N.
» The amplitude of a noise term (Freidlin-Wentzell theory)
» The inverse of an observation time e = 1/T (Donsker-Varadhan)




Equilibrium Theory

Outline

© Equilibrium Theory
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Advection of the vorticity field in 2D

Oww +u-Vw =0.

Small-scale vorticity is mixed by the flow while large-scale coherent structures
form. J

Direct Numerical Simulation: Vorticity Contours. Courtesy Brad Marston
(Brown University).
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and transition:

The mlcrocanonlcal measure

Formally, we define the microcanonical measure as

HE (e (o) = mé(ﬂw] E)H6 Guli] - 1) T deo

i=1
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The microcanonical measure

Formally, we define the microcanonical measure as

1
Q(E. (o) ) H6 ko) — 1) ] oo

i=1

BE (Fp)pen (dw) =

> Invariant measure of the Euler equations®.
» Difficult to manipulate: e.g.

E[w] = 0.
Spontaneous symmetry breaking.
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The microcanonical measure

Formally, we define the microcanonical measure as

BE (o) pen (dw) = W (Elw] - E)H5Qk[w]—rk Hdw,

Can we compute macrostates?

Mean-field theory (Miller-Robert-Sommeria)

Two levels of description®:

» Microstates: fine-grained vorticity
field w(x).

4R. Robert and J. Sommeria (1991).. J. Fluid Mech. J. Miller (1990).. Phys. Rev. Lett.
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The microcanonical measure

Formally, we define the microcanonical measure as

HE () per (dw) = W (Elw] = E)Hfsgk[w]*rk Hdw,

Can we compute macrostates?

Mean-field theory (Miller-Robert-Sommeria)

Two levels of description®:

> Microstates: fine-grained vorticity
field w(x).

» Macrostates: fine-grained vorticity
probability distribution p(o, x),
J p(o,x)do = 1.
Mean coarse-grained vorticity:
w(x) = [op(o,x)do.

We want to compute the most probable macrostates p
v

4R. Robert and J. Sommeria (1991).. J. Fluid Mech. J. Miller (1990).. Phys. Rev. Lett.
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The mean-field approach: counting the microstates®
. Finite number of vorticity levels & = {o1,...,0k}.
Let us consider a square
lattice with NV sites, and a > Microstates:
“coarse-grained” lattice of
M boxes containing
n= N/M sites each.

o= (w,-a)

» Macrostates:

K
P = (pi)ici<m € [0,1]"> pu = 1.
1ZK<K —

» Coarse-grained vorticity field:

n K

1

; E Wiaw = E Ok Pik -
a=1 k=1

wi

Number of microstates which realize a given macrostate:

M

n!
we= 11 [Ty (npic)!

5C. Herbert (2015).. In: Stochastic Equations for Complex Systems: Theoretical and Computational Topics. Ed. by S. Heinz and
H. Bessaih. Springer
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The mean-field approach: large deviation of the macrostate probability®

Conservation constraints:

» Vorticity distribution (i.e. Casimir invariants) depends only on P

» Energy depends only on P in the limit N — 4o0.

Probability of a given macrostate P with energy E:

Prob(P) = 7QNW((EP) 3’

—In Prob(P) = ——ZZp,klnplk —S(E,v) + o(1).

i=1 k=1

entropy #, k [P]

This is a large deviation property.

6C. Herbert (2015).. In: Stochastic Equations for Complex Systems: Theoretical and Computational Topics. Ed. by S. Heinz and
H. Bessaih. Springer
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The mean-field approach: variational problem’

Equilibrium states = most probable macrostates. They must minimize the large
deviation rate function, while satisfying the global constraints.
Microcanonical variational problem

S(E,7) = max{Zp] | £lp] = E, Yo € R, Zo[p] = 7(o)}-

Critical points:
o~ B —alo)

AN = W)

(Gibbs states),

with
W= Ay, Zp.0(u) = / e P9 gg
R

Mean-field equation:

_l dlIn ZB,Q(U)

B0 = Fon(@). with Foo(u) = =3 T

7C. Herbert (2015).. In: Stochastic Equations for Complex Systems: Theoretical and Computational Topics. Ed. by S. Heinz and
H. Bessaih. Springer
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Exemple: Equilibrium flows on the sphere

Stable equilibrium states®
» Solid body rotations: ¢ = Q. cosf
> Dipoles: ¢ = Q. cosf + /3(E — E*(L))sin 6 cos(¢ — o)
» Quadrupoles:
Yoo = 120(3 cos” O — 1) + 121 5in(20) sin(¢ — 1) + 122 sin® Osin(2(p — $2))

Theoretical Equilibrium: Quadrupole

8C. Herbert et al. (2012).. J. Stat. Mech. C. Herbert (2013).. J. Stat. Phys.
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Exemple: Equilibrium flows on the sphere

Stable equilibrium states®

» Solid body rotations: ¢ = €. cosf

> Dipoles: ¢ = Q. cos@ + \/3(E — E*(L))sin 6 cos(¢ — ¢o)
» Quadrupoles:
Yoo = 120(3cos? O — 1) + b2 sin(20) sin(p — ¢1) + Yoz sin® O sin(2(p — ¢2))

Theoretical Equilibrium: Quadrupole DNS Final State®

8C. Herbert et al. (2012).. J. Stat. Mech. C. Herbert (2013).. J. Stat. Phys.
9W. Qi and J. B. Marston (2014).. J. Stat. Mech.
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Exemple: Equilibrium flows on the sphere

Stable equilibrium states®
» Solid body rotations: ¥ = €. cosf
> Dipoles: ¢ = Q. cos6 + /3(E — E*(L))sin 6 cos(¢ — o)
» Quadrupoles:
Yoo = 20(3 05> @ — 1) + 1bo1 sin(20) sin(¢p — p1) + Va2 sin® Osin(2(p — $2))

Theoretical Equilibrium: Quadrupole DNS Final State®

Generalization to more realistic geophysical flows'®
8C. Herbert et al. (2012).. J. Stat. Mech. C. Herbert (2013).. J. Stat. Phys.
9W. Qi and J. B. Marston (2014).. J. Stat. Mech.

10F Bouchet and A. Venaille (2012).. Phys. Rep. C. Herbert (2014).. Phys. Rev. E: V. Lucarini et al. (2014).. Rev. Geophys.
A. Renaud et al. (2016).. J. Stat. Phys.



Summary

Achievements
» The Microcanonical measure can be built without UV divergences.

> Mean-field theory is exact: in the microcanonical ensemble, vorticity at
two different points behaves as statistically independent random variables.

> Macrostates statisfy a large deviation property. Equilibrium states can be
computed as solutions of a variational problem.

» They are in qualitative agreement with stationary state of numerical
simulations.

> (Interesting thermodynamical properties (long-range interactions):
non-equivalence of ensembles, negative temperatures, etc)



Summary

Achievements

>

>

The Microcanonical measure can be built without UV divergences.
Mean-field theory is exact: in the microcanonical ensemble, vorticity at
two different points behaves as statistically independent random variables.

Macrostates statisfy a large deviation property. Equilibrium states can be
computed as solutions of a variational problem.

They are in qualitative agreement with stationary state of numerical
simulations.

(Interesting thermodynamical properties (long-range interactions):
non-equivalence of ensembles, negative temperatures, etc)

Limitations

>

Non-ergodicity



The effect of rotation (DNS results!!)

When the Rossby waves are sufficiently slow, the system relaxes towards its
equilibrium state.

time = 126.0 time = 2000.0

BN N

“North Pole” () ' ’
( o
A\ ¥ -
3 -
\ S \ ‘
“South Pole” ANIAZAA
ou ole \ WA {‘ ?\
‘\\3‘~ /) A\ ’/"
~- -

11w, Qi and J. B. Marston (2014).. J. Stat. Mech.
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For faster rotation rates, Rossby waves arrest the cascade at the Rhines scale
and lead to the emergence of zonal flows.

time = 14.5 time = 126.0

time = 2000.0

“North Pole”

“South Pole”

11w, Qi and J. B. Marston (2014).. J. Stat. Mech.



Summary

Achievements

>

>

The Microcanonical measure can be built without UV divergences.

Mean-field theory is exact: in the microcanonical ensemble, vorticity at
two different points behaves as statistically independent random variables.

Macrostates statisfy a large deviation property. Equilibrium states can be
computed as solutions of a variational problem.

They are in qualitative agreement with stationary state of numerical
simulations.

(Interesting thermodynamical properties (long-range interactions):
non-equivalence of ensembles, negative temperatures, etc)

Limitations

>

>

Non-ergodicity
Quantitative predictions are difficult. The set of MRS equilibria is huge.
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(e]o] le]

Vortex profile and higher-order invariants

Comparing the equilibrium states with numerical simulations'?:

opei (g 1vius \ay

=

{

0.0 0.2 0.4 0.6 0.8 0.0 05 10 15 20
angular distance from vortex center distance from vortex center

Perturbative expansion leads to core sharpening, but it is difficult to make
quantitative predictions.
The set of MRS equilibria is huge.

12\y. Qi and J. B. Marston (2014).. J. Stat. Mech.



Summary

Achievements

>

>

The Microcanonical measure can be built without UV divergences.

Mean-field theory is exact: in the microcanonical ensemble, vorticity at
two different points behaves as statistically independent random variables.

Macrostates statisfy a large deviation property. Equilibrium states can be
computed as solutions of a variational problem.

They are in qualitative agreement with stationary state of numerical
simulations.

(Interesting thermodynamical properties (long-range interactions):
non-equivalence of ensembles, negative temperatures, etc)

Limitations

>

>

>

Non-ergodicity
Quantitative predictions are difficult. The set of MRS equilibria is huge.

Forcing and dissipation not taken into account
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Equilibrium Perturbative approach

The closure problem for Homogeneous Isotropic Turbulence

Incompressible Navier-Stokes equation in Fourier space:

(0 + vk ai(k) = > PI(K)d(k — p — @)dj(p)d(a),  K'ii(k) =0.
Formally, ,

*
=
(=)

a(p)) = (@
i(a)) =

*

[0 + v (K + p*)](d(K) )
)

(0
[0c + v(K* + p* + g")(a(k)a(p *

<
j=53
>*
<
>*
=

Closing the hierarchy requires arbitrary hypothesis (e.g. Gaussianity, etc)

NAVIER - STOKES
EQUATION

hierarchy of
the moments
equations

Diagram
expansion

13

Analytical closure theories
13\, Lesieur (2008). Turbulence in Fluids, 4th edition. Springer-Verlag, New York.
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The closure problem for Homogeneous Isotropic Turbulence

Reynolds decomposition:
ui = o + uj,
where ~ is a projection operator.

The Navier-Stokes equations become:

Oclli + E,-&’E,- = —6,-/5 + I/ajajﬁ,‘—ajm

R

Ul + Uj(?iu,{ + uf@iﬂf —0iP' + uaﬁ'u; — 8iu,{uf + 8ju{uj.

Modeling approaches:
> Large Eddy Simulations: spatial filtering

i(x, t) = / G(x —y)ui(y, t)dy

> Reynolds Average Navier-Stokes: time filtering

These are phenomenological models. '
The major difficulty is to compute the Reynolds stress tensor —&’ u/u;.
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Timescale separation in geophysical flows

In some flows, there is a natural timescale separation, usually associated to a
broken symmetry of the Navier-Stokes equations.

E.g. Jupiter':

40

b L L

Planetocentric latitude (deg)

-80

080 S e e o

Velocity (m/s) Storms -

Zonal wind measured by Voyager 2 (1979, Cassini
red) and Cassini (2000, black).

14¢. C. Porco et al. (2003).. Science.
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Adiabatic elimination of fast variables'® (stochastic averaging)

Slow-fast SDE:
dX; = f(Xe, Ye)dt + V2edW,,
dY: = a 'g(Xs, Yi)dt + Va—th(X:, Y:)dW,.

v

Joint PDF P(x, y; t); Fokker-Planck equation 8;P = (a™'Lo + L1)P.
Stationary distribution for fast modes at fixed x and projection operator:

LoPL(y) =0, Pé = PL(y) / dyo(x,y).

Write P; = PP, Pr = (1 — P)P. We have
OePs = P(a Lo + L1)P = PLyP.
At lowest order, 9;Ps = PL1Ps + O(«) and Ps(x y) = Px(y)Q(x) with

v

\{

v

0Q 0
99 — 9 5 11QM)] + 5@ + O(a).
Finally, after adiabatic reduction:
dX; = EX[f]dt + V2edW. J

15e,g, C. W. Gardiner (2009). Handbook of Stochastic Methods for physics, chemistry, and the natural sciences. 4th edition. Springer,
Berlin.



Perturbative approach

0000

Adiabatic elimination of fast variables: zonal jets

Reynolds decomposition for the zonal jets

w =&+ w’, with ~ the projection on the (slow) zonal modes.
Formally,

@ + Lp[o] = —0'ulw’ + 1,
B + LW = —ufd'w + d Ul + 7.

Adiabatic reduction at lowest order'®
0o + La[o] = —0'Es[u/w'] + 7,
O + LW =1
» No UV divergences

» Eddy-eddy interactions do not contribute at leading order.

The fluctating vorticity field is an Ornstein-Uhlenbeck process characterized by
the two-point correlation function g(r1,r2, t) = Eg[w'(r1, t)w'(r2, t)], which
satisfies the Lyapunov equation:

g+ LU'Vg 1 1'Pg = ¢,

with C'(r1,r2, t) = E[n'(r1, t)n(r2, t)] the correlation matrix of the Gaussian

. . ’
white noise 7’.
16F Bouchet et al. (2013).. J. Stat. Phys.

(1)
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Adiabatic elimination of fast variables: zonal jets

Reynolds decomposition for the zonal jets

w = @+ w’, with = the projection on the (slow) zonal modes.
Formally,

@ + Lo[@] = -9 ujw’ + 1,
A + L[] = —ud'w + 80Ul + 1.

Adiabatic reduction at lowest order®
0o + La[o] = —0'Es[u/w'] + 7,
O + Lzl =1

» No UV divergences
» Eddy-eddy interactions do not contribute at leading order.

Numerical simulations in the quasi-linear framework:
» Stochastic Structural Stability Theory'’
» Cumulant Expansion “CE2"*®

16F. Bouchet et al. (2013).. J. Stat. Phys.
178 F. Farrell and P. J. loannou (2003).. J. Atmos. Sci.
185 M. Tobias and J. B. Marston (2013).. Phys. Rev. Lett. J. B. Marston et al. (2016).. Phys. Rev. Lett.
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Explicit computations in the vortex condensate!®

Let us go back to the periodic square box with small-scale random forcing:
v=U+u, with U= Ueg,u = uey + ve, and (u) =0,
w=Q+w, with (w') =0.

Q+U-VQ=—-aQ -V (uw).

DNS: 10242, ks = 100, hyperviscosity, o = 1.1 x 107*.

19C. Herbert, A. Frishman and G. Falkovich, to appear
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Explicit computations in the vortex condensate!®

Let us go back to the periodic square box with small-scale random forcing:
v =U+u, with U= Uep,u = ueg + ve, and (u) =0,
w=0Q+«, with <w') =0.

0:0+U.-VQ=-aQ-V_- (uw/).

Q w’
DNS: 10242, ks = 100, hyperviscosity, o = 1.1 x 10~%.

19¢C. Herbert, A. Frishman and G. Falkovich, to appear
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Explicit computations in the vortex condensate?°

Let us go back to the periodic square box with small-scale random forcing:
v =U+u, with U= Uey,u = veg + ve, and (u) =0,
w=Q+w, with (w') =0.

Q2 +U-VQ=—aQ - V- (uw').

Timescale separation

Perturbative expansion of the equations of motion in § = aL2/3/51/3 < 1 leads
at first order to (Momentum and energy balance)’:

r 1o, (r*(uv)) = —arU,
r 1o, (rU{uv)) + al? =¢.
Solution:
U=+/3¢/a, (uv) = —ry/aeg/3.
Therefore Q(r) = \/3¢/ar™.

Global energy balance neglecting small-scale dissipation yields Ums = y/€/c.

19 Laurie et al. (2014).. Phys. Rev. Lett.
20C. Herbert, A. Frishman and G. Falkovich, to appear
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Explicit computatlon for the mean vort|C|ty profile (DNS)?!

Theoretical prediction: Q(r) = \/3¢/ar™!

108~y
P 1]l—a=2-10"*
b 1l—a=11-10"*
L {1 a=55-10°
o 102j 4 +OZ:2.5-1075
& g 1|—a=125-10"°
”E F 1|l—a=625 106
™ L 1 | —— Theory
< 10! | E
0 Lol Lol Lo
10 1072 107!
r/L

Our DNS (5122 and 1024?) support the a-scaling on a wide range of «, and
seem compatible with the r-scaling.

2LC. Herbert, A. Frishman and G. Falkovich, to appear
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Epr|C|t computatlon for the Reynolds tensor (DNS)

(uv)/U? = O(6°/?) and not sign definite.

o ] ——a=2.104

——a=11-10"*
——a=2>5.5-10"°
——a=25-10"°
——a=125-10"°
——a=6.25-10"6

Theory

10—2 101 109
r/L

DNS: 5122, ke = 100, hyperviscosity, ~ 300000 turnover times.

22 Herbert, A. Frishman and G. Falkovich, to appear
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Summary & Prospects

Due to the existence of a small parameter, we can close asymptotically the
hierarchy of moments for the 2D Navier-Stokes equations, and compute the
statistics of the mean-flow (e.g. vortex condensate, jets) and fluctuations.

Salient features of the theory

» Theoretical and Numerical arguments support the timescale separation
hypothesis.

» Explicit formula for the mean-flow in the vortex condensate

» Explicit computation of the average Reynolds stress tensor agrees with
long time DNS.

» Dominant interactions are non-local between mean-flow and fluctuations.

Prospects

» Slow dynamics of large-scale flow (e.g. zonal jets): attractors,
fluctuations,. . .

> Large deviations of the Reynolds tensor

What do we learn about mean-flow-turbulence interactions in general flows?
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Outline

@ Large deviations and transitions
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Transitions in the stochastic 2D Navier-Stokes equations

Stochastic 2D Navier-Stokes equations on a double periodic domain with

aspect ratio close to one?.

8=1.02

71 = /dxdye[yw(x,y)

» Unidirectional flows: |z1| = 0.
» Dipoles: |z1]| > 0.

Both states are close to stationary states of the Euler equations.

23F_ Bouchet and E. Simonnet (2009).. Phys. Rev. Lett.
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o] e}

Zonal-Blocked transitions

Transitions between zonal and blocked states in rotating tank experiments®*:

B
< 4

/) 0 ]

ol € 3 J \ '
o
32f J A
Bt !
o
> 0 Blocked , Blocked

0 2000 4000
Time (s)

Connecting blocking and bistability is an old idea®.

24E R, Weeks et al. (1997).. Science; Y. D. Tian et al. (2001).. J. Fluid Mech.
25 Charney and J DeVore (1979).. J. Atmos. Sci.



iations and transitions

Rare transitions in jet dynamics

Zonal jets in the stochastic barotropic vorticity equation:

B=0. 5555,md a= 1 5 10-3

i P

0 200 400 600 800 1000 1200 1400 1600 1800

200 400 600 800 1000 1200 1400 1600 1800

at

Simulations by Eric Simonnet (INLN).
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Theoretical framework for noise induced transitions: the Kramers problem?®

Overdamped Langevin dynamics:

x==V'(x)+V2en, V(x)= (=1 El(t)n(t)] = 6(t - t).
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26H. A. Kramers (1940).. Physica.
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Large deviations and transitions

Theoretical framework for noise induced transitions: the Kramers problem?®

Overdamped Langevin dynamics:

K= —V/()+V2en, V(x)= (317

@

Transition probability

Plrar)

Elp(t)n(t)] = é(t — t').

MC

FP
FPadj
Theory

In the weak noise limit, transition times form a Poisson point process with

transition rate ), given by

This is a large deviation result.

-1 _—-AV
=7 teAV/e

26H. A. Kramers (1940).. Physica.
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Theoretical framework for noise induced transitions: the Kramers problem?®

Overdamped Langevin dynamics:

K= —V/(x)+ V2, V(x)= (3 —17 Elp(ti(t)] = é(t - £).

-1 ! 2 Fig. E. Vanden-Eijnden (Courant)

Path integral formalism

B(0] = [ DO exp(—Abd/e),  Action: Al = 3 [ deic+ V().

Instanton: most probable path: min {A[x]|x(—T) = —1,x(T) =1}.

26H. A. Kramers (1940).. Physica.
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Arrhenius law and Instantons in jet transitions

Numerical algorithms to compute large deviations: dynamics biased in a
controlled way?.

1.6e+15 B 1
. B—A
£
3 10ex11|
g
ﬁ 2.5+09 | |2
£ 4
§
§
=

2.8e+07[

2.0e+06

2.2e-04 456-04  6.0e-04 9.0e-04  12e-03
«
Arrhenius law Instantons

Jet transition simulations with rare event algorithm (AMS) by Eric Simonnet
(INLN).

27¢ Giardina et al. (2011).. J. Stat. Phys. F. Cérou and A. Guyader (2007).. Stoch. Anal. Appl.
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Summary and Prospects

Theoretical and numerical tools have recently been developped to study abrupt

transitions in a statistical manner.

Exemples of quantities we can compute
> Probability of transition between attractors
» Most probable path (instanton theory)

> Large deviations of any observable

Recent developments

» More complex dynamics: bifurcations®®, non-gradient dynamics®
> Large deviations and return time for time-averaged observables®:

applications for heat waves, cold spells, etc

28C. Herbert and F. Bouchet, to appear.
29F_ Bouchet and J Reygner (2016).. Ann. Henri Poincaré.
30T, Lestang, F. Ragone, C. Herbert and F. Bouchet, to appear



Equilibrium C £ ons Conclusion

Summary

Developping statistical theory for 2D and geophysical turbulence

» The mean-field theory allows one to compute statistical equilibrium states,
which correspond to observed large-scale structures.

» Time scale separation allows for perturbative closure of hierarchy of
moments. Explicit computation for fundamental quantities in turbulence:
mean flow and Reynolds tensor.

> Abrupt transitions in turbulent flows can be studied with large deviations
theory and rare event algorithms.






References

Bouchet, F. (2008).. Physica D 237, pp. 1976-1981

Bouchet, F. and M. Corvellec (2010).. J. Stat. Mech. 2010, P08021

Bouchet, F. and J. Reygner (2016).. Ann. Henri Poincaré 17.12, pp. 3499-3532

Bouchet, F. and E. Simonnet (2009).. Phys. Rev. Lett. 102, p. 94504

Bouchet, F. and A. Venaille (2012).. Phys. Rep. 515, pp. 227-295.

Bouchet, F. et al. (2013).. J. Stat. Phys. 153.4, pp. 572-625.

Cérou, F. and A. Guyader (2007).. Stoch. Anal. Appl. 25, pp. 417-443.

Charney, J. and J DeVore (1979).. J. Atmos. Sci. 36, p. 1205.

Chavanis, P.-H. (2009).. Eur. Phys. J. B 70, pp. 73-105

Chavanis, P.-H. and J. Sommeria (1996).. J. Fluid Mech. 314, pp. 267-297

Chen, Q. et al. (2003).. Phys. Rev. Lett. 90, p. 214503

Chertkov, M. et al. (2007).. Phys. Rev. Lett. 99.8, p. 084501.

Chertkov, M. et al. (2010).. Phys. Rev. E 81.1, p. 015302.

Craya, A (1958).. Publ. Sci. Tech. Ministére de I'Air 345

Farrell, B. F. and P. J. loannou (2003).. J. Atmos. Sci. 60.17, pp. 2101-2118

Gardiner, C. W. (2009). Handbook of Stochastic Methods for physics, chemistry, and the natural sciences. 4th edition. Springer, Berlin

Giardina, C et al. (2011).. J. Stat. Phys. 145, pp. 787-811

Herbert, C. (2013).. J. Stat. Phys. 152, pp. 1084-1114

— (2014).. Phys. Rev. E 89, p. 033008.

— (2015).. In: Stochastic Equations for Complex Systems: Theoretical and Computational Topics. Ed. by S. Heinz and H. Bessaih
Springer. Chap. 3, pp. 53-84

Herbert, C. et al. (2012).. J. Stat. Mech. 2012, P05023

Herring, J. R. (1974).. Phys. Fluids 17, pp. 859-872.

Kraichnan, R. H. (1967).. Phys. Fluids 10, pp. 1417-1423.

— (1973).. J. Fluid Mech. 59, pp. 745-752

— (1975).. J. Fluid Mech. 67, pp. 155-175

Kramers, H. A. (1940).. Physica 7, pp. 284-304.

Laurie, J. et al. (2014).. Phys. Rev. Lett. 113, p. 254503.

Lee, T. D. (1952).. Q. Appl. Math. 10, pp. 69-74.

Lesieur, M. (2008). Turbulence in Fluids. 4th edition. Springer-Verlag, New York

Lucarini, V. et al. (2014).. Rev. Geophys. 52, pp. 809-859

Marston, J. B. et al. (2016).. Phys. Rev. Lett. 116, p. 214501

Miller, J. (1990).. Phys. Rev. Lett. 65, pp. 2137-2140.

Porco, C. C. et al. (2003).. Science 299.5612, pp. 15411547

Qi, W. and J. B. Marston (2014).. J. Stat. Mech. P07020

Qiu, B and S. M. Chen (2005).." J. Phys. Oceanogr. 35.11, pp. 2090-2103

Renaud, A. et al. (2016).. J. Stat. Phys. 163, pp. 784-843.

Robert, R. (2000).. Commun. Math. Phys. 212, pp. 245-256.

Robert, R. and J. Sommeria (1991).. J. Fluid Mech. 229, pp. 291-310



References

Robert, R. and J. Sommeria (1992).. Phys. Rev. Lett. 69, pp. 2776-2779.
Tian, Y. D. et al. (2001).. J. Fluid Mech. 438, pp. 129-157.

Tobias, S. M. and J. B. Marston (2013).. Phys. Rev. Lett. 110, p. 104502.
Turkington, B. and N. Whitaker (1996).. SIAM J. Sci. Comput. 17, p. 1414.
Waleffe, F. (1992).. Phys. Fluids A 4, p. 350.

Weeks, E. R. et al. (1997).. Science 278, p. 1598.

Xia, H et al. (2009).. Phys. Fluids 21.12, p. 125101.



Appendix

[ Jele]e]

Canonical distribution for Galerkin-truncated 3D flows

Invariants: energy E = 1/2fu2 and helicity H = [u- w.

The Liouville theorem holds®". B
. . . —akmax

Canonical probability density:

Kmax

1 e
p{us(k),u-(k)}) = Ze 7,
— L o SdE+an) e P+ (8- ak)lu- W]
Z

Partition Function: Z =[], \/7 B > |alkmax > 0.

i ESCILE:
o 1 0B
S :ZL
% 52_0é2k27
1 >
A Bk
1l (E(K)) = B okt

k Ultraviolet Divergence®

317.D. Lee (1952).. Q. Appl. Math.
32R. H. Kraichnan (1973).. J. Fluid Mech.



Appendix

(o] le]e]

Canonical distribution for Galerkin-truncated 2D flows

2
Invariants: Energy and Enstrophy: —Kmax p

1 1 2
ell=3 [wr=3 T kb,

keB
_1 21 2
Galel = E/D“’ =5 2l
keB

Canonical probability density*®:
103
p({witken) = lefﬁg[“]*agz[wt Z 10
i G 10

|w |2 ~=

wk 10!

(E(k)) = Ftake

Infrared divergence in the 8 < 0 regime. Inverse cascade for 2D Turbulence.

33R. H. Kraichnan (1967).. Phys. Fluids; R. H. Kraichnan (1975).. J. Fluid Mech.



—ak?,, max(N2, fz)ﬁ

—akZ;, min(N? f2)

Accessible thermodynamic space for rotating-stratified flows, waves (red) and
slow manifold (blue).



The helical decomposition for the 3D Euler equation

Euler equations for 3D homogeneous isotropic turbulence:

du+u-Vu=-VP,
V- -u=0.

Helical decomposition in Fourier space®*: V x hy (k) = £khy (k),

u(x) = Z[U+(k)h+(k) + u—(k)h—(k)]e"™
w(x) =V xu= Z k[ug (k)he (k) — u_(k)h_(k)]e™*

Automatically enforces incompressibility: k - h4 (k) = 0.
Energy and Helicity:

£ [ uborax QZ[M )P+ u- (k)]

H= g [ a0 wax= 3 5 Kl (9 — Jo- ()

34A Craya (1958).. Publ. Sci. Tech. Ministére de I'Air; J. R. Herring (1974).. Phys. Fluids; F. Waleffe (1992).. Phys. Fluids A



Macrostates and global constraints3®

Coarse-grained vorticity field:
1 n K
wi = 5 Zwia = Zakpik-
a=1 k=1

> The energy does not depend on the microstate but only on the macrostate

N 1
€l = 55 ' Z Gia.jpWiaWjs,
(. )#G.5)

1 o 1
W Z G,-jw,-wj + o0 (;) .

i

» For & € M(P),

N N
vi @] =Y vul@] =n_ pi,
i=1 i=1
Global vorticity distribution constraints:

.
vi [P] _
Nk

35C. Herbert (2015).. In: Stochastic Equations for Complex Systems: Theoretical and Computational Topics. Ed. by S. Heinz and
H. Bessaih. Springer



The mean-field approach: thermodynamic limit

Microstates

<m € &Y

o= (w,-a)lg < —
1Za<n n,M,K—+oo
Macrostates
P—(p } 1Mk
(P:k)lg i<m € (O Prad
1IL,M =1
VI € [[ ]] Zp,k n, Mz))+oo
a=
Pl=—-— |
Imk[P] = XE;PM n pik MK—lJroo
Constraints
M
5 Z w w - n M,K_—>>+oo
1 I
k 1, K], — =
v 6[[ MZ k= W(Jk nM,K—~>>+oo

w(r) € L*(D)

p(o,r)

vr € D,/p(a, rdo =1

o(r) = /R op(o,1)do

Lo = —/Ddr/Rdop(a, r)Inp(o,r)

sl =, /D v (1, ¢ )o(r)() = E

Yo € R, Z,[p] = /D oo, 1)dr = (o)
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The mean-field equation for the coarse-grained vorticity field

Mean-field equation:
B0) = Foa(@(),  with Fao(u) = — & N Z8ald),
B8 du

In particular, the equilibrium coarse-grained vorticity field is a stationary
solution of the 2D Euler equation. Further, it is dynamically stable.
In general, this equation is difficult to solve:

» Nonlinear partial differential equation.

» Analytic computation of the partition function Z3 o (u) is rarely possible.

> Relate a posteriori the Lagrange parameters 3, a(c) to invariants E, v(c).
Numerical methods: relaxation equations®®, Turkington-Whitaker
algorithm37,...
When the function Fg . is linear, the mean-field equation can be solved
analytically. When does this happen?

> “Strong mixing” limit®: 3 — 0, or “low-energy” limit: ¥ — 0.

» Energy-enstrophy variational problem

> Subclass of the full MRS equilibrium states®.
Then analytical computations are possible, by introducing the eigenmodes of

the Laplacian on the domain D.
36R. Robert and J. Sommeria (1992).. Phys. Rev. Lett. P.-H. Chavanis (2009).. Eur. Phys. J. B
37B. Turkington and N. Whitaker (1996).. SIAM J. Sci. Comput.
38p__H. Chavanis and J. Sommeria (1996).. J. Fluid Mech.
39E Bouchet (2008).. Physica D
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Microcanonical Phase Diagram

E=E" (L)

— L
1 2

Second-order phase transition with spontaneous symmetry breaking.*°

40C. Herbert et al. (2012).. J. Stat. Mech
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