

Jet Propulsion Laboratory California Institute of Technology

Consistency relations of the large scale structure and how to break them

Jérôme Gleyzes Jet Propulsion Laboratory, California Institute of Technology

Cosmology and large scale structure

Simplest case and consistency relations

Non Gaussian initial conditions

Cosmology and distances

General Relativity: Geometry = Content

Distances (e.g. Supernovae) \longrightarrow accelerated expansion 26.8% Dark Matter 68.3% Dark 4.9% Ordinary Energy Matter

Cosmology with structures

Energy content changes the structure

Credit: Joerg Colberg, Virgo simulations, Jenkins et al, 1998 Astrophysical Journal, 499, 20-40

 $\rho(t, \vec{x}) = \bar{\rho}(t) [1 + \delta(t, \vec{x})]$

Cosmology with structures

Equivalence Principle (EP)

 \rightarrow

Do all objects fall the same way?

Initial conditions

Is the distribution initially Gaussian?

Prediction of simplest inflation models

Probing the structures

♦ Cosmic Microwave Background (CMB)

Planck

SDSS

Snapshot at t = 380'000 years.

 $\delta \sim 10^{-5}$

2 dimensional

 \diamond Large scale structure (LSS)

Late Universe (2-10 billion years ago)

 $\delta \ge 1$

3 dimensional

New surveys to come online: LSST, WFIRST, EUCLID,...

Extracting the information

Density field $\delta(ec{x})$

Extracting the information

Fourier space $\,\delta(ec{k})\,$

$$\rightarrow \langle \delta(\vec{k}_1) \cdots \delta(\vec{k}_n) \rangle$$

Power Spectrum (n=2) $\langle \delta(\vec{k})\delta(\vec{k}')\rangle = (2\pi)^3 P(k)\delta^{(D)}(\vec{k}+\vec{k}')$

Simplest case and

consistency relations

Assume Equivalence Principle

$$\Phi_L(\eta, \vec{x}) = \Phi_L(\eta)|_0 + \partial_i \Phi_L(\eta)|_0 x^i + \partial_i \partial_j \Phi_L(\eta)|_0 x^i x^j + \dots$$

Assume Equivalence Principle

Assume Equivalence Principle

Assume Gaussianity (no correlations long/short)

 $\langle \delta^{(g)}(\eta_1, \vec{x}_1) \cdots \delta^{(g)}(\eta_n, \vec{x}_n) | \Phi_L \rangle = \langle \delta^{(g)}(\eta_1, \vec{\tilde{x}}_1) \cdots \delta^{(g)}(\eta_n, \vec{\tilde{x}}_n) \rangle$

Assume Equivalence Principle

Assume Gaussianity (no correlations long/short)

$$\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_1}^{(g)}(\eta_1) \cdots \delta_{\vec{k}_n}^{(g)}(\eta_n) \rangle_{\vec{p} \to 0}' = -P(p,\eta) \sum_a \frac{D(\eta_a)}{D(\eta)} \frac{\vec{k}_a \cdot \vec{p}}{p^2} \langle \delta_{\vec{k}_1}^{(g)}(\eta_1) \cdots \delta_{\vec{k}_n}^{(g)}(\eta_n) \rangle'$$

Peloso & Pietroni '13, Riotto et al '13 Creminelli et al, '13

$$\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_{1}}^{(g)}(\eta_{1}) \cdots \delta_{\vec{k}_{n}}^{(g)}(\eta_{n}) \rangle_{\vec{p} \to 0}' = -P(p,\eta) \sum_{a} \frac{D(\eta_{a})}{D(\eta)} \frac{\vec{k}_{a} \cdot \vec{p}}{p^{2}} \langle \delta_{\vec{k}_{1}}^{(g)}(\eta_{1}) \cdots \delta_{\vec{k}_{n}}^{(g)}(\eta_{n}) \rangle'$$
Linear
$$\delta(\eta, \vec{k}) = D(\eta) \delta_{0}(\vec{k})$$

Equal time correlators

 $\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_1}^{(g)}(\eta) \cdots \delta_{\vec{k}_n}^{(g)}(\eta) \rangle_{p \to 0} = \mathcal{O}([k/p]^0)$

Equal time correlators

 $\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_1}^{(A)}(\eta) \delta_{\vec{k}_2}^{(B)}(\eta) \rangle = \mathcal{O}[(k/p)^0]$

Breaking the assumptions

♦ Equivalence principle

$$\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_1}^{(A)}(\eta) \delta_{\vec{k}_2}^{(B)}(\eta) \rangle_{p \to 0}' = \left(\epsilon \frac{\vec{p} \cdot \vec{k}}{p^2} + \mathcal{O}[(k/p)^0] \right) P(\eta, p) P_{AB}(\eta, k)$$

Model dependent

♦ Correlation short-long modes

$$\rightarrow$$
 Local Non Gaussianity $\Phi = \Phi_{\rm G} + f_{\rm NL}^{\rm Loc} (\Phi_{\rm G}^2 - \langle \Phi_{\rm G} \rangle^2)$

$$\langle \delta_{\vec{p}}(\eta) \delta_{\vec{k}_1}(\eta) \delta_{\vec{k}_2}(\eta) \rangle_{p \to 0}' = \left(\frac{6f_{\mathrm{NL}}^{\mathrm{Loc}} \Omega_{\mathrm{m},0} H_0^2}{p^2 T(p) D(\eta)} + \mathcal{O}[(k/p)^0] \right) P(\eta,p) P(\eta,k)$$

Peloso & Pietroni '13

Primordial Non-Gaussianity (PNG)

Multi-field inflation

I Initation

Why study non-Gaussianity?

${ m Prob}(|f_{ m NL}^{ m Loc}|>1)\gtrsim 50\%^*$ with de Putter and Doré arXiv:1612.05248

*: 2-field models with spectator field

Measuring PNG from surveys

♦ CMB: Bispectrum

 $\sigma(f_{\rm NL}^{\rm Loc}) \sim 5$

♦ Galaxy surveys: scale-dependent bias

Single field inflation

Multi-field inflation

Multi-field inflation

♦ Equilateral PNG

Typical size of halos $b_{\text{NG}}(q) = 6 f_{\text{NL}}^{\text{Eq}} \left(b_{\delta} - 1 \right) \delta_c \left(q R_* \right)^2 \mathcal{M}^{-1}(q) \sim \frac{1}{T(q)}$

Consistency relation not broken

Biasing and PNG

with de Putter, Green and Doré arXiv:1612.06366

♦ Generalized model of bias McDonald & Roy '09, Assassi et al '15

$$\delta_h = b_\delta \delta + b_{\rm NG}(q)\delta + F_{\rm nonlocal}[\nabla^2 \delta] + F_{\rm nonlinear}[\delta]$$

$$\left[b_{q^2}(qR_*)^2 + b_{q^4}(qR_*)^4\right]\delta$$

Seen in simulations Chan et al '12, Baldauf et al '12

♦ Evolution or PNG?

$$T(q) \sim 1 + T_1 q^2 + T_2 q^4$$

 $b_{\rm NG}^{\rm Loc} \sim q^{-2}$ $b_{\rm NG}^{\rm Eq} \sim c + c_1 q^2 + \cdots$?

Measuring PNG from surveys

Conclusions

Consistency relations are robust consequences of $\Lambda {
m CDM}$

Not satisfied if Equivalence principle is broken or local PNG

Unbroken for equilateral PNG - degenerate with evolution

Bispectrum more appropriate than bias for equilateral PNG

© 2017 California Institute of Technology. Government sponsorship acknowledged