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The plan:
Motivations for discreteness of geometry at Planck scale. 

• From Black Hole Thermodynamics. 
• From formal approaches to quantum gravity (e.g. LQG). 
• Implications for the information puzzle in BH evaporation. 
• Violations of energy-momentum for low energy degrees of freedom. 

Gravitation without energy-momentum conservation. 

• Unimodular gravity; a metric theory of gravity that can cope with violations of  
    energy momentum conservations. 
• Tiny violations of energy-momentum conservation can have important effects  
    in cosmology (two examples). 

Energy-momentum dissipation from quantum gravity discreteness. 

• Discreteness vs Lorentz invariance: an hypothesis.  
• A phenomenological proposal. 
• Implications for the dark energy problem. 

The Plan
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PART 1: 
A biased review on Loop Quantum 

Gravity.
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Black Holes:
an opportunity for QG
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FIG. 1: Spacetime representing gravitational collapse (time direction upwards). The matter of a compact objet (dotted lines)
collapses and forms a singularity inside a black hole event horizon: a region where classical general relativity breaks down.
The system settles down to a stationary black hole spacetime for late observers (�t � M). An outgoing light wave-front is
shown separating the early (very dynamical) phase from the late (equilibrium) phase. Late stationary observers can “see” only
a shell-like region of the matter and spacetime outside the black hole with a volume on a Cauchy surface ⌃ (representing an
instant around the collapsing moment) that is exponentially squeezed in the outward direction. The system of interest (grey
shell-like region) for these observers is e↵ectively 2-dimensional! Light cones are shown to make manifest the main features of
the causal structure.

expression for the entropy of black holes is a question that can only be answered within the framework of quantum
gravity. This is a central question for any proposal of a quantum gravity theory.

B. Weak Holography

A surprising property of the Bekenstein-Hawking entropy of a black hole is that it is proportional to the area a of the
event horizon instead of scaling linearly with some three-dimensional volumetric measure of the systems size. The fact
that black hole entropy scales as in a lower dimensional system together with the discovery of bounds on the entropy of
compact objects (conjectured via the analysis of thought experiments involving black holes and conventional objects;
see [57, 58, 61, 211, 286]) has led an important part of the quantum gravity community to believe in the so-called
holographic principle [94]. In its crudest form the principle states that the classical physical world should admit a
fundamental description in terms of a hologram on a lower dimensional screen. This is a view that the ADS-CFT
formulation of string theory incarnates [210].

In LQG we do not see any convincing evidence for the need for such a radical principle, and subscribe to some
weaker notion that has been described as weak holography [269]. The reason for this view is that all the apparently
puzzling properties of black holes and their interactions with external agents appear to be completely consistent
once the following two ingredient are combined: discreteness at Planckian scales, and compatibility with the causal
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Discreteness from Black Hole Thermodynamics

T =


2⇡

2

of information in black hole evaporation, and some phenomenological ideas with possible observational consequences
that are motivated by the discussion of information loss.

Throughout this paper there might be sections that seem too technical for a general reader not necessarily interested
in all the mathematical details. Equations are written to guide the argumentation and, for general readers, are
important only in this sense. Once equations are written they call for technical precision (important for those that
might be interested in detailed derivations); however, in spite of their apparent complexity due to the presence of
indices and other tensorial operations that are often necessary in the presentation of field theoretical notions in the
context of general relativity, their message should be transparent when ignoring these details. The reader more
interested in the conceptual line should read these equations without paying too much of attention to the details of
the index structure and concentrate rather on their algebraic form. This is specially so for the construction of the
phase space of general relativity; Section III (very important for us as it implies the Poisson non-commutativity of
geometry behind quantum discreteness). Classical mechanics is briefly described in its symplectic formulation at the
beginning so that all the equations that follow, and are important for gravity, can be interpreted by analogy with
these initial equations. Geometric units (GN = c = 1) are used in discussions so that energy, mass, and time are all
measured in the same units as legth.

A. Black hole thermodynamics: an invitation to quantum gravity

Black holes are remarkable solutions of general relativity describing the classical aspects of the late stages of
gravitational collapse. Their existence in our nearby universe is by now supported by a great amount of observational
evidence [7]. When isolated, these systems become very simple as seen by late and distant observers. Once the
initial very dynamical phase of collapse has passed (according to physical expectation and the validity of the ‘no-hair
theorem’1) the system settles down to a stationary situation completely described by a member of the Kerr-Newman
family. These are solutions of Einstein’s equations coupled with electromagnetism representing a stationary and
axisymetric black hole characterised by three parameters only: its mass M , its the angular momentum J , and its
electromagnetic charge Q.

The fact that the final state of gravitational collapse is described by only a few macroscopic parameters, inde-
pendently of the details of the initial conditions leading to the collapse, is perhaps the first reminiscence of their
thermodynamical nature of black holes. As we will review here, there is a vast degeneracy of configurations (mi-
crostates) that can lead to a same final stationary macroscopic state, and the nature of these microstates becomes
manifest only when quantum gravity e↵ects are considered. Another classical indication of the thermodynamical
nature of black holes (BHs) emerged from the limitations on amount of energy that could be gained from interactions
with BHs in thought experiments such as the Penrose mechanism [12] and the phenomenon of BH superradiance [13];
its field theoretical analog. Later it became clear that such limitations where special instances of the very general
Hawking’s area theorem [14] stating that for natural energy conditions (satisfied by classical matter fields) the area
a of a black hole horizon can only increase in any physical process. This is the so-called second law of black hole
mechanics which reads:

�a � 0. (1)

This brings in the irreversibility proper of thermodynamical systems to the context of black hole physics and motivated
Bekenstein [15, 16] to associate to BHs a notion of entropy proportional so their area. Classically, black holes also
satisfy the so-called first law of BH mechanics [17] which is an energy balance equation relating di↵erent nearby
stationary BH spacetimes according to

�M =


8⇡
�a

| {z }
heat?

+⌦�J + ��Q, (2)

where ⌦ is the angular velocity of the horizon, � is the horizon electric potential, and  is the surface gravity which
plays the role of a temperature in the analogy with thermodynamics. The surface gravity, defined only in equilibrium,

1 The no-hair theorem is a collection of results by Hawking, Israel, Carter and others implying that a stationary (axisymmetric) black hole
solution of Einstein’s equations coupled with Maxwell fields must be Kerr-Newman [8–10]. Some aspects of this result remain without
complete proof and some authors refer to is at the no-hair conjecture (for more details see [11] and references therein). The physical
relevance of Einstein-Maxwell resides in the fact that gravity and electromagnetism are the only long range interactions. Other forces
might be relevant for the description of the matter dynamics during collapse but play no role in describing the final result where matter
has already crossed the BH horizon.

�E = T �S|{z}�P �V

Heat: Energy in molecular chaos

SBH =
a

4

Black Holes:
Their thermal properties suggest micro-structure
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Pure gravity in connection variables

9

invariant in modern jargon) contain physical information (see [255] for a modern account). In the present case, these
are functions of the basic fields e and ! invariant under the transformations (19) in addition to (14) and (16).

The equations of motion coming from (17) follow from �eS = 0 and �!S = 0 respectively

✏IJKLe
J ^ F (!)KL = 0 (20)

d!(e
I ^ eJ) = 0. (21)

Notice their algebraic simplicity. If the tetrad field is invertible (which basically means that a non degenerate metric
can be constructed from it according to (13)) then the previous equations are equivalent to Einstein’s equation (9).
However, the field equations, as well as the action (17) continue to make sense for degenerate tetrads. For example the
no-geometry state e = 0—di↵eomorphism invariant vacuum—solves the equations and makes perfect sense in terms
of the new variables.

In this way, guided by the necessity of coupling gravity with fermions, the first order variables and the action (17)
introduce a paradigm shift that will be crucial in the quantum theory: the space of solutions (elements of the phase
space of the theory (17)) contain degenerate configurations. These configurations are pregeometric in the sense of
Wheeler [217] and will play a central role in the state space of LQG. Even when these are not important for the
description of classical gravitational phenomena they are expected to dominate the physics at the deep Planckian
regime. We will see in what follows that these pre-geometric configurations (in the form of quantum excitations) are
responsible for the quantum gravitational phenomena associated to black holes (BHs); ranging from their thermal
behavior, the relationship of their entropy with their area, to a possible natural explanation the information loss
paradox.

Another striking property of the tetrad formulation is the radical reduction of the space of actions (formally3

expected to be probed by the renormalization group flow. Concretely, if one restricts to the pure gravitational sector
the most general action that is compatible with the field content of (17) and its symmetries has only 6 di↵erent terms.
Indeed all possible gauge invariant 4-forms that can be constructed out of the tetrad eI and the Lorentz connection
!IJ are

S[eAa ,!
AB
a ] =

1

2

Z Einsteinz }| {
✏IJKLe

I ^ eJ ^ FKL(!)+

Cosmological Constantz }| {
⇤ ✏IJKLe

I ^ eJ ^ eK ^ eL +

Holstz }| {
↵1 eI ^ eJ ^ F IJ(!) (22)

+ ↵2 (d!e
I ^ d!eI � eI ^ eJ ^ F IJ(!))| {z }

Nieh�Yan

+↵3 F (!)IJ ^ F IJ(!)| {z }
Pontrjagin

+↵4 ✏IJKLF (!)IJ ^ FKL(!)| {z }
Euler

,

where d!eI is the covariant exterior derivative of eI and ↵1 · · ·↵4 are coupling constants. For non-degenerate tetrads
Einstein’s field equations follow from the previous action independently of the values of the ↵’s: the additional terms
are called topological invariants describing global properties of the field configurations in spacetime. The ↵1-term is
called the Holst term [184], the ↵2-term is the Nieh-Yan invariant, the ↵3-term is the Pontryagin invariant, and the
↵4-term is the Euler invariant. Inspite of not changing the equation of motion these terms can actually be interpreted
as producing canonical transformations in the phase space of gravity 4. In such a context the so-called Immirzi
parameter [187] corresponds to the combination [251]

� ⌘ 1

(↵1 + 2↵2)
. (23)

The parameter � will be particularly important in what follows.

2. Extended variables

General covariance is the distinctive feature of general relativity and we have recalled how this is explicitly encoded
in the action principles for gravity. The central di�culty of quantum gravity is how generalize what we have learnt

3 The renormalization group flow in first order variables cannot be defined in terms of the usual background field perturbation techniques.
The problem is that no well-defined gauge fixing for di↵eomorphisms is know around the natural degenerate background e = 0. If
instead a non degenerate background is used then arbitrary terms can be generated by the symmetry breaking that it introduces (see
[259] for an example in Yang-Mills context, and [123] for a discussion in the gravitational case).

4 In the presence of Fermions � controls the strength of an emergent four-fermion interaction [146, 215, 238].

Simpler choice

12

and its corollary: Liouville’s theorem on the conservation of phase space volume 5. All these, standard properties of
the phase space of a dynamical system with finitely many degrees of freedom carry over to the field theories with
several mathematical subtleties that are not important here. This is the great power of the covariant phase space
formalism (see [25, 120, 202] for further reading).

The symplectic form carries the information about the phase space structure of the system: it defines the dynami-
cally invariant phase space volume measure (Liouville’s theorem) and the Poisson brackets of observables (the starting
point for quantization). The previous relation between the symplectic form and the symplectic potential also says that
⇥(�) ! ⇥(�)+ �µ for some function µ does not change the symplectic structure as ��0µ� �0� µ = 0. The possibility of
changing the symplectic potential by the addition of the variation of a function µ can be shown to encode the notion
of canonical transformations.

2. Implementation in gravity

Now we are ready to apply the previous techniques to the case of interest. In order to simplify the following analysis
we set ⇤, ↵2,↵3 and ↵4 to zero in (22) and get the simpler (Holst) action

S =
1

2

Z
(✏IJKL +

1

�
⌘IK⌘JL)

�
eI ^ eJ ^ FKL(!)

�
, (29)

which defines our starting point. The result is not a↵ected if we drop this assumption but the proof becomes more
technical [122, 251]. Following our recipe, in analogy with (26), we simply need to consider the most general variation
of (29) in order to obtain the phase space structure of general relativity in first order variables. As discussed before
it will be important to express

↵1 =
1

�
(30)

as �—the Barbero-Immirzi parameter—will play a central role in what follows. Replacing in (26) and varying we
obtain

�S =
1

2

Z
(✏IJKL +

1

�
⌘IK⌘JL)

�
2�eI ^ eJ ^ FKL(!) + eI ^ eJ ^ �FKL(!)

�
. (31)

The first term does not involve variations of derivatives of the fundamental fields, while the second term does. In fact
a well know property of the field strength of a gauge theory is that �FKL(!) = d!(�!IJ) which directly follows from
(18). Using this and defining

pIJKL ⌘ (✏IJKL +
1

�
⌘IK⌘JL), (32)

we get to the result by integrations by parts as explicitly shown in the following three lines:

�S =
1

2

Z

M

2pIJKL�e
I ^ eJ ^ FKL(!) + pIJKLe

I ^ eJ ^ d!(�!
KL)

=
1

2

Z

M

2pIJKL�e
I ^ eJ ^ FKL(!)� pIJKLd!(e

I ^ eJ) ^ �!KL + d([pIJKLe
I ^ eJ ] ^ �!KL)

=
1

2

Z

M

2pIJKL�e
I ^ eJ ^ FKL(!)� pIJKLd!(e

I ^ eJ) ^ �!KL

| {z }
e.o.m.

+

Z

@M

1

2
[pIJKLe

I ^ eJ ] ^ �!KL

| {z }
p�q

, (33)

where in the first line we substituted �FKL(!) = d!(�!IJ) in the second term and then integrated by parts. In the
first term (the bulk integral) of the last line we recognise the field equations (20) while the second term (the boundary
integral) tells us that PKL ⌘ �2�1pIJKLeI ^eJ is the momentum density conjugate to the Lorentz connection !KL.
In the Language of the symplectic potential we have

⇥(�) =

Z

⌃

1

2
[pIJKLe

I ^ eJ ] ^ �!KL, (34)

5 In the case of N degrees of freedom the volume form in phase space is vol ⌘ � 1
2N

^N ⌦ .
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space of the theory. These Poisson brackets will become the canonical commutation relations in the quantum theory
that are responsible for the discreteness of geometric quantities in LQG. In this way, the origin of the Planckian
discreteness of geometry is easily seen from the Hamiltonian analysis. We only need to recall a shortcut for the
construction of the canonical variables in mechanics, due to the simplicity of the action of gravity in the first order
formalism we will be able to derive, via simple algebraic steps, the from of the Poisson brackets for gravity and foresee
the seeds of discreteness.

1. The covariant phase space formulation in a nut-shell

There is a direct way for obtaining the phase space structure of a field theory from the action principle. The method
is easily illustrated by a simple mechanical system with a single degree of freedom and Lagrangian L(q, q̇). Under
general variations the action changes according to

�S =

2Z

1


@L

@q
� d

dt

✓
@L

@q̇

◆�

| {z }
e.o.m.

�qdt+
@L

@q̇
�q

����
2

1| {z }
p�q

, (26)

where the boundary term comes from the integration by parts that is necessary to arrive at the equations of motion in
the first term. The previous equation contains important information encoded in the type of variations �q(t) and its
boundary conditions (Figure 3). If �q(t) is arbitrary for intermediate times but it vanishes at the boundary instants
1 and 2, then �S = 0 for those variations gives the equations of motion. If instead �q(t) are variations defined by
infinitesimal di↵erences between solutions of the equations of motion—not necessarily vanishing at the boundary
times—, then the first term in (26) vanishes and �S = p�q|21. These boundary contributions to the on-shell variation
of the action tell us what the phase space structure of the system is, i.e., what the momentum p conjugate to q is. In
this simple example such method for obtaining the momentum conjugate to q might seem excessive as in this case we
already know the recipe p = @L/@q̇; however, it often shows to be the simplest and most direct method when dealing
with generally covariant field theories such as the one defined by our action (17). We will use this method to directly
access the Poisson commutation relations of geometric variables in gravity.

1

2

1

2

20

�S ⌘ p�q

FIG. 3: The action contains information about both the equations of motion and the phase space structure. Stationarity of
the action under variations that vanish at the initial and final point give the equations of motion (left panel). Changes of the
action under on-shell variations (solutions of the e.o.m.) encode the phase space structure (right panel). These two features of
the action are stated in equation (26) that shows the form of a general variation.

On a slightly more technical level, the boundary term ⇥(�) ⌘ p�q is called the symplectic potential and is a
function of � in the sense that it depends on the specific form of the on shell variation at the boundary—where �
denotes the infinitesimal di↵erence between two solutions, it can be seen as a vector with components � ⌘ (�q, �p).
From the symplectic potential ⇥(�) one can obtain the symplectic form ⌦(�, �0) by an additional independent variation
�0 according to

⌦(�, �0) ⌘ �⇥(�0)� �0⇥(�) = �p �0q � �0p �q, (27)

i.e., the on-shell antisymetrized variation (exterior field derivative) of the symplectic potential gives the symplectic
form. In one simple step, the on-shell antisymetrized variation of the action leads (from (26)) to the conservation of
the symplectic form

0 = (��0 � �0�)S = ⌦(�, �0)|2 � ⌦(�, �0)|1, (28)

Phase space structure in a nut-shell

11

space of the theory. These Poisson brackets will become the canonical commutation relations in the quantum theory
that are responsible for the discreteness of geometric quantities in LQG. In this way, the origin of the Planckian
discreteness of geometry is easily seen from the Hamiltonian analysis. We only need to recall a shortcut for the
construction of the canonical variables in mechanics, due to the simplicity of the action of gravity in the first order
formalism we will be able to derive, via simple algebraic steps, the from of the Poisson brackets for gravity and foresee
the seeds of discreteness.

1. The covariant phase space formulation in a nut-shell

There is a direct way for obtaining the phase space structure of a field theory from the action principle. The method
is easily illustrated by a simple mechanical system with a single degree of freedom and Lagrangian L(q, q̇). Under
general variations the action changes according to

�S =

2Z

1


@L

@q
� d

dt

✓
@L

@q̇

◆�

| {z }
e.o.m.

�qdt+
@L

@q̇
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On a slightly more technical level, the boundary term ⇥(�) ⌘ p�q is called the symplectic potential and is a
function of � in the sense that it depends on the specific form of the on shell variation at the boundary—where �
denotes the infinitesimal di↵erence between two solutions, it can be seen as a vector with components � ⌘ (�q, �p).
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�0 according to
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i.e., the on-shell antisymetrized variation (exterior field derivative) of the symplectic potential gives the symplectic
form. In one simple step, the on-shell antisymetrized variation of the action leads (from (26)) to the conservation of
the symplectic form
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and its corollary: Liouville’s theorem on the conservation of phase space volume 5. All these, standard properties of
the phase space of a dynamical system with finitely many degrees of freedom carry over to the field theories with
several mathematical subtleties that are not important here. This is the great power of the covariant phase space
formalism (see [25, 120, 202] for further reading).

The symplectic form carries the information about the phase space structure of the system: it defines the dynami-
cally invariant phase space volume measure (Liouville’s theorem) and the Poisson brackets of observables (the starting
point for quantization). The previous relation between the symplectic form and the symplectic potential also says that
⇥(�) ! ⇥(�)+ �µ for some function µ does not change the symplectic structure as ��0µ� �0� µ = 0. The possibility of
changing the symplectic potential by the addition of the variation of a function µ can be shown to encode the notion
of canonical transformations.

2. Implementation in gravity

Now we are ready to apply the previous techniques to the case of interest. In order to simplify the following analysis
we set ⇤, ↵2,↵3 and ↵4 to zero in (22) and get the simpler (Holst) action

S =
1

2

Z
(✏IJKL +

1

�
⌘IK⌘JL)

�
eI ^ eJ ^ FKL(!)

�
, (29)

which defines our starting point. The result is not a↵ected if we drop this assumption but the proof becomes more
technical [122, 251]. Following our recipe, in analogy with (26), we simply need to consider the most general variation
of (29) in order to obtain the phase space structure of general relativity in first order variables. As discussed before
it will be important to express

↵1 =
1

�
(30)

as �—the Barbero-Immirzi parameter—will play a central role in what follows. Replacing in (26) and varying we
obtain

�S =
1

2

Z
(✏IJKL +

1

�
⌘IK⌘JL)

�
2�eI ^ eJ ^ FKL(!) + eI ^ eJ ^ �FKL(!)

�
. (31)

The first term does not involve variations of derivatives of the fundamental fields, while the second term does. In fact
a well know property of the field strength of a gauge theory is that �FKL(!) = d!(�!IJ) which directly follows from
(18). Using this and defining

pIJKL ⌘ (✏IJKL +
1

�
⌘IK⌘JL), (32)

we get to the result by integrations by parts as explicitly shown in the following three lines:

�S =
1

2

Z

M

2pIJKL�e
I ^ eJ ^ FKL(!) + pIJKLe

I ^ eJ ^ d!(�!
KL)

=
1

2

Z

M

2pIJKL�e
I ^ eJ ^ FKL(!)� pIJKLd!(e

I ^ eJ) ^ �!KL + d([pIJKLe
I ^ eJ ] ^ �!KL)

=
1

2

Z

M

2pIJKL�e
I ^ eJ ^ FKL(!)� pIJKLd!(e

I ^ eJ) ^ �!KL

| {z }
e.o.m.

+

Z

@M

1

2
[pIJKLe

I ^ eJ ] ^ �!KL

| {z }
p�q

, (33)

where in the first line we substituted �FKL(!) = d!(�!IJ) in the second term and then integrated by parts. In the
first term (the bulk integral) of the last line we recognise the field equations (20) while the second term (the boundary
integral) tells us that PKL ⌘ �2�1pIJKLeI ^eJ is the momentum density conjugate to the Lorentz connection !KL.
In the Language of the symplectic potential we have

⇥(�) =

Z

⌃

1

2
[pIJKLe

I ^ eJ ] ^ �!KL, (34)

5 In the case of N degrees of freedom the volume form in phase space is vol ⌘ � 1
2N

^N ⌦ .
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and its corollary: Liouville’s theorem on the conservation of phase space volume 5. All these, standard properties of
the phase space of a dynamical system with finitely many degrees of freedom carry over to the field theories with
several mathematical subtleties that are not important here. This is the great power of the covariant phase space
formalism (see [25, 120, 202] for further reading).

The symplectic form carries the information about the phase space structure of the system: it defines the dynami-
cally invariant phase space volume measure (Liouville’s theorem) and the Poisson brackets of observables (the starting
point for quantization). The previous relation between the symplectic form and the symplectic potential also says that
⇥(�) ! ⇥(�)+ �µ for some function µ does not change the symplectic structure as ��0µ� �0� µ = 0. The possibility of
changing the symplectic potential by the addition of the variation of a function µ can be shown to encode the notion
of canonical transformations.

2. Implementation in gravity

Now we are ready to apply the previous techniques to the case of interest. In order to simplify the following analysis
we set ⇤, ↵2,↵3 and ↵4 to zero in (22) and get the simpler (Holst) action

S =
1

2

Z
(✏IJKL +

1

�
⌘IK⌘JL)

�
eI ^ eJ ^ FKL(!)

�
, (29)

which defines our starting point. The result is not a↵ected if we drop this assumption but the proof becomes more
technical [122, 251]. Following our recipe, in analogy with (26), we simply need to consider the most general variation
of (29) in order to obtain the phase space structure of general relativity in first order variables. As discussed before
it will be important to express

↵1 =
1

�
(30)
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2

Z
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1

�
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�
. (31)
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a well know property of the field strength of a gauge theory is that �FKL(!) = d!(�!IJ) which directly follows from
(18). Using this and defining

pIJKL ⌘ (✏IJKL +
1

�
⌘IK⌘JL), (32)

we get to the result by integrations by parts as explicitly shown in the following three lines:

�S =
1

2

Z

M

2pIJKL�e
I ^ eJ ^ FKL(!) + pIJKLe

I ^ eJ ^ d!(�!
KL)

=
1

2

Z

M

2pIJKL�e
I ^ eJ ^ FKL(!)� pIJKLd!(e

I ^ eJ) ^ �!KL + d([pIJKLe
I ^ eJ ] ^ �!KL)

=
1

2

Z

M

2pIJKL�e
I ^ eJ ^ FKL(!)� pIJKLd!(e

I ^ eJ) ^ �!KL

| {z }
e.o.m.

+

Z

@M

1

2
[pIJKLe

I ^ eJ ] ^ �!KL

| {z }
p�q

, (33)

where in the first line we substituted �FKL(!) = d!(�!IJ) in the second term and then integrated by parts. In the
first term (the bulk integral) of the last line we recognise the field equations (20) while the second term (the boundary
integral) tells us that PKL ⌘ �2�1pIJKLeI ^eJ is the momentum density conjugate to the Lorentz connection !KL.
In the Language of the symplectic potential we have

⇥(�) =

Z

⌃

1

2
[pIJKLe

I ^ eJ ] ^ �!KL, (34)

5 In the case of N degrees of freedom the volume form in phase space is vol ⌘ � 1
2N

^N ⌦ .
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and its corollary: Liouville’s theorem on the conservation of phase space volume 5. All these, standard properties of
the phase space of a dynamical system with finitely many degrees of freedom carry over to the field theories with
several mathematical subtleties that are not important here. This is the great power of the covariant phase space
formalism (see [25, 120, 202] for further reading).

The symplectic form carries the information about the phase space structure of the system: it defines the dynami-
cally invariant phase space volume measure (Liouville’s theorem) and the Poisson brackets of observables (the starting
point for quantization). The previous relation between the symplectic form and the symplectic potential also says that
⇥(�) ! ⇥(�)+ �µ for some function µ does not change the symplectic structure as ��0µ� �0� µ = 0. The possibility of
changing the symplectic potential by the addition of the variation of a function µ can be shown to encode the notion
of canonical transformations.

2. Implementation in gravity

Now we are ready to apply the previous techniques to the case of interest. In order to simplify the following analysis
we set ⇤, ↵2,↵3 and ↵4 to zero in (22) and get the simpler (Holst) action

S =
1

2

Z
(✏IJKL +

1

�
⌘IK⌘JL)

�
eI ^ eJ ^ FKL(!)

�
, (29)

which defines our starting point. The result is not a↵ected if we drop this assumption but the proof becomes more
technical [122, 251]. Following our recipe, in analogy with (26), we simply need to consider the most general variation
of (29) in order to obtain the phase space structure of general relativity in first order variables. As discussed before
it will be important to express

↵1 =
1

�
(30)

as �—the Barbero-Immirzi parameter—will play a central role in what follows. Replacing in (26) and varying we
obtain
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1

2
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1

�
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�
. (31)
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2N
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where in the first line we substituted �FKL(!) = d!(�!IJ) in the second term and then integrated by parts. In the
first term (the bulk integral) of the last line we recognise the field equations (20) while the second term (the boundary
integral) tells us that PKL ⌘ �2�1pIJKLeI ^eJ is the momentum density conjugate to the Lorentz connection !KL.
In the Language of the symplectic potential we have

⇥(�) =
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5 In the case of N degrees of freedom the volume form in phase space is vol ⌘ � 1
2N

^N ⌦ .
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where ⌃ is a spacelike hypersurface (one of the two components of the boundary @M in Figure 4) representing the
analog of an instant.

⌃1

⌃2

⌃1

H1

⌃2

H2

�

FIG. 4: Left panel: Foliation of a spacetime region M without internal boundaries. The space-like hyper surfaces ⌃1 and ⌃2

(Cauchy hypersurfaces) are the analog of instants 1 and 2 in our mechanical analog depicted in Figure 3. Right panel: Such
space-like surfaces (where the gravitational field at a given instant is represented) can have a boundary H = @⌃. Black holes in
loop quantum gravity are treated as a boundary where fields satisfy suitable boundary conditions; the so-called isolated horizon
boundary condition.

However, there is a problem: there are 18 independent components in the !IJ
a (6 independent internal configurations

of the antisymetric IJ-indices times 3 values of the a-index for the three space coordinates of the spacial boundary ⌃)
while, naively, the same amount of component are present in the P IJ

ab only 12 are independent as they are all function
of eIa! This can be stated by saying that the P IJ

ab ’s must satisfy constraints. These constraints (which in the literature
a known as the simplicity constraints) complicate the identification of the genuine phase space variables and must be
taken care of. There are two prescriptions for doing this, one is to solve them in some way before going on, the other
is the Dirac modification of the Poisson brackets [126]. In the present case it will be the easiest to simply solve these
constraints by introducing a gauge fixing of the gauge freedom (14).

⌃

e1

e2

e0

FIG. 5: Time-gauge and simplicity constraints: The mismatch between the number of independent components of
PKL ⌘ (2)�1✏IJKLe

I ^ eJ and the configuration variable !IJ implies constraints among the P IJ ’s; the so-called simplicity
constraints. These constraints can be solved by restricting the Lorentz gauge symmetry (14) to the SO(3) subgroup defined by
the condition that e0 is normal to the time slices ⌃. This gauge choice implies that, as an induced covectors on ⌃, e0 = 0 and
so the P ij with i, j = 1, 2, 3 are all vanishing. The only non trivial components entering the symplectic potential are then the
nine P i0—which are functionals of the nine ei and hence independent—and the conjugate nine !i0. As the mismatch in the
number of components has been resolved, no additional constraints on the phase space variables remain in the time gauge.

The idea is to reduce the Lorentz symmetry in (14) by demanding the co-vector e0 (which defines the time axis of
the frame field; the only timeline member of the tetrad) to be perpendicular to the time slices ⌃, or equivalently to
be aligned with the unit normal n to ⌃, namely

e0a = na. (35)

This reduces the Lorentz gauge freedom to the rotation sub-group of the Lorentz group that leave invariant the normal
to ⌃; we denote this SU(2) ⇢ SL(2,C) 6. This partial gauge fixing is known as the time-gauge, see Figure 5. Such

6 At this stage the rationale would imply that the original gauge group is SO+(3, 1), the proper orthochronous Lorentz group with SO(3)
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choice is very natural in the Hamiltonian formulation of gravity where the slicing of spacetime in terms of space-like
hypersurfaces is already available. The time-gauge amounts to adjusting the time axis in our frame field to the one
that is singled out by the foliation.

The previous gauge fixing solves the problem of the mismatch of the number of independent components in the
momenta as defined in (34). If we explicitly separate the 0 from the i = 1, 2, 3 internal indices then the symplectic
potential (34) becomes

⇥(�) =
1



Z

⌃

✓
✏0jkle

0 ^ ej ^ �!kl +
1

�
e0 ^ ei ^ �!0i

◆
� 1



Z

⌃

✓
✏0jkle

j ^ ek ^ �!l0 +
1

�
ei ^ ej ^ �!ij

◆

= � 1

�

Z

⌃

[✏jkle
j ^ ek] ^ � (�!l0 + ✏lmn!mn)| {z }

Ashtekar-Barbero connection

= � 1

�

Z

⌃

[✏jkle
j ^ ek] ^ �Al, (36)

where the first term in the first line vanishes because e0 is normal to the space slice ⌃ (it has no space components due
to (35) or more precisely its pull back to ⌃ vanishes). In the second line we used that ✏0ijk = ✏ijk, simple algebraic
properties of ✏ijk, and we have factored out ��1. In the third line we have defined a new configuration variable

Ai ⌘ �!i0 + ✏ijk!jk| {z }
Holst

, (37)

which transforms as a gauge connection under the SU(2) gauge symmetry that remains after the imposition of the
time-gauge and is called the Ashtekar-Barbero connection. Now we have 9 Ai

a configuration variables for the 9
conjugate momenta ✏jklej ^ ek depending of the 9 components of eia. The strategy of the gauge fixing has worked as
there are no additional constraints on momentum variables. Recall our previous discussion on how important it was
for the framework to have a connection formulation. For that the factor in front of the second term in the definition
of Ai must be precisely 1; this is why one obtains a factor ��1 in front of the symplectic potential.

From now on we adopt the more compact notation

Ei = ✏ijke
j ^ ek, (38)

and write (36) as

⇥(�) = � 1

�

Z

⌃

Ei ^ �Ai. (39)

Notice that the term that makes the connection Ai transform as a connection is the second term in (37) (the first
transforms as a vector under an SU(2) rotation) which actually comes directly form the contribution of the Holst
terms in (22) to the symplectic potential (as mentioned above there is also a contribution to this term coming from the
Nieh-Yan invariant in (22)). Further analysis shows that !ik is not free; indeed part of the field equations—equation
(21)—imply Cartan’s first structure equation

dei + !ik ^ ek = 0, (40)

whose solution is a unique function of the triad ei and we denote !ij = !(e)ij .
The symplectic structure that follows from the recipe (27) and the symplectic potential (36)

⌦(�, �0) =
1

2�

Z

⌃

�Ai ^ �0Ei � �0Ai ^ �Ei, (41)

The associated Poisson brackets relations are

{Ei(x), Ej(y)} = 0

{Ai(x), Aj(y)} = 0

{Ei(x), Aj(y), } = � ✏(3)�ij�(3)(x, y), (42)

the subgroup obtained via the time gauge. However, for applications including fermions and other features that become clear in the
quantum theory it is more convenient to work with the universal coverings SL(2,C) and SU(2).
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We can use the previous identity to now manipulate (45) and get

⇥(�) = � 1



Z

⌃

✏jkle
j ^ ek ^ �!i0

= � 1

�

Z

⌃

✏jkle
j ^ ek ^ �

�
�!i0 + !i(e)

�
+

1

�

Z

⌃

✏jkle
j ^ ek ^ �!i(e)

| {z }R
@⌃

�ei^ei

, (50)

where we have introduce the Immirzi parameter by adding and substracting a term proportional to the left hand side
of (49). Assuming that ⌃ is compact the last term in the previous expression vanishes due to (49) and we get

⇥(�) = � 1



Z

⌃

Ei ^ �Ai (51)

in agreement with the previous derivation (39). If @⌃ 6= 0 then the last term contributes to the symplectic structure
with a boundary term; this will be important in the presence of a BH in Section III C. A canonical transformation
available in 3 + 1 dimensions is the way by which we find the Yang-Mills like parametrisation of the phase space of
gravity (the Immirzi parameter labels a one parameter family of these).

Some general comments: as it becomes clear from the previous discussion the construction of the phase space of
connection variables presented here works naturally only in 3 + 1 dimensions. There is another possible canonical
transformation which leads to the analog of the ✓ parameter in QCD; its e↵ects on the phase space structure and
black holes is studied in [250]. Connection variables are also natural in 2 + 1 dimension where the absence of the
simplicity constraints implies that one does not need to introduce the time gauge and can keep manifest Lorentz
invariance. It is possible to avoid the time gauge and keep Lorentz invariance in the 3 + 1 dimensional setting at
the price of having non commutative connections due to the contributions of the simplicity constraints to the Dirac
brackets [8, 9]. Because of this, the quantisation program has not been rigorously realised in this case (see [10] for an
heuristic approach). The connection parametrisation of higher dimensional gravity is possible but more complicated
(due to the presence of simplicity constraints) as has been shown in [81, 82, 84]. For a discussion of its quantisation
see [83, 85]. The formalism has been generalised in order to include supergravity in [79, 80, 86, 87]. The calculation
of BH entropy in higher dimensions has been studied in [297].

C. Constraints: the Hamiltonian form of Einstein’s equations

We have seen how the covariant phase space formulation o↵ers a direct road to obtaining the phase space structure
of general relativity. The Poisson brackets we have obtained in (42) are key in understanding the prediction of
Planckian discreteness of geometry (we postpone this discussion to Section III). However, for simplicity we have not
discussed in any details the dynamical equation of gravity in the Hamiltonian framework. It is possible to show (for
more details see for instance [230]) that Einsteins equations split into the following three constraints on the initial
field configuration (E,A) given on a slice ⌃, and the Hamiltonian evolution equation for these data. The constraints
are

Gi(E,A) = dAE
i = 0, (52)

Vd(E,A) = ✏abcEab · Fcd = 0 (53)

S(E,A) =
(Eab ⇥ Ede)p

det(E)
· Fcf ✏abc✏def + · · · = 0, (54)

which are called the Gauss constraint, the di↵eomorphism constraint, and the scalar constraint (there is an additional
term in the last expression that we have omitted for simplicity, the full expression can be found in [36]). The · and ⇥
denotes the scalar and the exterior product in the internal space. For any quantity O(A,E) (this includes in particular
the phase space variables A and E) its evolution is given by the canonical equation Ȯ = {O,H[↵, ~N,M ]} with the
Hamiltonian

H[↵, ~N,M ] ⌘
Z

⌃

↵iG
i +NaVa +MS, (55)

Poisson Brackets Constraints (EEs)
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2. Non-commutativity of fluxes; the heart of Planckian discreteness

Here we show that the Poisson brackets among fluxes (69) reproduce the algebra of angular momentum generators
at every single point on the surface. Here we also show how the appearance of the rotation algebra is related to the
SU(2) gauge transformations generated by the Gauss law. Such non commutativity might seem at first paradoxical
from the fact that the Ei Poisson commute according to (42). The apparent tension is resolved when one appropriately
takes into account the Gauss law (52) and studies carefully the mathematical subtlelties associated with computing
the Poisson bracket of an observable smeared on a 2-dimensional surface surface—as (69)—in the context of the field
theory on 3 + 1 dimensions. This subtlety has been dealt with in at least two related ways some time ago [26, 145].
Here we follow a simpler and more geometric account recently introduced in [107]. We present it in what follows for
the interested reader.

Without loss of generality we assume S to be a close surface—if the 2-surface S does not close we can extend it to a
new surface S0 in some arbitrary way in the region outside the support of ↵ to have it closed so that E(S,↵) = E(S0,↵).
Using Stokes theorem we can write (69) as a 3-dimensional integral in the interior of S

E(S,↵) =

Z

int[S]

d(↵iE
i) =

Z

int[S]

(dA↵i)E
i + ↵i(dAE

i)

⇡
Z

int[S]

(dA↵i) ^ Ei, (72)

where in the second line the symbol ⇡ reminds us that we have used the Gauss law (52). More precisely, this implies
that the Poisson bracket of any gauge invariant observable13 and E(S,↵), and Poisson bracket of the same observable
and the expression of the right hand side of ⇡ coincide. In other words, when considering gauge invariant quantities
⇡ amounts to an = sign.

It is only at this point—after writing the fluxes in terms of a 3 dimensional smearing of local fields—that we can
use the Poisson brackets (42) (whose meaning is a distribution in three dimensions as the Dirac delta functions in
(42) explicitly show). But now the new expression of the fluxes (72) explicitly depends on the connection Ai via the
covariant derivative dA. This is the reason at the origin of the non trivial Poisson bracket between fluxes. Direct
evaluation of the Poisson brackets using (42) yields

{E(S,↵), E(S,�)} ⇡
Z Z

dx3dy3
�
d↵i ^ Ei + ✏ijkA

j ^ ↵k ^ Ei, d�l ^ El + ✏lmnA
m ^ �n ^ El

 

⇡
Z Z

dx3dy3
�
d↵i ^ Ei, ✏lmnA

m ^ �n ^ El
 
+
�
✏ijkA

j ^ ↵k ^ Ei, d�l ^ El
 
+
�
✏ijkA

j ^ ↵k ^ Ei, ✏lmnA
m ^ �n ^ El

 

⇡ �

Z
dx3✏ijkd↵

i ^ �j ^ Ek + ✏ijk↵
i ^ d�j ^ Ek + · · ·

⇡ �

Z
dx3dA([↵,�])k ^ Ek

⇡ �E[[↵,�], S],

where [↵,�]k ⌘ ✏kij↵i�k, and in the third line we have omitted the explicit computation of the third term of the
second line as this one can be guessed from the fact that the result must be gauge invariant. This leads to the sought
result: the non commutativity of the fluxes that is at the heart of the discreteness of geometric kinematical observables
in LQG. Namely:

{E(S,↵), E(S,�)} ⇡ �E[[↵,�], S]. (73)

We recover in this way in the bulk for the smeared fluxes the same result found in (65) for the boundary. The
observables ei and the Poisson brackets (60) and (61) are not known to be available in the bulk of space ⌃. However,
recent results [148] indicate that there might be a way to extending their to the interior of the space. This could have
very important consequences as it would allow for the definition of a new set of observables that could, one the one
hand, lead to a natural geometrization of matter degrees of freedom, and, on the other hand, reduce some quantization
ambiguities in the definition of the dynamics of LQG. We will comment on these developments in Section VII.

13 A quantity is gauge invariant if O(E,A) = O(E+ �E,A+ �A) with �’s given by (57) which is equivalent to saying that O(E,A) Poisson
commutes with the Gauss generator (56).
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put forward later [141, 142]. The formulation was extended to static BHs with distorsion in [237]. There are other
parametrizations of the phase space of isolated horizons in the literature establishing a link with BF theories [108];
see for instance [249, 298].

Rotating black holes do not satisfy the boundary condition (66) [263]. Technical di�culties related to the action of
di↵eomorphisms also arise. For a discussion of these issues and a proposed model [155]. Isolated horizons which are
not spherically symmetric and not rotating can be mapped to new variables so that the analog of (66) (in the U(1)
gauge) is satisfied [28, 55]. For simplicity we will concentrate on spherically symmetric black holes in this article.

D. Pre-quantum geometry II: Poisson brackets of geometric quantities in the bulk

Here we show how the Poisson non-commutativity of the geometric variables on a boundary is not a peculiar feature
of boundary variables but a generic property of metric observables which remains valid in the bulk. This leads to
the non commutativity of the associated quantum operators in LQG and to its main prediction: the fundamental
discreteness of the eigenvalues of geometry. This prediction is central for the description of the quantum properties
of black holes in this approach to quantum gravity.

1. Fluxes: the building block of quantum geometry

Given an arbitrary surface S in space ⌃ one can define the following classical object which we call the flux of
(geometry) E—in analogy with the equivalent quantity in electromagnetism or Yang-Mills theory—by the following
expression

E(S,↵) ⌘
Z

S

↵iE
i, (69)

where the smearing field ↵i is assumed to have compact support in ⌃. This quantity is central in the construction
of quantum operators capturing geometric notions in LQG. It is an extended variable (as discussed in Section IIA 2)
which, through its non locality, allows for the necessary point-splitting regularization of non linear observables in the
quantum theory 12. Among the simplest geometric observables one has the area of a surface S, which can be shown
to be given by

a(S) =

Z

S

p
Exy · Exy dxdy, (70)

where · denotes the contraction of internal indices (inner product in the internal space) of the E’s and x, y are local
coordinates on S. The fact that area is given by the previous expression is a simple consequence of the definition (38)
and the relationship of the triad e with the metric. Similarly, one can define the volume of a region R 2 ⌃ as

v(R) =

Z

R

q
Exy · (Eyz ⇥ Ezx) dxdydz. (71)

Both of which are potentially UV-divergent in the quantum theory due to the fact that they involve the multiplication
of operator-valued distributions at the same space point. The statement, that we give here without a proof, is that
the quantum operators ba(S) and bv(R) for arbitrary surfaces S and arbitrary regions R can be defined on the Hilbert
space of LQG as functionals of the fluxes (69) for families of regulating surfaces which are removed via a suitable
limiting procedure (for details see [33, 34]). In this way the fluxes (64)—which arise naturally in the context of the
boundary geometry—are also very important when defined in the bulk in terms of an arbitrary 2-surface S ⇢ ⌃. We
will see in what follows that the bulk fluxes also satisfy commutation relations of the type (65).

12 When applying the canonical quantization recipe, the basic variables E and A mut be promoted to suitable operators acting in a Hilbert
space. Because of the distributional nature of the Poisson brackets (42), these operators make sense as distributions as well. Products of
these operators at a same point are mathematically ill-defined and lead to the UV divergencies that plague quantum field theories. The
extended variables used in LQG are natural regulating structures that resolve this mathematical problem in the definition of (non-linear)
geometric observables.
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not spherically symmetric and not rotating can be mapped to new variables so that the analog of (66) (in the U(1)
gauge) is satisfied [87, 107]. For simplicity we will concentrate on spherically symmetric black holes in this article.
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and the expression of the right hand side of ⇡ coincide. In other words, when considering gauge invariant quantities
⇡ amounts to an = sign.

It is only at this point—after writing the fluxes in terms of a 3 dimensional smearing of local fields—that we can
use the Poisson brackets (42) (whose meaning is a distribution in three dimensions as the Dirac delta functions in
(42) explicitly show). But now the new expression of the fluxes (72) explicitly depends on the connection Ai via the
covariant derivative dA. This is the reason at the origin of the non trivial Poisson bracket between fluxes. Direct
evaluation of the Poisson brackets using (42) yields
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dx3✏ijkd↵

i ^ �j ^ Ek + ✏ijk↵
i ^ d�j ^ Ek + · · ·

⇡ �

Z
dx3dA([↵,�])k ^ Ek

⇡ �E[[↵,�], S],

where [↵,�]k ⌘ ✏kij↵i�k, and in the third line we have omitted the explicit computation of the third term of the
second line as this one can be guessed from the fact that the result must be gauge invariant. This leads to the sought
result: the non commutativity of the fluxes that is at the heart of the discreteness of geometric kinematical observables
in LQG. Namely:

{E(S,↵), E(S,�)} ⇡ �E[[↵,�], S]. (73)

We recover in this way in the bulk for the smeared fluxes the same result found in (65) for the boundary. The
observables ei and the Poisson brackets (60) and (61) are not known to be available in the bulk of space ⌃. However,
recent results [111] indicate that there might be a way to extending their to the interior of the space. This could have
very important consequences as it would allow for the definition of a new set of observables that could, one the one
hand, lead to a natural geometrization of matter degrees of freedom, and, on the other hand, reduce some quantization
ambiguities in the definition of the dynamics of LQG. We will comment on these developments in Section VII.

13 A quantity is gauge invariant if O(E,A) = O(E+ �E,A+ �A) with �’s given by (57) which is equivalent to saying that O(E,A) Poisson
commutes with the Gauss generator (56).
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put forward later [84, 85]. The formulation was extended to static BHs with distorsion in [101]. There are other
parametrizations of the phase space of isolated horizons in the literature establishing a link with BF theories [102];
see for instance [103, 104].

Rotating black holes do not satisfy the boundary condition (66) [105]. Technical di�culties related to the action of
di↵eomorphisms also arise. For a discussion of these issues and a proposed model [106]. Isolated horizons which are
not spherically symmetric and not rotating can be mapped to new variables so that the analog of (66) (in the U(1)
gauge) is satisfied [87, 107]. For simplicity we will concentrate on spherically symmetric black holes in this article.

D. Pre-quantum geometry II: Poisson brackets of geometric quantities in the bulk

Here we show how the Poisson non-commutativity of the geometric variables on a boundary is not a peculiar feature
of boundary variables but a generic property of metric observables which remains valid in the bulk. This leads to
the non commutativity of the associated quantum operators in LQG and to its main prediction: the fundamental
discreteness of the eigenvalues of geometry. This prediction is central for the description of the quantum properties
of black holes in this approach to quantum gravity.

1. Fluxes: the building block of quantum geometry

Given an arbitrary surface S in space ⌃ one can define the following classical object which we call the flux of
(geometry) E—in analogy with the equivalent quantity in electromagnetism or Yang-Mills theory—by the following
expression

E(S,↵) ⌘
Z

S

↵iE
i, (69)

where the smearing field ↵i is assumed to have compact support in ⌃. This quantity is central in the construction
of quantum operators capturing geometric notions in LQG. It is an extended variable (as discussed in Section IIA 2)
which, through its non locality, allows for the necessary point-splitting regularization of non linear observables in the
quantum theory 12. Among the simplest geometric observables one has the area of a surface S, which can be shown
to be given by

a(S) =

Z

S

p
Exy · Exy dxdy, (70)

where · denotes the contraction of internal indices (inner product in the internal space) of the E’s and x, y are local
coordinates on S. The fact that area is given by the previous expression is a simple consequence of the definition (38)
and the relationship of the triad e with the metric. Similarly, one can define the volume of a region R 2 ⌃ as

v(R) =

Z

R

q
Exy · (Eyz ⇥ Ezx) dxdydz. (71)

Both of which are potentially UV-divergent in the quantum theory due to the fact that they involve the multiplication
of operator-valued distributions at the same space point. The statement, that we give here without a proof, is that
the quantum operators ba(S) and bv(R) for arbitrary surfaces S and arbitrary regions R can be defined on the Hilbert
space of LQG as functionals of the fluxes (69) for families of regulating surfaces which are removed via a suitable
limiting procedure (for details see [2, 3]). In this way the fluxes (64)—which arise naturally in the context of the
boundary geometry—are also very important when defined in the bulk in terms of an arbitrary 2-surface S ⇢ ⌃. We
will see in what follows that the bulk fluxes also satisfy commutation relations of the type (65).

12 When applying the canonical quantization recipe, the basic variables E and A mut be promoted to suitable operators acting in a Hilbert
space. Because of the distributional nature of the Poisson brackets (42), these operators make sense as distributions as well. Products of
these operators at a same point are mathematically ill-defined and lead to the UV divergencies that plague quantum field theories. The
extended variables used in LQG are natural regulating structures that resolve this mathematical problem in the definition of (non-linear)
geometric observables.
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2. Non-commutativity of fluxes; the heart of Planckian discreteness

Here we show that the Poisson brackets among fluxes (69) reproduce the algebra of angular momentum generators
at every single point on the surface. Here we also show how the appearance of the rotation algebra is related to the
SU(2) gauge transformations generated by the Gauss law. Such non commutativity might seem at first paradoxical
from the fact that the Ei Poisson commute according to (42). The apparent tension is resolved when one appropriately
takes into account the Gauss law (52) and studies carefully the mathematical subtlelties associated with computing
the Poisson bracket of an observable smeared on a 2-dimensional surface surface—as (69)—in the context of the field
theory on 3 + 1 dimensions. This subtlety has been dealt with in at least two related ways some time ago [108, 109].
Here we follow a simpler and more geometric account recently introduced in [110]. We present it in what follows for
the interested reader.

Without loss of generality we assume S to be a close surface—if the 2-surface S does not close we can extend it to a
new surface S0 in some arbitrary way in the region outside the support of ↵ to have it closed so that E(S,↵) = E(S0,↵).
Using Stokes theorem we can write (69) as a 3-dimensional integral in the interior of S

E(S,↵) =
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int[S]

d(↵iE
i) =

Z

int[S]

(dA↵i)E
i + ↵i(dAE
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⇡
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(dA↵i) ^ Ei, (72)

where in the second line the symbol ⇡ reminds us that we have used the Gauss law (52). More precisely, this implies
that the Poisson bracket of any gauge invariant observable13 and E(S,↵), and Poisson bracket of the same observable
and the expression of the right hand side of ⇡ coincide. In other words, when considering gauge invariant quantities
⇡ amounts to an = sign.

It is only at this point—after writing the fluxes in terms of a 3 dimensional smearing of local fields—that we can
use the Poisson brackets (42) (whose meaning is a distribution in three dimensions as the Dirac delta functions in
(42) explicitly show). But now the new expression of the fluxes (72) explicitly depends on the connection Ai via the
covariant derivative dA. This is the reason at the origin of the non trivial Poisson bracket between fluxes. Direct
evaluation of the Poisson brackets using (42) yields
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where [↵,�]k ⌘ ✏kij↵i�k, and in the third line we have omitted the explicit computation of the third term of the
second line as this one can be guessed from the fact that the result must be gauge invariant. This leads to the sought
result: the non commutativity of the fluxes that is at the heart of the discreteness of geometric kinematical observables
in LQG. Namely:

{E(S,↵), E(S,�)} ⇡ �E[[↵,�], S]. (73)

We recover in this way in the bulk for the smeared fluxes the same result found in (65) for the boundary. The
observables ei and the Poisson brackets (60) and (61) are not known to be available in the bulk of space ⌃. However,
recent results [111] indicate that there might be a way to extending their to the interior of the space. This could have
very important consequences as it would allow for the definition of a new set of observables that could, one the one
hand, lead to a natural geometrization of matter degrees of freedom, and, on the other hand, reduce some quantization
ambiguities in the definition of the dynamics of LQG. We will comment on these developments in Section VII.

13 A quantity is gauge invariant if O(E,A) = O(E+ �E,A+ �A) with �’s given by (57) which is equivalent to saying that O(E,A) Poisson
commutes with the Gauss generator (56).
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ā

ba

⌃0

FIG. 11: Possible scenario for unitarity in loop quantum gravity. Correlations between a Hawking particle b and its partner a,
created from the vacuum by the interaction with the gravitational field when the black hole can still be considered semiclassical,
are not lost. The in-falling particle enters the strong quantum fluctuation region (the would-be-singularity of classical gravity)
and interacts with the microscopic quantum granular structure of the spacetime geometry; the quantum geometry of Section
III. The correlations between a and b are not lost they are transferred to Planckian degrees of freedom denoted by ā in the
strong quantum region. They become in principle accessible after the BH has completely evaporated. The Hawking radiation is
purified by correlations with these Planckian micro-states which cannot be described in terms of the usual matter excitations.
Information is not lost but simply degraded; just as when burning a news paper the information in the text becomes inaccessible
in practice as it has been transferred to correlations between the molecules of gas produced by the combustion.

where the initially low energy smooth physics excitations are forced, by the gravitational collapse, to interact with
the Planckian fabric where a new variety of degrees of freedom are exited.

The viewpoint developed in considering the question of information in quantum gravity leads to some phenomeno-
logical proposals that we briefly describe in what follows.

VI. DISCRETENESS AND LORENTZ INVARIANCE

A central assumption behind all the results and perspectives discussed in this article is the compatibility of the
prediction of loop quantum gravity of a fundamental discreteness of quantum geometry at the Planck scale with
the continuum description of general relativity. As emphasized before the problem of the continuum limit of LQG
remains to a large extend open partly due to the technical di�culties in reconstructing the continuum from the
purely combinatorial structures of quantum geometry, but also due to the di�culties associated with the description
of dynamics in the framework (spacetime is a dynamical question involving the solutions of (54)).

A problem that immediately comes to mind is the apparent tension between discreteness and the Lorentz invariance
(LI) of the continuum low energy description. Is the notion of a minimum length compatible with Lorentz invariance?
The apparent tension was initially taken as an opportunity for quantum gravity phenomenology as such a conflict

New perspective on the information paradox

Decoherence with discrete micro-structure 
imply violations of energy conservation 

in the smooth effective description!
Banks, Peskin, Susskind (1984) - Unruh, Wald (1995)
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strong quantum region. They become in principle accessible after the BH has completely evaporated. The Hawking radiation is
purified by correlations with these Planckian micro-states which cannot be described in terms of the usual matter excitations.
Information is not lost but simply degraded; just as when burning a news paper the information in the text becomes inaccessible
in practice as it has been transferred to correlations between the molecules of gas produced by the combustion.

where the initially low energy smooth physics excitations are forced, by the gravitational collapse, to interact with
the Planckian fabric where a new variety of degrees of freedom are exited.

The viewpoint developed in considering the question of information in quantum gravity leads to some phenomeno-
logical proposals that we briefly describe in what follows.

VI. DISCRETENESS AND LORENTZ INVARIANCE

A central assumption behind all the results and perspectives discussed in this article is the compatibility of the
prediction of loop quantum gravity of a fundamental discreteness of quantum geometry at the Planck scale with
the continuum description of general relativity. As emphasized before the problem of the continuum limit of LQG
remains to a large extend open partly due to the technical di�culties in reconstructing the continuum from the
purely combinatorial structures of quantum geometry, but also due to the di�culties associated with the description
of dynamics in the framework (spacetime is a dynamical question involving the solutions of (54)).

A problem that immediately comes to mind is the apparent tension between discreteness and the Lorentz invariance
(LI) of the continuum low energy description. Is the notion of a minimum length compatible with Lorentz invariance?
The apparent tension was initially taken as an opportunity for quantum gravity phenomenology as such a conflict

5

I
+

I
−

i0

i
+

i
−

Σ1

Σ2

u0

u1

u2

FIG. 4: The global space-time causal structure according to
the AB-paradigm. The black hole evaporation takes place
according to semiclassical expectations until the horizon ap-
proaches Planck’s area. The classical would-be-singularity is
represented by the shaded region where quantum geometry
fluctuations are large and no space-time picture is available.
The space-time becomes classical to the future of this region:
it emerges into a classical (essentially) flat background as re-
quired by energy-momentum conservation. Observers at the
instant Σ2 are in causal contact with the would-be-singularity
which (in classical terms) appears to them as a naked singu-
larity.

II. THE ARGUMENT

Our argument is based on the assumption that a the-
ory of quantum gravity will necessarily imply a radical
change in the way space-time is conceived. We are assum-
ing that at the fundamental scale space-time is replaced
by a more basic notion made of fundamentally discrete
constituents governed by quantum mechanical laws.
For concreteness we will set the discussion in the con-

text of LQG; however, we believe that the picture pre-
sented here is general enough to resonate with other ap-
proaches proposed in the literature. For instance the
group field theory formulations [29]. The asymptotic
safety scenario suggesting a quite different space-time
‘fractal’ picture at the fundamental level with effective
dimensional reduction from 4 to 2 [30]. Similar dimen-
sional reduction in dynamical triangulations have been
reported [31]. Another framework that could be included
in the present discussion is the causal sets approach [32].
A common feature of all these formulations is that

space-time arises from a suitable coarse graining where
details of the the relationships among the fundamental
pre-geometric building blocks are lost in the limit where
the smooth space-time of low energy physics is recovered.
It is reasonable to expect that a prescription of a partic-
ular smooth geometry (like flat space-time) will corre-
spond in some of these formulations to infinitely many
different fundamental states: an infinite degeneracy of
the notion of smooth geometry. This is the basic as-
sumption that we will make use of in the present argu-
ment which is well supported by what is known about
the continuum limit in LQG.

A. Smooth space-time from spin-network states in
LQG

In a non perturbative formulation of quantum gravity
space-time itself is a dynamical variable to be quantized
and described in the absence of any background reference
geometry. In such context, recovering the low energy
regime of the theory means to simultaneously recover the
field excitations of QFT as well as the smooth space-
time geometry where they live and evolve. In this sense,
even in the ‘simplest’ case of QFT on Minkowski space-
time, the coherent contribution of the infinitely many
underlying fundamental degrees of freedom responsible
for the emergence of a definite flat background space-time
must be understood.
In the precise context of LQG the key result along

these lines is that space-time geometric operators acquire
discrete spectra. States of the gravitational degrees of
freedom can be spanned in terms of spin-network states
(polymer-like excitations of quantum geometry) each of
which admits the interpretation of an eigenstate of geom-
etry which is discrete and atomistic at the fundamental
level [33–35]. The loop representation of the basic algebra
of geometric observables has been shown to be the unique
one containing a ‘vacuum’ or ‘no-geometry’ state which is
diffeomorphism invariant and hence for which all geomet-
ric eigenvalues vanish [36]. In this picture flat Minkowski
space-time must be viewed as a highly exited state of
such ‘no-geometry’ state, where the quantum space-time
building blocks are brought together to produce the flat
arena where other particles interact. This is a direct
implication of the canonical quantization of gravity a la
Dirac where the space-time metric becomes a quantum
operator on a Hilbert space. Thus, there is no a priori
notion of space-time unless a particular state is chosen
in the Hilbert space. Loop quantum gravity is a con-
crete implementation of such non-perturbative canonical
quantization of gravity [37, 38]. Even though important
questions remain open, there are robust results exhibiting
features which one might expect to be sufficiently generic
to remain in a consistent complete picture.
These states are the boundary data of the quantum

theory whose physical content is encoded in transition
amplitudes to be computed by suitably implementing the
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of freedom due to conformal invariance. Therefore, the presence of massive degrees of freedom (suitable probes of
discreteness according to our rationale) is geometrically captured by the presence of a non trivial scalar curvature R.
This natural ‘order parameter’ will enter the quantitative estimates that follow.

The immediate possibility arising from such hypothesis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ with it. From the point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon would be characterized as a ‘leakage’ of energy to degrees
of freedom that are not accounted for in the field equations and, therefore, would lead to the apparent violation
of the conservation of the corresponding energy-momentum tensor. This is a well known phenomenon in the more
familiar context of ordinary fluids, where viscosity accounts for the leakage of energy from macroscopic degrees of
freedom into the molecular chaos. Similarly (although with the subtleties evoked above) di↵usive e↵ects are expected
in the interaction of matter with the discrete underlying fundamental degrees of freedom of quantum gravity. It most
immediate manifestation would be the violation of energy-momentum conservation.

In the cosmological context the striking consequence of such violation is the emergence of a cosmological-constant-
like term in the minimally modified Einstein’s equations [11]. This can be seen from the traceless field equations of
unimodular gravity

Rab �
1

4
Rgab =

8⇡G

c4

✓
Tab �

1

4
Tgab

◆
, (1)

which together with the Bianchi identities imply that

ra

✓
R+

8⇡G

c4
T

◆
=

32⇡G

c4
rbTba. (2)

Defining Ja ⌘ (8⇡G/c4)rbTba, and assuming the unimodular integrability dJ = 0 [11], one can integrate the previous
equation and re-write the system in terms of the modified Einteins equations

Rab �
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Rgab +


⇤⇤ +

Z
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| {z }
⇤
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8⇡G

c4
Tab, (3)

where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by

R ⇡ 8⇡G

c2
⇢m (4)

where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).
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Now we estimate the amount of energy-momentum violation experienced due to the transfer of energy from the
continuum degrees of freedom of massive matter to the underlying microscopic discrete substratum of quantum
spacetime. Recall that according to our rationale only ⇢m contributes, thus simple dimensional analysis tell us that
the leading contribution should be

J = ↵`pR
2c dt

⇡ ↵`p


8⇡G

c2
(⇢� 3P )

�
2

c dt, (5)

where ↵ is a dimensionless phenomenological constant of order one (here we are neglecting higher order corrections
with powers of `2p or higher in front), and we used (4).

From (3) the contribution to the e↵ective cosmological constant is given by

⇤ = ⇤⇤ + ↵`p

t0Z
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c2
⇢m

�
2

cdt, (6)

where t⇤ is the time where the e↵ects start and t
0

denotes today. Following our rationale we expect t⇤ to be given
by the time when massive matter first appears in our universe; according to the standard model (and some of its
extensions) this corresponds to the electroweak unification time3.
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where z⇤ is the redshift parameter corresponding to the starting time t⇤. Using the observational values [13] and
z⇤ ⇡ 7 1014 we get

⇤� ⇤⇤ ⇡ ↵ 0.24 10�52m�2 (8)

which is in remarkably close to the observed value ⇤
obs

⇡ 1.19 10�52m�2.
The previous result is an order of magnitude estimate of the model (5). In a more refined calculation the dynamical

details of the electro-weak transition would probably need to be considered: the transition cannot be sharp and this
should be taken into account when calculating the contributions to ⇤. The value of ↵ is also uncertain in that it
depends on details that are not considered in our phenomenological model. Such details can easily make ↵ move by
one or even two orders of magnitude (e.g. number of species involved, other numerical factors, etc.). Here we have
also assumed that all of ⇢m is created at the electro-weak transition; this implicitly assumes that the dark matter also
is produced at around that time or later. Again, a modification of this assumption would lead to a potential change of
only a few orders of magnitude in our estimates. Under these circumstances our very simple and minimalistic model
is remarkably accurate.

We believe that our proposal has important implications both at the theoretical as well as at the empirical level. At
the theoretical level it provides a novel view that could reconcile Planckian discreteness and Lorentz invariance and
gives possibly valuable insights guiding the quest for a theory of quantum gravity. At the empirical level our analysis
opens a new path for searches of new physical manifestations of the gravitation/quantum interface.

Concerning the later we note that one might use (5) to estimate the amount of energy loss in local experiments;
for short times (neglecting the cosmological expansion) one finds ⇢̇m ⇡ �↵(⇢m/⇢

water

)210�49g/cm3s where ⇢
water

is
the density of liquid water on earth. This is equivalent to the lost of the mass of one proton per year in 1015 litters
of water. Even when at water density this numbers seem tiny it is possible that these e↵ects could have independent
observational consequences in high density situations due to the scaling with ⇢2m (yet even for neutron star density
the numbers seem too small to have observational consequences).

3 The mass of the Higgs before the electroweak unification does not enter in our analysis because in the standard picture, at temperatures
above the electroweak scale the Higgs field is assumed to lie unexcited at the bottom of the e↵ective potential. This condition is valid for
all earlier times because in the corresponding regimes the e↵ective mass of the Higgs changes at the same rate as does the temperature
[12].
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of freedom due to conformal invariance. Therefore, the presence of massive degrees of freedom (suitable probes of
discreteness according to our rationale) is geometrically captured by the presence of a non trivial scalar curvature R.
This natural ‘order parameter’ will enter the quantitative estimates that follow.

The immediate possibility arising from such hypothesis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ with it. From the point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon would be characterized as a ‘leakage’ of energy to degrees
of freedom that are not accounted for in the field equations and, therefore, would lead to the apparent violation
of the conservation of the corresponding energy-momentum tensor. This is a well known phenomenon in the more
familiar context of ordinary fluids, where viscosity accounts for the leakage of energy from macroscopic degrees of
freedom into the molecular chaos. Similarly (although with the subtleties evoked above) di↵usive e↵ects are expected
in the interaction of matter with the discrete underlying fundamental degrees of freedom of quantum gravity. It most
immediate manifestation would be the violation of energy-momentum conservation.

In the cosmological context the striking consequence of such violation is the emergence of a cosmological-constant-
like term in the minimally modified Einstein’s equations [11]. This can be seen from the traceless field equations of
unimodular gravity
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Defining Ja ⌘ (8⇡G/c4)rbTba, and assuming the unimodular integrability dJ = 0 [11], one can integrate the previous
equation and re-write the system in terms of the modified Einteins equations
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by

R ⇡ 8⇡G

c2
⇢m (4)

where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).
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Concerning the later we note that one might use (5) to estimate the amount of energy loss in local experiments;
for short times (neglecting the cosmological expansion) one finds ⇢̇m ⇡ �↵(⇢m/⇢

water

)210�49g/cm3s where ⇢
water

is
the density of liquid water on earth. This is equivalent to the lost of the mass of one proton per year in 1015 litters
of water. Even when at water density this numbers seem tiny it is possible that these e↵ects could have independent
observational consequences in high density situations due to the scaling with ⇢2m (yet even for neutron star density
the numbers seem too small to have observational consequences).

The e↵ect is maximal at time z⇤; however, even then the energy produced appears tiny in comparison to the local
density, namely
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which for a ⇢m(z⇤) = z3⇤⇢
0

m ⇡ 7 1014g/cm3 witch is clearly insignificant. These minute amounts of violation of
enery-momentum conservation have an important dynamical e↵ect in our universe only because they can accumulate
during the long cosmological scales.

Finally, as our model links ⇢m and its evolution with the present value of the cosmological constant, and ⇢m directly
enters in the computation of the structure formation that produces the galaxies and eventually us, this framework
opens, in principle, a path that might possibly address the longly debated coincidence problem.
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of freedom due to conformal invariance. Therefore, the presence of massive degrees of freedom (suitable probes of
discreteness according to our rationale) is geometrically captured by the presence of a non trivial scalar curvature R.
This natural ‘order parameter’ will enter the quantitative estimates that follow.

The immediate possibility arising from such hypothesis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ with it. From the point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon would be characterized as a ‘leakage’ of energy to degrees
of freedom that are not accounted for in the field equations and, therefore, would lead to the apparent violation
of the conservation of the corresponding energy-momentum tensor. This is a well known phenomenon in the more
familiar context of ordinary fluids, where viscosity accounts for the leakage of energy from macroscopic degrees of
freedom into the molecular chaos. Similarly (although with the subtleties evoked above) di↵usive e↵ects are expected
in the interaction of matter with the discrete underlying fundamental degrees of freedom of quantum gravity. It most
immediate manifestation would be the violation of energy-momentum conservation.

In the cosmological context the striking consequence of such violation is the emergence of a cosmological-constant-
like term in the minimally modified Einstein’s equations [11]. This can be seen from the traceless field equations of
unimodular gravity
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Defining Ja ⌘ (8⇡G/c4)rbTba, and assuming the unimodular integrability dJ = 0 [11], one can integrate the previous
equation and re-write the system in terms of the modified Einteins equations
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by

R ⇡ 8⇡G

c2
⇢m (4)

where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).
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Now we estimate the amount of energy-momentum violation experienced due to the transfer of energy from the
continuum degrees of freedom of massive matter to the underlying microscopic discrete substratum of quantum
spacetime. Recall that according to our rationale only ⇢m contributes, thus simple dimensional analysis tell us that
the leading contribution should be
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where ↵ is a dimensionless phenomenological constant of order one (here we are neglecting higher order corrections
with powers of `2p or higher in front), and we used (4).
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where t⇤ is the time where the e↵ects start and t
0

denotes today. Following our rationale we expect t⇤ to be given
by the time when massive matter first appears in our universe; according to the standard model (and some of its
extensions) this corresponds to the electroweak unification time3.
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where z⇤ is the redshift parameter corresponding to the starting time t⇤. Using the observational values [13] and
z⇤ ⇡ 7 1014 we get

⇤� ⇤⇤ ⇡ ↵ 0.24 10�52m�2 (8)

which is in remarkably close to the observed value ⇤
obs

⇡ 1.19 10�52m�2.
The previous result is an order of magnitude estimate of the model (5). In a more refined calculation the dynamical

details of the electro-weak transition would probably need to be considered: the transition cannot be sharp and this
should be taken into account when calculating the contributions to ⇤. The value of ↵ is also uncertain in that it
depends on details that are not considered in our phenomenological model. Such details can easily make ↵ move by
one or even two orders of magnitude (e.g. number of species involved, other numerical factors, etc.). Here we have
also assumed that all of ⇢m is created at the electro-weak transition; this implicitly assumes that the dark matter also
is produced at around that time or later. Again, a modification of this assumption would lead to a potential change of
only a few orders of magnitude in our estimates. Under these circumstances our very simple and minimalistic model
is remarkably accurate.

We believe that our proposal has important implications both at the theoretical as well as at the empirical level. At
the theoretical level it provides a novel view that could reconcile Planckian discreteness and Lorentz invariance and
gives possibly valuable insights guiding the quest for a theory of quantum gravity. At the empirical level our analysis
opens a new path for searches of new physical manifestations of the gravitation/quantum interface.

Concerning the later we note that one might use (5) to estimate the amount of energy loss in local experiments;
for short times (neglecting the cosmological expansion) one finds ⇢̇m ⇡ �↵(⇢m/⇢

water

)210�49g/cm3s where ⇢
water

is
the density of liquid water on earth. This is equivalent to the lost of the mass of one proton per year in 1015 litters
of water. Even when at water density this numbers seem tiny it is possible that these e↵ects could have independent
observational consequences in high density situations due to the scaling with ⇢2m (yet even for neutron star density
the numbers seem too small to have observational consequences).

3 The mass of the Higgs before the electroweak unification does not enter in our analysis because in the standard picture, at temperatures
above the electroweak scale the Higgs field is assumed to lie unexcited at the bottom of the e↵ective potential. This condition is valid for
all earlier times because in the corresponding regimes the e↵ective mass of the Higgs changes at the same rate as does the temperature
[12].
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of freedom due to conformal invariance. Therefore, the presence of massive degrees of freedom (suitable probes of
discreteness according to our rationale) is geometrically captured by the presence of a non trivial scalar curvature R.
This natural ‘order parameter’ will enter the quantitative estimates that follow.

The immediate possibility arising from such hypothesis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ with it. From the point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon would be characterized as a ‘leakage’ of energy to degrees
of freedom that are not accounted for in the field equations and, therefore, would lead to the apparent violation
of the conservation of the corresponding energy-momentum tensor. This is a well known phenomenon in the more
familiar context of ordinary fluids, where viscosity accounts for the leakage of energy from macroscopic degrees of
freedom into the molecular chaos. Similarly (although with the subtleties evoked above) di↵usive e↵ects are expected
in the interaction of matter with the discrete underlying fundamental degrees of freedom of quantum gravity. It most
immediate manifestation would be the violation of energy-momentum conservation.

In the cosmological context the striking consequence of such violation is the emergence of a cosmological-constant-
like term in the minimally modified Einstein’s equations [11]. This can be seen from the traceless field equations of
unimodular gravity
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by

R ⇡ 8⇡G
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where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).
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Concerning the later we note that one might use (5) to estimate the amount of energy loss in local experiments;
for short times (neglecting the cosmological expansion) one finds ⇢̇m ⇡ �↵(⇢m/⇢

water

)210�49g/cm3s where ⇢
water

is
the density of liquid water on earth. This is equivalent to the lost of the mass of one proton per year in 1015 litters
of water. Even when at water density this numbers seem tiny it is possible that these e↵ects could have independent
observational consequences in high density situations due to the scaling with ⇢2m (yet even for neutron star density
the numbers seem too small to have observational consequences).

The e↵ect is maximal at time z⇤; however, even then the energy produced appears tiny in comparison to the local
density, namely
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which for a ⇢m(z⇤) = z3⇤⇢
0

m ⇡ 7 1014g/cm3 witch is clearly insignificant. These minute amounts of violation of
enery-momentum conservation have an important dynamical e↵ect in our universe only because they can accumulate
during the long cosmological scales.

Finally, as our model links ⇢m and its evolution with the present value of the cosmological constant, and ⇢m directly
enters in the computation of the structure formation that produces the galaxies and eventually us, this framework
opens, in principle, a path that might possibly address the longly debated coincidence problem.
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of freedom due to conformal invariance. Therefore, the presence of massive degrees of freedom (suitable probes of
discreteness according to our rationale) is geometrically captured by the presence of a non trivial scalar curvature R.
This natural ‘order parameter’ will enter the quantitative estimates that follow.

The immediate possibility arising from such hypothesis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ with it. From the point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon would be characterized as a ‘leakage’ of energy to degrees
of freedom that are not accounted for in the field equations and, therefore, would lead to the apparent violation
of the conservation of the corresponding energy-momentum tensor. This is a well known phenomenon in the more
familiar context of ordinary fluids, where viscosity accounts for the leakage of energy from macroscopic degrees of
freedom into the molecular chaos. Similarly (although with the subtleties evoked above) di↵usive e↵ects are expected
in the interaction of matter with the discrete underlying fundamental degrees of freedom of quantum gravity. It most
immediate manifestation would be the violation of energy-momentum conservation.

In the cosmological context the striking consequence of such violation is the emergence of a cosmological-constant-
like term in the minimally modified Einstein’s equations [11]. This can be seen from the traceless field equations of
unimodular gravity
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Defining Ja ⌘ (8⇡G/c4)rbTba, and assuming the unimodular integrability dJ = 0 [11], one can integrate the previous
equation and re-write the system in terms of the modified Einteins equations
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by

R ⇡ 8⇡G

c2
⇢m (4)

where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by
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where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by
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where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.
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when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
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where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
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such quantities is, in fact, one of the most severe tech-
nical problems in formal approaches to quantum gravity.
In our view such relational perspective is essential for
understanding discreteness at the Planck scale 2.

We are therefore rejecting the notion of a spacetime
foam acting as an empty arena where matter, if there
placed, would reveal its preexisting features. More pre-
cisely, quantum discreteness should arise primarily via
the interactions of gravity with those other degrees of
freedom, which by their nature, are able to select a pref-
erential rest frame where the fundamental scale `p would
acquire an invariant meaning. In other words, within the
relational approach we are advocating, it is clear that
in order to be directly sensitive to the discreteness scale
`p, the probing degrees of freedom must themselves carry
their intrinsic scale. Thus massless (scale invariant) fields
are ruled out as leading probes of discreteness simply be-
cause they cannot be associated with any local notion
of rest frame, and thus, of a fundamental length scale.
This argument identifies massive fields as the primary
probes of spacetime discreteness. A discreteness realised,
or ‘awaken’ in a way, by the interactions of gravity with
such scale-invariance-breaking fields3.

In this context, a natural local geometric notion that
signals the presence of the suitable probing degrees of
freedom and their gravitational coupling is the spacetime
scalar curvature R, which, via Einstein’s equations, is
proportional to the trace of the energy momentum tensor
(vanishing for scale-invariant degrees of freedom). There-
fore, the presence of massive fields (suitable probes of
discreteness according to our rationale) is geometrically
captured by the presence of a non trivial scalar curvature
R. However, our perspective also suggest that discrete-
ness could only be probed by localized matter excitations,
a consideration that, as we explain below, becomes rele-
vant during the inflationary era.

The immediate possibility arising from such hypothe-
sis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive
fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ 4 with it. From the
point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon

2 A concrete scenario illustrating the idea is the deparametrization
of gravity using dust or other suitable (massive) matter degrees of
freedom. In these models discreteness of geometry at the Planck
scale realizes upon quantization in relational observables involv-
ing matter and geometry [11, 12]. Such approach is certainly
simplistic because the matter ‘rulers’ are not properly quantized
but illustrates the spirit of our view.

3 We are not claiming that massless matter should be completely
insensitive to the quantum nature of gravity. Our perspective
simply emphasises massive fields as primary probes of the local
discreteness of geometry.

4 It seems clear that the notion of energy as understood in the
context of metric description of spacetime will have to be super-
seeded by a more fundamental notion appropriate to the discrete
language in which QG would be framed at the fundamental level.

would be characterized as a ‘leakage’ of energy to de-
grees of freedom that are not accounted for in the field
equations and, therefore, would lead to the violation of
the conservation of the corresponding energy-momentum
tensor. This is a well known phenomenon in more famil-
iar contexts, such as that of ordinary fluids, where viscos-
ity accounts for the leakage of energy from macroscopic
degrees of freedom into the molecular chaos. Similarly,
we claim (with the subtleties evoked above) that di↵u-
sive e↵ects are to be expected in the e↵ective smooth
description of an underlying Planckian physics thought
to be fundamentally discrete. Its most immediate man-
ifestation would be the violation of energy-momentum
conservation.
However, at first sight violations of energy-momentum

conservation are incompatible with general covariance
and hence with the standard general relativity descrip-
tion of gravity. Fortunately, there is a simple relax-
ation of general covariance (originally studied by Ein-
stein) from full coordinate invariance (di↵eomorphism
invariance) down to spacetime volume preserving co-
ordinate transformations (volume preserving di↵eomor-
phisms). Such modification—which we only take as an
e↵ective low energy description of a (in a suitable sense)
general covariant fundamental physics—is called unimod-
ular gravity (UG), and allows for violations of energy con-
servation that, in cosmology, lead to the emergence of a
cosmological-constant-like term in the minimally modi-
fied Einstein’s equations [5]. This follows in a few lines
from the field equations of UG (which are just the trace-
free part of the standard Eintein’s equations, and c = 1)
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Using the Bianchi identities, defining Ja ⌘ 8⇡GrbTba,
and the integrability condition dJ = 0 (valid in cosmol-
ogy due to homogeneity and isotropy), one can integrate
the previous equation and re-write the system in terms
of the modified Einteins equations [5]
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where ⇤
0

is a constant of integration, and ` is a one-
dimensional path from some reference event. Thus, the
energy violation current J is the source of a term in Ein-
steins equations satisfying the dark energy equation of
state.
As mentioned, in UG the di↵eomorphism invariance

is degraded down to invariance under volume-preserving
di↵eomorphisms. Interestingly, when the field equations
are satisfied, the broken symmetries are in strict cor-
respondence with Weyl or conformal transformations.
This is in agreement with the idea that massive (non-
conformally invariant probes) are the natural source of
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
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Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
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Einsteins equations applied to the FLRW case) is given by
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and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
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Discreteness and Lorentz invariance

Quantum spacetime cannot be interpreted in analogy 
with a lattice choosing a preferred rest frame.  

Lorentz violation at the Planck scale is not 
suppressed by the Planck scale. It percolates via 
radiative corrections to large violations at low 

energies.
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Discreteness and Lorentz invariance

8 J. Collins, A. Perez and D. Sudarsky

to zero when |p|/Λ → 0. But in our calculations we will set ∆ and ∆̃ to
exactly zero. We will assume Λ to be of order the Planck scale.

Corrections to the propagation of the scalar field are governed by its
self-energy† Π(p), which we evaluate to one-loop order. We investigate
the value when pµ and the physical mass m are much less than the cutoff
Λ. Without the cutoff, the graph is quadratically divergent, so that
differentiating three times with respect to p gives a convergent integral
(i.e., one for which the limit Λ → ∞ exists). Therefore we write

Π(p) = A + p2B + pµpνWµWν ξ̃ + Π(LI)(p2) + O(p4/Λ2), (1.8)

in a covariant formalism with p2 = pµpνηµν , where ηµν is the space-time
metric. The would-be divergences at Λ = ∞ are contained in the first
three terms, quadratic in p, so that we can take the limit Λ → ∞ in the
fourth term Π(LI)(p2), which is therefore Lorentz invariant. The fifth
term is Lorentz violating but power-suppressed. The coefficients A and
B correspond to the usual Lorentz-invariant mass and wave function
renormalization, and the only unsuppressed Lorentz violation is in the
third term. Its coefficient ξ̃ is finite and independent of Λ, and explicit
calculation (Collins et al., 2004) gives:

ξ̃ =
g2

6π2

⎡

⎣1 + 2

∞
∫

0

dxxf ′(x)2

⎤

⎦ . (1.9)

Although the exact value depends on the details of the function f , it is
bounded below by g2/6π2. Lorentz violation is therefore of the order of
the square of the coupling, rather than power-suppressed. The LIV term
in (1.8) behaves like a renormalization of the metric tensor and hence
of the particle’s limiting velocity. The renormalization depends on the
field and the size of the coupling, so that we expect different fields in
the Standard Model to have limiting velocities differing by ∼ 10−2. The
rough expected size depends only on UV power counting and Standard-
Model couplings.

The expected size is in extreme contrast to the measured limits. To
avoid this, either Lorentz-violation parameters in the microscopic theory
are extremely fine-tuned, or there is a mechanism that automatically re-
moves low-energy LIV even though it is present microscopically. More
exact calculations would use renormalization group methods. But we
know from the running of Standard-Model couplings, that this can pro-
duce changes of one order of magnitude, not twenty.

† In perturbation theory, the sum over one-particle-irreducible two-point graphs.
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Lorentz Invariance & Quantum Gravity Phenomenology 7

In Secs. 1.4 and 1.5, we will analyze the applicability of LIV effective
theories. But first, we will make some simple model calculations, to
illustrate generic features of the relation between microscopic LIV and
low-energy properties of a QFT.

1.3 Model calculation

The central issue is associated with the UV divergences of conventional
QFT. Even if the actual divergences are removed because of the short-
distances properties of a true microscopic theory, we know that QFT
gives a good approximation to the true physics up to energies of at least
a few hundred GeV. So at best the UV divergences are replaced by large
finite values which still leave observable low energy physics potentially
highly sensitive to short-distance phenomena.

Of course, UV divergences are normally removed by renormalization,
i.e., by adjustment of the parameters of the Lagrangian. The observable
effects of short-distance physics now appear indirectly, not only in the
values of the renormalized parameters, but also in the presence in the
Lagrangian of all terms necessary for renormalizability.

The interesting and generic consequences in the presence of Lorentz
violation we now illustrate in a simple Yukawa theory of a scalar field
and a Dirac field. Before UV regularization the theory is defined by

L =
1

2
(∂φ)2 −

m2
0

2
φ2 + ψ̄(iγµ∂µ − M0)ψ + g0φψ̄ψ. (1.5)

We make the theory finite by introducing a cut-off on spatial momenta
(in a preferred frame defined by a 4-velocity Wµ). We use a conventional
real-time formalism, so that the cutoff theory is within the framework
of regular quantum theory in 3 space dimensions. The cutoff is imple-
mented as a modification of the free propagators:

i

γµpµ − m0 + iϵ
→

if(|p|/Λ)

γµpµ − m0 + ∆(|p|/λ) + iϵ
, (1.6)

i

p2 − M2
0 + iϵ

→
if̃(|p|/Λ)

p2 − M2
0 + ∆̃(|p|/λ) + iϵ

. (1.7)

Here, the functions f(|p|/Λ) and f̃(|p|/Λ) go to 1 as |p|/Λ → 0, to
reproduce normal low energy behavior, and they go to zero as |p|/Λ →
∞, to provide UV finiteness. The functions ∆ and ∆̃ are inspired by
concrete proposals for modified dispersion relations, and they should go
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Lorentz invariance and quantum gravity: an additional fine-tuning problem?
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Trying to combine standard quantum field theories with gravity leads to a breakdown of the usual
structure of space-time at around the Planck length, 1.6×10−35 m, with possible violations of Lorentz
invariance. Calculations of preferred-frame effects in quantum gravity have further motivated high
precision searches for Lorentz violation. Here, we explain that combining known elementary particle
interactions with a Planck-scale preferred frame gives rise to Lorentz violation at the percent level,
some 20 orders of magnitude higher than earlier estimates, unless the bare parameters of the theory
are unnaturally strongly fine-tuned. Therefore an important task is not just the improvement of
the precision of searches for violations of Lorentz invariance, but also the search for theoretical
mechanisms for automatically preserving Lorentz invariance.

The need for a theory of quantum gravity and a modi-
fied structure of space-time at (or before) the Planck scale
is a consequence of the known and successful theories of
classical general relativity (for gravity) and the standard
model (for all other known interactions). Thus one of
the most important challenges in theoretical physics is
the construction of a quantum theory of gravitation.

Direct investigations of Planck-scale phenomena need
short-wavelength probes with elementary-particle ener-
gies of order the Planck energy EP = (h̄c5/G)1/2 =
1.2 × 1019 GeV, which is much too high to be practica-
ble. But actual tests — e.g., [1, 2, 3] — of a hypothesized
granularity of space-time at the Planck scale are possible
because relativity (embodied mathematically as Lorentz
invariance) gives a unique form for the dispersion relation
between the energy and momentum of a particle,

E =
√

p2c2 + m2c4. (1)

Here c, the speed of light is a universal constant, while
the particle rest mass m depends on the kind of particle.
We will henceforth use units in which c = 1.

Calculations in [4, 5] find preferred-frame effects asso-
ciated with space-time granularity [6] in the two most
popular contenders for a theory of quantum gravity,
which are string theory [9] and loop quantum gravity
[10, 11]. In these scenarios, the preferred frame and the
consequent Lorentz violation occur even though the fun-
damental classical equations of both of the theories are
locally Lorentz invariant. We thus have a quantum in-
spired revival of the nineteenth century idea of the elec-
tromagnetic ether, a background in which propagate light
waves, as well as all other elementary particles and fields.
Specific estimates of modified dispersion relations were
made in these papers from calculations of the propaga-
tion of quantum mechanical waves in the granular space-
time background. At accessible energies, only minute ef-
fects were predicted, of relative order E/EP or (E/EP )2,
when the probe has energy E. For other ways in which

k

p

FIG. 1: Lowest order self-energy graph. Interactions of quan-
tum fields require an unrestricted integral over the momenta
of the virtual particles up to the highest momenta allowed in
the theory.

Lorentz violation might arise, see, for example, [12, 13].
The minuteness of the effects is in accord with every-
day scientific thinking, where we often find that the de-
tails of physical phenomena on one distance scale do not
directly manifest themselves in physics on much larger
scales. Therefore attention has focused on searches for
extremely small violations of the dispersion relation.

However, as we will now explain, the predicted viola-
tions of the dispersion relations are enormously increased
when we include known elementary particle interactions.
In quantum field theories like the standard model, the
propagation of an isolated particle has calculable contri-
butions from Feynman diagrams for particle self-energies,
such as Fig. 1. The dispersion law for a particle is ob-
tained by solving

E2 − p2 − m2 − Π(E,p) = 0. (2)

Here Π is the sum of all self-energy graphs, to which
we have added any (small) Lorentz-violating corrections
calculated in free-field theory as in [4, 5].

We now apply the following reasoning: Without
a cutoff the graphs have divergences from large mo-
menta/short distances. In the Lagrangian defining the
theory, the divergences correspond to terms of dimen-
sion 4 (or less) that obey the symmetries of the micro-
scopic theory. In the textbook situation with Lorentz
invariance, the divergences are removed by renormaliza-
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Discreteness manifest itself via interactions with the matter that probes it.
From  this  perspective,  the  discrete  aspects  of  quantum  spacetime 
would arise primarily via interactions of the degrees of freedom of 
gravity and matter which by themselves select a preferential rest frame 
at the fundamental level; a setting where the Planck length lp would 
acquire an invariant sense. In other words, and within the relational 
approach we are advocating, it is clear that in order to be directly 
sensitive to the discreteness scale lp, the probing degrees of freedom 
must themselves carry their intrinsic scale. These ideas would seem to 
rule  out  massless  (scale  invariant)  degrees  of  freedom  as  leading 
probes  of  discreteness  simply  because  massless  particles  cannot  be 
associated with a single local preferential rest frame. 

Meaningful geometric observables must be Dirac 
observables.

Dirac  observables  are  hard  to  construct  explicitly  but  it  seems  clear  that,  when  it  comes  to 
geometry, matter degrees of freedom need to be invoked in order to achieve gauge invariance. 
Relational geometric notions are the key for reconciling discreteness and Lorentz invariance.

Scalar curvature is the natural “order parameter”
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the di↵usive e↵ects responsible for such symmetry break-
ing, and strengthen the naturalness of UG as the e↵ective
gravitational description of the e↵ect we are proposing.

More precisely, under general di↵emorphisms the met-
ric changes as �gab = 2r

(a⇠b) where

r
(a⇠b) =

✓

4
gab + �ab, (3)

when decomposed in its trace and trace-free parts. UG
remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓

4

)gab which are the same as
infinitesimal conformal transformations gab ! ⌦2gab as
far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = a(⌘)2
⇥
�d⌘2 + d~x2

⇤
. (4)

In this form we see that volume-changing di↵eomor-
phisms only a↵ect the conformal factor a(⌘) ! a(⌘)(1 +
✓/4) and the background structure characterizing the
spacetime discretenees in the e↵ective description of UG
can (in this very special case) be associated with a flat
metric

ds2� = �2

⇥
�d⌘2 + d~x2

⇤
(5)

up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is

J ⌘ (8⇡G)rbTbadx
a = ↵`pR

2 d⌘p

= ↵`p [8⇡G(⇢� 3P )]2 d⌘p, (6)

5 This duality explains the equivalence between the notion of the
conformal anomaly and the breaking of volume preserving dif-
feomorphism [5].

where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
the matter fields, and the time variable ⌘ is conformal
time normalized to proper time the Planck scale, namely

d⌘p = apd⌘ = ap
dt

a(t)
, (7)

where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets

⇤ = ⇤
0

+ ↵`p

t0Z

tew

[8⇡G(⇢� 3P )]2
ap
a(t)

dt, (8)

with t
0

the present time. It is convenient to change the
integration variable in (8) from co-moving time t to tem-
perature t given the essentially direct relation between

6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].
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the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
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that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
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action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
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propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
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mechanism, all the relevant excitations remain massless,
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stant according to (2) 6.
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as does the temperature [13].

We relax diff-invariance to 
accommodate violations of energy 

conservation

Sunday 19 November 17



Modeling the diffusion from low energy field theory 
degrees of freedom to Planckian microstructure 

3

the di↵usive e↵ects responsible for such symmetry break-
ing, and strengthen the naturalness of UG as the e↵ective
gravitational description of the e↵ect we are proposing.

More precisely, under general di↵emorphisms the met-
ric changes as �gab = 2r

(a⇠b) where

r
(a⇠b) =

✓

4
gab + �ab, (3)

when decomposed in its trace and trace-free parts. UG
remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓

4

)gab which are the same as
infinitesimal conformal transformations gab ! ⌦2gab as
far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
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ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets
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the present time. It is convenient to change the
integration variable in (8) from co-moving time t to tem-
perature t given the essentially direct relation between

6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].
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of freedom due to conformal invariance. Therefore, the presence of massive degrees of freedom (suitable probes of
discreteness according to our rationale) is geometrically captured by the presence of a non trivial scalar curvature R.
This natural ‘order parameter’ will enter the quantitative estimates that follow.

The immediate possibility arising from such hypothesis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ with it. From the point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon would be characterized as a ‘leakage’ of energy to degrees
of freedom that are not accounted for in the field equations and, therefore, would lead to the apparent violation
of the conservation of the corresponding energy-momentum tensor. This is a well known phenomenon in the more
familiar context of ordinary fluids, where viscosity accounts for the leakage of energy from macroscopic degrees of
freedom into the molecular chaos. Similarly (although with the subtleties evoked above) di↵usive e↵ects are expected
in the interaction of matter with the discrete underlying fundamental degrees of freedom of quantum gravity. It most
immediate manifestation would be the violation of energy-momentum conservation.

In the cosmological context the striking consequence of such violation is the emergence of a cosmological-constant-
like term in the minimally modified Einstein’s equations [11]. This can be seen from the traceless field equations of
unimodular gravity
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Defining Ja ⌘ (8⇡G/c4)rbTba, and assuming the unimodular integrability dJ = 0 [11], one can integrate the previous
equation and re-write the system in terms of the modified Einteins equations
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by

R ⇡ 8⇡G

c2
⇢m (4)

where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).
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up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
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where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
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where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t
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when gauge
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More precisely, under general di↵emorphisms the met-
ric changes as �gab = 2r

(a⇠b) where
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gab + �ab, (3)

when decomposed in its trace and trace-free parts. UG
remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓

4

)gab which are the same as
infinitesimal conformal transformations gab ! ⌦2gab as
far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = a(⌘)2
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In this form we see that volume-changing di↵eomor-
phisms only a↵ect the conformal factor a(⌘) ! a(⌘)(1 +
✓/4) and the background structure characterizing the
spacetime discretenees in the e↵ective description of UG
can (in this very special case) be associated with a flat
metric
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�d⌘2 + d~x2
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(5)

up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is
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where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
the matter fields, and the time variable ⌘ is conformal
time normalized to proper time the Planck scale, namely

d⌘p = apd⌘ = ap
dt
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, (7)

where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets
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the present time. It is convenient to change the
integration variable in (8) from co-moving time t to tem-
perature t given the essentially direct relation between

6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].

Broken Diffeos
The same as Weyl 

transformations on shell

ra⇠
a = 0 () ✓ = 0

Order parameter for 
discreteness probes: 

scalar curvature
R = 8⇡T 6= 0

Preferred volume 
structure in UG: 

Preferred conformal 
structure in cosmology

3

the di↵usive e↵ects responsible for such symmetry break-
ing, and strengthen the naturalness of UG as the e↵ective
gravitational description of the e↵ect we are proposing.

More precisely, under general di↵emorphisms the met-
ric changes as �gab = 2r

(a⇠b) where

r
(a⇠b) =

✓

4
gab + �ab, (3)

when decomposed in its trace and trace-free parts. UG
remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓

4

)gab which are the same as
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far as the metric is concerned. Therefore, when the field
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preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
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up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
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the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t
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when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t
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producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-
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6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].
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far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
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can (in this very special case) be associated with a flat
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up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is
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where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
the matter fields, and the time variable ⌘ is conformal
time normalized to proper time the Planck scale, namely

d⌘p = apd⌘ = ap
dt
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, (7)

where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets
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the present time. It is convenient to change the
integration variable in (8) from co-moving time t to tem-
perature t given the essentially direct relation between

6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].
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far as the metric is concerned. Therefore, when the field
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preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
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up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is
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where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t
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when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t
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producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
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6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
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ing, and strengthen the naturalness of UG as the e↵ective
gravitational description of the e↵ect we are proposing.

More precisely, under general di↵emorphisms the met-
ric changes as �gab = 2r

(a⇠b) where

r
(a⇠b) =

✓

4
gab + �ab, (3)
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remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓
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)gab which are the same as
infinitesimal conformal transformations gab ! ⌦2gab as
far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = a(⌘)2
⇥
�d⌘2 + d~x2

⇤
. (4)
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up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is
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where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t
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when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t
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producing a finite contribution to the cosmological con-
stant according to (2) 6.
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lie unexcited at the bottom of the e↵ective potential. This con-
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must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = a(⌘)2
⇥
�d⌘2 + d~x2

⇤
. (4)

In this form we see that volume-changing di↵eomor-
phisms only a↵ect the conformal factor a(⌘) ! a(⌘)(1 +
✓/4) and the background structure characterizing the
spacetime discretenees in the e↵ective description of UG
can (in this very special case) be associated with a flat
metric

ds2� = �2

⇥
�d⌘2 + d~x2

⇤
(5)

up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is

J ⌘ (8⇡G)rbTbadx
a = ↵`pR

2 d⌘p

= ↵`p [8⇡G(⇢� 3P )]2 d⌘p, (6)

5 This duality explains the equivalence between the notion of the
conformal anomaly and the breaking of volume preserving dif-
feomorphism [5].

where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
the matter fields, and the time variable ⌘ is conformal
time normalized to proper time the Planck scale, namely

d⌘p = apd⌘ = ap
dt

a(t)
, (7)

where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets
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with t
0

the present time. It is convenient to change the
integration variable in (8) from co-moving time t to tem-
perature t given the essentially direct relation between

6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].
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gravitational description of the e↵ect we are proposing.

More precisely, under general di↵emorphisms the met-
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remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓
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)gab which are the same as
infinitesimal conformal transformations gab ! ⌦2gab as
far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = a(⌘)2
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In this form we see that volume-changing di↵eomor-
phisms only a↵ect the conformal factor a(⌘) ! a(⌘)(1 +
✓/4) and the background structure characterizing the
spacetime discretenees in the e↵ective description of UG
can (in this very special case) be associated with a flat
metric

ds2� = �2
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�d⌘2 + d~x2
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(5)

up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is

J ⌘ (8⇡G)rbTbadx
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2 d⌘p

= ↵`p [8⇡G(⇢� 3P )]2 d⌘p, (6)

5 This duality explains the equivalence between the notion of the
conformal anomaly and the breaking of volume preserving dif-
feomorphism [5].

where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
the matter fields, and the time variable ⌘ is conformal
time normalized to proper time the Planck scale, namely

d⌘p = apd⌘ = ap
dt

a(t)
, (7)

where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets
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the present time. It is convenient to change the
integration variable in (8) from co-moving time t to tem-
perature t given the essentially direct relation between

6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].
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the di↵usive e↵ects responsible for such symmetry break-
ing, and strengthen the naturalness of UG as the e↵ective
gravitational description of the e↵ect we are proposing.

More precisely, under general di↵emorphisms the met-
ric changes as �gab = 2r

(a⇠b) where
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(a⇠b) =
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4
gab + �ab, (3)

when decomposed in its trace and trace-free parts. UG
remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓

4

)gab which are the same as
infinitesimal conformal transformations gab ! ⌦2gab as
far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = a(⌘)2
⇥
�d⌘2 + d~x2

⇤
. (4)

In this form we see that volume-changing di↵eomor-
phisms only a↵ect the conformal factor a(⌘) ! a(⌘)(1 +
✓/4) and the background structure characterizing the
spacetime discretenees in the e↵ective description of UG
can (in this very special case) be associated with a flat
metric

ds2� = �2

⇥
�d⌘2 + d~x2

⇤
(5)

up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is

J ⌘ (8⇡G)rbTbadx
a = ↵`pR

2 d⌘p

= ↵`p [8⇡G(⇢� 3P )]2 d⌘p, (6)

5 This duality explains the equivalence between the notion of the
conformal anomaly and the breaking of volume preserving dif-
feomorphism [5].

where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
the matter fields, and the time variable ⌘ is conformal
time normalized to proper time the Planck scale, namely

d⌘p = apd⌘ = ap
dt

a(t)
, (7)

where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets
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with t
0

the present time. It is convenient to change the
integration variable in (8) from co-moving time t to tem-
perature t given the essentially direct relation between

6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].
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the di↵usive e↵ects responsible for such symmetry break-
ing, and strengthen the naturalness of UG as the e↵ective
gravitational description of the e↵ect we are proposing.

More precisely, under general di↵emorphisms the met-
ric changes as �gab = 2r

(a⇠b) where
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(a⇠b) =
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4
gab + �ab, (3)

when decomposed in its trace and trace-free parts. UG
remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓

4

)gab which are the same as
infinitesimal conformal transformations gab ! ⌦2gab as
far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = a(⌘)2
⇥
�d⌘2 + d~x2

⇤
. (4)

In this form we see that volume-changing di↵eomor-
phisms only a↵ect the conformal factor a(⌘) ! a(⌘)(1 +
✓/4) and the background structure characterizing the
spacetime discretenees in the e↵ective description of UG
can (in this very special case) be associated with a flat
metric

ds2� = �2

⇥
�d⌘2 + d~x2

⇤
(5)

up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is

J ⌘ (8⇡G)rbTbadx
a = ↵`pR

2 d⌘p

= ↵`p [8⇡G(⇢� 3P )]2 d⌘p, (6)

5 This duality explains the equivalence between the notion of the
conformal anomaly and the breaking of volume preserving dif-
feomorphism [5].

where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
the matter fields, and the time variable ⌘ is conformal
time normalized to proper time the Planck scale, namely

d⌘p = apd⌘ = ap
dt

a(t)
, (7)

where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets

⇤ = ⇤
0

+ ↵`p

t0Z

tew

[8⇡G(⇢� 3P )]2
ap
a(t)
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with t
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the present time. It is convenient to change the
integration variable in (8) from co-moving time t to tem-
perature t given the essentially direct relation between

6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].
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the di↵usive e↵ects responsible for such symmetry break-
ing, and strengthen the naturalness of UG as the e↵ective
gravitational description of the e↵ect we are proposing.

More precisely, under general di↵emorphisms the met-
ric changes as �gab = 2r

(a⇠b) where
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gab + �ab, (3)

when decomposed in its trace and trace-free parts. UG
remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓

4

)gab which are the same as
infinitesimal conformal transformations gab ! ⌦2gab as
far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = a(⌘)2
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In this form we see that volume-changing di↵eomor-
phisms only a↵ect the conformal factor a(⌘) ! a(⌘)(1 +
✓/4) and the background structure characterizing the
spacetime discretenees in the e↵ective description of UG
can (in this very special case) be associated with a flat
metric

ds2� = �2
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�d⌘2 + d~x2
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(5)

up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is
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5 This duality explains the equivalence between the notion of the
conformal anomaly and the breaking of volume preserving dif-
feomorphism [5].

where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
the matter fields, and the time variable ⌘ is conformal
time normalized to proper time the Planck scale, namely

d⌘p = apd⌘ = ap
dt

a(t)
, (7)

where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets
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6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].

Broken Diffeos
The same as Weyl 

transformations on shell

ra⇠
a = 0 () ✓ = 0

Order parameter for 
discreteness probes: 

scalar curvature
R = 8⇡T 6= 0

Preferred volume 
structure in UG: 

Preferred conformal 
structure in cosmology

3

the di↵usive e↵ects responsible for such symmetry break-
ing, and strengthen the naturalness of UG as the e↵ective
gravitational description of the e↵ect we are proposing.

More precisely, under general di↵emorphisms the met-
ric changes as �gab = 2r

(a⇠b) where
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(a⇠b) =
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4
gab + �ab, (3)

when decomposed in its trace and trace-free parts. UG
remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓

4

)gab which are the same as
infinitesimal conformal transformations gab ! ⌦2gab as
far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = a(⌘)2
⇥
�d⌘2 + d~x2

⇤
. (4)

In this form we see that volume-changing di↵eomor-
phisms only a↵ect the conformal factor a(⌘) ! a(⌘)(1 +
✓/4) and the background structure characterizing the
spacetime discretenees in the e↵ective description of UG
can (in this very special case) be associated with a flat
metric

ds2� = �2

⇥
�d⌘2 + d~x2

⇤
(5)

up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is

J ⌘ (8⇡G)rbTbadx
a = ↵`pR

2 d⌘p

= ↵`p [8⇡G(⇢� 3P )]2 d⌘p, (6)

5 This duality explains the equivalence between the notion of the
conformal anomaly and the breaking of volume preserving dif-
feomorphism [5].

where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
the matter fields, and the time variable ⌘ is conformal
time normalized to proper time the Planck scale, namely

d⌘p = apd⌘ = ap
dt

a(t)
, (7)

where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets

⇤ = ⇤
0

+ ↵`p

t0Z

tew

[8⇡G(⇢� 3P )]2
ap
a(t)

dt, (8)

with t
0

the present time. It is convenient to change the
integration variable in (8) from co-moving time t to tem-
perature t given the essentially direct relation between

6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].

Both R the preferred volume structure 
are natural ingredients of the Planckian 

phenomenology we are exploring
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of freedom due to conformal invariance. Therefore, the presence of massive degrees of freedom (suitable probes of
discreteness according to our rationale) is geometrically captured by the presence of a non trivial scalar curvature R.
This natural ‘order parameter’ will enter the quantitative estimates that follow.

The immediate possibility arising from such hypothesis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ with it. From the point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon would be characterized as a ‘leakage’ of energy to degrees
of freedom that are not accounted for in the field equations and, therefore, would lead to the apparent violation
of the conservation of the corresponding energy-momentum tensor. This is a well known phenomenon in the more
familiar context of ordinary fluids, where viscosity accounts for the leakage of energy from macroscopic degrees of
freedom into the molecular chaos. Similarly (although with the subtleties evoked above) di↵usive e↵ects are expected
in the interaction of matter with the discrete underlying fundamental degrees of freedom of quantum gravity. It most
immediate manifestation would be the violation of energy-momentum conservation.

In the cosmological context the striking consequence of such violation is the emergence of a cosmological-constant-
like term in the minimally modified Einstein’s equations [11]. This can be seen from the traceless field equations of
unimodular gravity

Rab �
1

4
Rgab =

8⇡G

c4

✓
Tab �

1

4
Tgab

◆
, (1)

which together with the Bianchi identities imply that

ra

✓
R+

8⇡G

c4
T

◆
=

32⇡G

c4
rbTba. (2)

Defining Ja ⌘ (8⇡G/c4)rbTba, and assuming the unimodular integrability dJ = 0 [11], one can integrate the previous
equation and re-write the system in terms of the modified Einteins equations

Rab �
1

2
Rgab +


⇤⇤ +

Z

`
J

�

| {z }
⇤

gab =
8⇡G

c4
Tab, (3)

where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by

R ⇡ 8⇡G

c2
⇢m (4)

where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).
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Now we estimate the amount of energy-momentum violation experienced due to the transfer of energy from the
continuum degrees of freedom of massive matter to the underlying microscopic discrete substratum of quantum
spacetime. Recall that according to our rationale only ⇢m contributes, thus simple dimensional analysis tell us that
the leading contribution should be

J = ↵`pR
2c dt

⇡ ↵`p
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c2
(⇢� 3P )

�
2

c dt, (5)

where ↵ is a dimensionless phenomenological constant of order one (here we are neglecting higher order corrections
with powers of `2p or higher in front), and we used (4).

From (3) the contribution to the e↵ective cosmological constant is given by
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where t⇤ is the time where the e↵ects start and t
0

denotes today. Following our rationale we expect t⇤ to be given
by the time when massive matter first appears in our universe; according to the standard model (and some of its
extensions) this corresponds to the electroweak unification time3.
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are the matter and radiation dimensionless density parameters today respectively—and using the fact that t⇤ is
well inside the radiation dominated we can accurately estimate (6) to
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where z⇤ is the redshift parameter corresponding to the starting time t⇤. Using the observational values [13] and
z⇤ ⇡ 7 1014 we get

⇤� ⇤⇤ ⇡ ↵ 0.24 10�52m�2 (8)

which is in remarkably close to the observed value ⇤
obs

⇡ 1.19 10�52m�2.
The previous result is an order of magnitude estimate of the model (5). In a more refined calculation the dynamical

details of the electro-weak transition would probably need to be considered: the transition cannot be sharp and this
should be taken into account when calculating the contributions to ⇤. The value of ↵ is also uncertain in that it
depends on details that are not considered in our phenomenological model. Such details can easily make ↵ move by
one or even two orders of magnitude (e.g. number of species involved, other numerical factors, etc.). Here we have
also assumed that all of ⇢m is created at the electro-weak transition; this implicitly assumes that the dark matter also
is produced at around that time or later. Again, a modification of this assumption would lead to a potential change of
only a few orders of magnitude in our estimates. Under these circumstances our very simple and minimalistic model
is remarkably accurate.

We believe that our proposal has important implications both at the theoretical as well as at the empirical level. At
the theoretical level it provides a novel view that could reconcile Planckian discreteness and Lorentz invariance and
gives possibly valuable insights guiding the quest for a theory of quantum gravity. At the empirical level our analysis
opens a new path for searches of new physical manifestations of the gravitation/quantum interface.

Concerning the later we note that one might use (5) to estimate the amount of energy loss in local experiments;
for short times (neglecting the cosmological expansion) one finds ⇢̇m ⇡ �↵(⇢m/⇢

water

)210�49g/cm3s where ⇢
water

is
the density of liquid water on earth. This is equivalent to the lost of the mass of one proton per year in 1015 litters
of water. Even when at water density this numbers seem tiny it is possible that these e↵ects could have independent
observational consequences in high density situations due to the scaling with ⇢2m (yet even for neutron star density
the numbers seem too small to have observational consequences).

3 The mass of the Higgs before the electroweak unification does not enter in our analysis because in the standard picture, at temperatures
above the electroweak scale the Higgs field is assumed to lie unexcited at the bottom of the e↵ective potential. This condition is valid for
all earlier times because in the corresponding regimes the e↵ective mass of the Higgs changes at the same rate as does the temperature
[12].
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.
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Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),
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We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by
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where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).

5

Concerning the later we note that one might use (5) to estimate the amount of energy loss in local experiments;
for short times (neglecting the cosmological expansion) one finds ⇢̇m ⇡ �↵(⇢m/⇢

water

)210�49g/cm3s where ⇢
water

is
the density of liquid water on earth. This is equivalent to the lost of the mass of one proton per year in 1015 litters
of water. Even when at water density this numbers seem tiny it is possible that these e↵ects could have independent
observational consequences in high density situations due to the scaling with ⇢2m (yet even for neutron star density
the numbers seem too small to have observational consequences).

The e↵ect is maximal at time z⇤; however, even then the energy produced appears tiny in comparison to the local
density, namely

⇢̇m(z⇤) + 3⇢mH(a)

= �↵`p
(3⌦0

mH2

0

z3⇤)
2

8⇡Gc
⇡ �4.85↵ 10�20

g

cm3s
, (10)

which for a ⇢m(z⇤) = z3⇤⇢
0

m ⇡ 7 1014g/cm3 witch is clearly insignificant. These minute amounts of violation of
enery-momentum conservation have an important dynamical e↵ect in our universe only because they can accumulate
during the long cosmological scales.

Finally, as our model links ⇢m and its evolution with the present value of the cosmological constant, and ⇢m directly
enters in the computation of the structure formation that produces the galaxies and eventually us, this framework
opens, in principle, a path that might possibly address the longly debated coincidence problem.
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the di↵usive e↵ects responsible for such symmetry break-
ing, and strengthen the naturalness of UG as the e↵ective
gravitational description of the e↵ect we are proposing.

More precisely, under general di↵emorphisms the met-
ric changes as �gab = 2r

(a⇠b) where

r
(a⇠b) =

✓

4
gab + �ab, (3)

when decomposed in its trace and trace-free parts. UG
remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓

4

)gab which are the same as
infinitesimal conformal transformations gab ! ⌦2gab as
far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = a(⌘)2
⇥
�d⌘2 + d~x2

⇤
. (4)

In this form we see that volume-changing di↵eomor-
phisms only a↵ect the conformal factor a(⌘) ! a(⌘)(1 +
✓/4) and the background structure characterizing the
spacetime discretenees in the e↵ective description of UG
can (in this very special case) be associated with a flat
metric

ds2� = �2

⇥
�d⌘2 + d~x2

⇤
(5)

up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is

J ⌘ (8⇡G)rbTbadx
a = ↵`pR

2 d⌘p

= ↵`p [8⇡G(⇢� 3P )]2 d⌘p, (6)

5 This duality explains the equivalence between the notion of the
conformal anomaly and the breaking of volume preserving dif-
feomorphism [5].

where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
the matter fields, and the time variable ⌘ is conformal
time normalized to proper time the Planck scale, namely

d⌘p = apd⌘ = ap
dt

a(t)
, (7)

where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets
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with t
0

the present time. It is convenient to change the
integration variable in (8) from co-moving time t to tem-
perature t given the essentially direct relation between

6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].
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action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
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The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
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the two quantities. During the relevant period the mat-
ter fields are assued to be in thermal equilibrium. The
density of the universe during radiation domination7 is
given by, ⇢ = ⇡2g⇤T

4/(30~3) where g⇤ ⇡ 100 is the ef-
fective degeneracy factor for the temperatures of interest
[13]. Taking into account that temperature scales like
1/a, using Friedman equation and H(a) = ȧ/a, one gets,
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for a radiation dominated universe. We will now focus
just on the leading contributions. In the ultra-relativistic
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is a dimensionless correction factor that takes into ac-
count the temperature dependence of the quark mass
during the EW-transition, namely m2

t (T ) = m2
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T 2/T 2
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). The end temperature T
end

is the one satisfying
2mt(Tend

) = T
end

when the top quark’s abundance drops
dramatically. The contribution of other massive particles
in the standard model, as well as those tied to simple dark
matter models such as WIMPS. will not a↵ect the order
of magnitude of the estimate. We note that aside from
the correction factor, ✏(T ) ⇡ 10�3—10�4 in the range
of interest, equation (11) could have been guessed from
dimensional analysis. After substitution of the di↵erent
quantities involved and taking T

ew

⇡ 100 GeV [14, 15],
we find:
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(13)

7 The assumption of radiation domination is appropriate here as
the contributions to the e↵ect in question come mainly from the
early times where R is large. Similarly, when a species becomes
non relativistic conservation of entropy implies that the temper-
ature jumps by reheating due to pair annihilation. This also
implies a temperature dependence of g⇤ as given in table 4.5 of
[13]. Such deviations from the a�1 behaviour of temperature
and the evolution of g⇤ produce only small corrections to our
estimates.

Figure 1. The value of the phenomenological parameter ↵,
see eq. (6), that fits the observed value of ⇤

obs

as a function
of the electro-weak transition scale Tew in GeV.

where ⇤
obs

is the observed value of the cosmological con-
stant.
Our result is an order of magnitude estimate of the

model (6), and a refined calculation would require de-
tailed considerations of the dynamics of the electro-weak
transition. However, such details are not expected to
modify our result in essential ways. Just to give an idea
of the parametric dependence of the result we plot in Fig-
ure 1 the value of the dimensionless coupling ↵ needed to
fit the observed values as a function of T

ew

. This shows
a low sensitivity of the final value on the onset of the
electroweak transition.
We believe that our proposal has important implica-

tions of various types. At the theoretical level it provides
a novel view that could reconcile Planckian discreteness
and Lorentz invariance and gives possibly valuable in-
sights guiding the search for a theory of quantum grav-
ity. At the empirical level our analysis opens a new path
for searches of new physical manifestations of the grav-
ity/quantum interface.
Concerning the later we note that one might use (6)

to estimate the amount of energy loss in local experi-
ments. Presently (neglecting the cosmic expansion), we
find ⇢̇ ⇡ �↵(⇢/⇢

water

)210�70g/(cm3s) where ⇢
water

is the
density of sea water. The amount of energy produced
is maximal at the EW transition when the density of
the universe ⇢(T
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) ⇡ 1025g/cm3, and corresponds to
⇢̇(z⇤) + 3⇢H(a) ⇡ �↵ 10�20g/(cm3s). Such a miniscule
level of energy loss can not have significant e↵ects on the
matter dynamics, and thus would be hard, but not im-
possible to detect. Nevertheless, such phenomenon might
explain the observed late time acceleration of the expan-
sion rate of our universe.

Finally, as the model links ⇢ and its evolution with
the present value of the cosmological constant, and ⇢ di-
rectly enters in the computation of the structure forma-
tion leading to galaxies, stars and eventually humans,
this framework opens, in principle, a path that might
help in addressing the longly debated “coincidence prob-
lem” [13].
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of freedom due to conformal invariance. Therefore, the presence of massive degrees of freedom (suitable probes of
discreteness according to our rationale) is geometrically captured by the presence of a non trivial scalar curvature R.
This natural ‘order parameter’ will enter the quantitative estimates that follow.

The immediate possibility arising from such hypothesis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ with it. From the point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon would be characterized as a ‘leakage’ of energy to degrees
of freedom that are not accounted for in the field equations and, therefore, would lead to the apparent violation
of the conservation of the corresponding energy-momentum tensor. This is a well known phenomenon in the more
familiar context of ordinary fluids, where viscosity accounts for the leakage of energy from macroscopic degrees of
freedom into the molecular chaos. Similarly (although with the subtleties evoked above) di↵usive e↵ects are expected
in the interaction of matter with the discrete underlying fundamental degrees of freedom of quantum gravity. It most
immediate manifestation would be the violation of energy-momentum conservation.

In the cosmological context the striking consequence of such violation is the emergence of a cosmological-constant-
like term in the minimally modified Einstein’s equations [11]. This can be seen from the traceless field equations of
unimodular gravity
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Defining Ja ⌘ (8⇡G/c4)rbTba, and assuming the unimodular integrability dJ = 0 [11], one can integrate the previous
equation and re-write the system in terms of the modified Einteins equations
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by

R ⇡ 8⇡G

c2
⇢m (4)

where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).
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Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by

R ⇡ 8⇡G

c2
⇢m (4)

where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).

3

of freedom due to conformal invariance. Therefore, the presence of massive degrees of freedom (suitable probes of
discreteness according to our rationale) is geometrically captured by the presence of a non trivial scalar curvature R.
This natural ‘order parameter’ will enter the quantitative estimates that follow.

The immediate possibility arising from such hypothesis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ with it. From the point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon would be characterized as a ‘leakage’ of energy to degrees
of freedom that are not accounted for in the field equations and, therefore, would lead to the apparent violation
of the conservation of the corresponding energy-momentum tensor. This is a well known phenomenon in the more
familiar context of ordinary fluids, where viscosity accounts for the leakage of energy from macroscopic degrees of
freedom into the molecular chaos. Similarly (although with the subtleties evoked above) di↵usive e↵ects are expected
in the interaction of matter with the discrete underlying fundamental degrees of freedom of quantum gravity. It most
immediate manifestation would be the violation of energy-momentum conservation.

In the cosmological context the striking consequence of such violation is the emergence of a cosmological-constant-
like term in the minimally modified Einstein’s equations [11]. This can be seen from the traceless field equations of
unimodular gravity

Rab �
1

4
Rgab =

8⇡G

c4

✓
Tab �

1

4
Tgab

◆
, (1)

which together with the Bianchi identities imply that

ra

✓
R+

8⇡G

c4
T

◆
=

32⇡G

c4
rbTba. (2)

Defining Ja ⌘ (8⇡G/c4)rbTba, and assuming the unimodular integrability dJ = 0 [11], one can integrate the previous
equation and re-write the system in terms of the modified Einteins equations

Rab �
1

2
Rgab +


⇤⇤ +

Z

`
J

�

| {z }
⇤

gab =
8⇡G

c4
Tab, (3)

where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
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the di↵usive e↵ects responsible for such symmetry break-
ing, and strengthen the naturalness of UG as the e↵ective
gravitational description of the e↵ect we are proposing.

More precisely, under general di↵emorphisms the met-
ric changes as �gab = 2r

(a⇠b) where

r
(a⇠b) =

✓

4
gab + �ab, (3)

when decomposed in its trace and trace-free parts. UG
remains invariant under the smaller group of volume-
preserving di↵eomorphisms which are characterized in-
finitesimally by divergence-free vector fields ⇠ for which
ra⇠a = ✓ = 0. The broken di↵eos in UG are those that
send the metric gab ! (1 + ✓

4

)gab which are the same as
infinitesimal conformal transformations gab ! ⌦2gab as
far as the metric is concerned. Therefore, when the field
equations hold, conformal transformations and volume
preserving di↵eomorphisms are one and the same in the
matter sector 5. Such symmetry breaking in UG implies
the existence of a background structure materialized in
a preferred notion of four-volume. Such structure, that
must be thought of as naturally associated to the Planck
scale, will play a central role below.

The discussion of the nature of the broken symmetries
of UG takes a specially simple form in the context of
cosmology where the geometry can be well approximated
at large scales by the spatially flat Friedman-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = a(⌘)2
⇥
�d⌘2 + d~x2

⇤
. (4)

In this form we see that volume-changing di↵eomor-
phisms only a↵ect the conformal factor a(⌘) ! a(⌘)(1 +
✓/4) and the background structure characterizing the
spacetime discretenees in the e↵ective description of UG
can (in this very special case) be associated with a flat
metric

ds2� = �2

⇥
�d⌘2 + d~x2

⇤
(5)

up to the constant scaling �. This gives a special status
to the conformally flat representation of the spacetime
metric and to the notion of conformal time.

Now we estimate the amount of energy-momentum vi-
olation associated with the di↵usion of energy from the
continuum degrees of freedom of massive matter to the
underlying microscopic discrete substratum of quantum
spacetime. In view of our previous discussion we postu-
late that the one-form characterizing the e↵ect in ques-
tion is

J ⌘ (8⇡G)rbTbadx
a = ↵`pR

2 d⌘p

= ↵`p [8⇡G(⇢� 3P )]2 d⌘p, (6)

5 This duality explains the equivalence between the notion of the
conformal anomaly and the breaking of volume preserving dif-
feomorphism [5].

where ↵ is a dimensionless phenomenological constant of
order one, ⇢ and P is the energy density and pressure of
the matter fields, and the time variable ⌘ is conformal
time normalized to proper time the Planck scale, namely

d⌘p = apd⌘ = ap
dt

a(t)
, (7)

where t is proper co-moving time. The proposal (6) is
the leading contribution to J that is compatible with
the symmetry of the FLRW solution, is dimensionally
allowed, and takes into account both key ingredients of
our analysis: discreteness is probed by degrees of freedom
that break conformal invariance (whose order parameter
is R), and selects a preferred structure in the e↵ective
description of UG realized in the choice of a preferred
conformal time ⌘p which in the FLRW setting amounts
to the choice of a preferred 4-volume.
Finally, it is central to our proposal that local degrees

of freedom in the matter sector are excited for the inter-
action with the underlying Planckian structure to take
place. In this respect equation (6) is not applicable dur-
ing the very early stage of inflation during which the mat-
ter sector is described by the inflaton field excited only
is in its homogeneous and isotropic zero mode. In this
era scale invariance is broken only by a global degree of
freedom, while all local excitations are in a conformally
invariant vacuum state. For that reason the e↵ects we
propose—described by equation (6)—turn on only after
the reheating era when the matter degrees of freedom go
into a highly exited (and high entropy) state well approx-
imated by thermodynamics. Moreover, assuming that
before the electro-weak transition time t

ew

when gauge
bosons, quarks, and leptons acquire mass via the Higgs
mechanism, all the relevant excitations remain massless,
so that R ⇡ 0; then (6) becomes relevant only after t

ew

producing a finite contribution to the cosmological con-
stant according to (2) 6.
We are now ready to estimate the e↵ective cosmolog-

ical constant predicted by our model. Using (2), (6) and
(7) one gets
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ap
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dt, (8)

with t
0

the present time. It is convenient to change the
integration variable in (8) from co-moving time t to tem-
perature t given the essentially direct relation between

6 The mass of the Higgs before the electroweak unification does not
enter in our analysis because in the standard picture, at temper-
atures above the electroweak scale the Higgs field is assumed to
lie unexcited at the bottom of the e↵ective potential. This con-
dition is valid for all earlier times because in the corresponding
regimes the e↵ective mass of the Higgs changes at the same rate
as does the temperature [13].
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the two quantities. During the relevant period the mat-
ter fields are assued to be in thermal equilibrium. The
density of the universe during radiation domination7 is
given by, ⇢ = ⇡2g⇤T

4/(30~3) where g⇤ ⇡ 100 is the ef-
fective degeneracy factor for the temperatures of interest
[13]. Taking into account that temperature scales like
1/a, using Friedman equation and H(a) = ȧ/a, one gets,
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for a radiation dominated universe. We will now focus
just on the leading contributions. In the ultra-relativistic
regime standard thermodynamics leads to the expression
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tT
2

2~3 , (10)

where mt is the top mass respectively. Defining �⇤ ⌘
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0

, replacing the leading term in (10) and (9) into
(8), and using that ap/a(t) = T/mp, where mp is the
Planck mass one gets
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is a dimensionless correction factor that takes into ac-
count the temperature dependence of the quark mass
during the EW-transition, namely m2

t (T ) = m2

t (1 �
T 2/T 2

ew

). The end temperature T
end

is the one satisfying
2mt(Tend

) = T
end

when the top quark’s abundance drops
dramatically. The contribution of other massive particles
in the standard model, as well as those tied to simple dark
matter models such as WIMPS. will not a↵ect the order
of magnitude of the estimate. We note that aside from
the correction factor, ✏(T ) ⇡ 10�3—10�4 in the range
of interest, equation (11) could have been guessed from
dimensional analysis. After substitution of the di↵erent
quantities involved and taking T

ew

⇡ 100 GeV [14, 15],
we find:

�⇤ ⇡ 0.6↵⇤
obs

(13)

7 The assumption of radiation domination is appropriate here as
the contributions to the e↵ect in question come mainly from the
early times where R is large. Similarly, when a species becomes
non relativistic conservation of entropy implies that the temper-
ature jumps by reheating due to pair annihilation. This also
implies a temperature dependence of g⇤ as given in table 4.5 of
[13]. Such deviations from the a�1 behaviour of temperature
and the evolution of g⇤ produce only small corrections to our
estimates.

Figure 1. The value of the phenomenological parameter ↵,
see eq. (6), that fits the observed value of ⇤

obs

as a function
of the electro-weak transition scale Tew in GeV.

where ⇤
obs

is the observed value of the cosmological con-
stant.
Our result is an order of magnitude estimate of the

model (6), and a refined calculation would require de-
tailed considerations of the dynamics of the electro-weak
transition. However, such details are not expected to
modify our result in essential ways. Just to give an idea
of the parametric dependence of the result we plot in Fig-
ure 1 the value of the dimensionless coupling ↵ needed to
fit the observed values as a function of T

ew

. This shows
a low sensitivity of the final value on the onset of the
electroweak transition.
We believe that our proposal has important implica-

tions of various types. At the theoretical level it provides
a novel view that could reconcile Planckian discreteness
and Lorentz invariance and gives possibly valuable in-
sights guiding the search for a theory of quantum grav-
ity. At the empirical level our analysis opens a new path
for searches of new physical manifestations of the grav-
ity/quantum interface.
Concerning the later we note that one might use (6)

to estimate the amount of energy loss in local experi-
ments. Presently (neglecting the cosmic expansion), we
find ⇢̇ ⇡ �↵(⇢/⇢

water

)210�70g/(cm3s) where ⇢
water

is the
density of sea water. The amount of energy produced
is maximal at the EW transition when the density of
the universe ⇢(T

ew

) ⇡ 1025g/cm3, and corresponds to
⇢̇(z⇤) + 3⇢H(a) ⇡ �↵ 10�20g/(cm3s). Such a miniscule
level of energy loss can not have significant e↵ects on the
matter dynamics, and thus would be hard, but not im-
possible to detect. Nevertheless, such phenomenon might
explain the observed late time acceleration of the expan-
sion rate of our universe.

Finally, as the model links ⇢ and its evolution with
the present value of the cosmological constant, and ⇢ di-
rectly enters in the computation of the structure forma-
tion leading to galaxies, stars and eventually humans,
this framework opens, in principle, a path that might
help in addressing the longly debated “coincidence prob-
lem” [13].
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of freedom due to conformal invariance. Therefore, the presence of massive degrees of freedom (suitable probes of
discreteness according to our rationale) is geometrically captured by the presence of a non trivial scalar curvature R.
This natural ‘order parameter’ will enter the quantitative estimates that follow.

The immediate possibility arising from such hypothesis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ with it. From the point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon would be characterized as a ‘leakage’ of energy to degrees
of freedom that are not accounted for in the field equations and, therefore, would lead to the apparent violation
of the conservation of the corresponding energy-momentum tensor. This is a well known phenomenon in the more
familiar context of ordinary fluids, where viscosity accounts for the leakage of energy from macroscopic degrees of
freedom into the molecular chaos. Similarly (although with the subtleties evoked above) di↵usive e↵ects are expected
in the interaction of matter with the discrete underlying fundamental degrees of freedom of quantum gravity. It most
immediate manifestation would be the violation of energy-momentum conservation.

In the cosmological context the striking consequence of such violation is the emergence of a cosmological-constant-
like term in the minimally modified Einstein’s equations [11]. This can be seen from the traceless field equations of
unimodular gravity
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Defining Ja ⌘ (8⇡G/c4)rbTba, and assuming the unimodular integrability dJ = 0 [11], one can integrate the previous
equation and re-write the system in terms of the modified Einteins equations
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by

R ⇡ 8⇡G

c2
⇢m (4)

where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).
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Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by

R ⇡ 8⇡G

c2
⇢m (4)

where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
important role in the final result). The approximate sign is used because we are neglecting the pressure contributions
to R and quantum corrections such as the trace anomaly and the very quantum e↵ect we propose here. Both of these
are negligible with respect to ⇢m in the situation where we apply (4).

3

of freedom due to conformal invariance. Therefore, the presence of massive degrees of freedom (suitable probes of
discreteness according to our rationale) is geometrically captured by the presence of a non trivial scalar curvature R.
This natural ‘order parameter’ will enter the quantitative estimates that follow.

The immediate possibility arising from such hypothesis (from the phenomenological point of view) is that low
energy quantum field theoretical excitations of massive fields could interact with the underlying quantum gravity
microstructure and exchange ‘energy’ with it. From the point of view of the continuous mathematical description
of fields that we use at low energies, such phenomenon would be characterized as a ‘leakage’ of energy to degrees
of freedom that are not accounted for in the field equations and, therefore, would lead to the apparent violation
of the conservation of the corresponding energy-momentum tensor. This is a well known phenomenon in the more
familiar context of ordinary fluids, where viscosity accounts for the leakage of energy from macroscopic degrees of
freedom into the molecular chaos. Similarly (although with the subtleties evoked above) di↵usive e↵ects are expected
in the interaction of matter with the discrete underlying fundamental degrees of freedom of quantum gravity. It most
immediate manifestation would be the violation of energy-momentum conservation.

In the cosmological context the striking consequence of such violation is the emergence of a cosmological-constant-
like term in the minimally modified Einstein’s equations [11]. This can be seen from the traceless field equations of
unimodular gravity

Rab �
1

4
Rgab =

8⇡G

c4

✓
Tab �

1

4
Tgab

◆
, (1)

which together with the Bianchi identities imply that

ra

✓
R+

8⇡G

c4
T

◆
=

32⇡G

c4
rbTba. (2)

Defining Ja ⌘ (8⇡G/c4)rbTba, and assuming the unimodular integrability dJ = 0 [11], one can integrate the previous
equation and re-write the system in terms of the modified Einteins equations

Rab �
1

2
Rgab +


⇤⇤ +

Z

`
J

�

| {z }
⇤

gab =
8⇡G

c4
Tab, (3)

where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
equations satisfying the dark energy equation of state.

The previous is the general framework where we will develop further our proposal. First, the previous equations
are only useful if the energy-momentum violations are of the integrable type dJ = 0. For arbitrary J the possibility
of describing the gravitational dynamics in terms of a metric theory is compromised: unimodular gravity is, as far
as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
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where ⇤⇤ is a constant of integration and we see that the energy violation current J is the source of a term in Einsteins
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The previous is the general framework where we will develop further our proposal. First, the previous equations
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as we know, the only relaxation of the standard general covariance requirements, allowing for violations of energy-
momentum conservation. Fortunately, in applications to cosmology the assumption of homogeneity and isotropy of
all physics at the scales of interest, implies integrability of J (this is because in this setting J only depends on ‘time’
when described in comoving coordinates).

Concretely we will assume that the spacetime metric at large scales is well approximated by the spatially flat
Friedman-Lemâıtre-Robertson-Walker (FLRW) metric (an assumption very well supported by empirical evidence),

ds2 = �c2dt2 + a2(t)d~x2.

We take the completely phenomenological view that granularity associated with the spacetime foam leads to a violation
of energy momentum conservation. The process is quantum gravitational so it must be controlled by the Planck scale
`p, and mediated (as argued before) by the presence of a non trivial scalar curvature or Ricci scalar which (from
Einsteins equations applied to the FLRW case) is given by
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where ⇢m is the massive matter density in the universe. The quantity ⇢m includes the baryonic matter density
and possibly dark matter (depending on the dark matter candidate of choice; yet this uncertainty will not play an
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the two quantities. During the relevant period the mat-
ter fields are assued to be in thermal equilibrium. The
density of the universe during radiation domination7 is
given by, ⇢ = ⇡2g⇤T

4/(30~3) where g⇤ ⇡ 100 is the ef-
fective degeneracy factor for the temperatures of interest
[13]. Taking into account that temperature scales like
1/a, using Friedman equation and H(a) = ȧ/a, one gets,
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for a radiation dominated universe. We will now focus
just on the leading contributions. In the ultra-relativistic
regime standard thermodynamics leads to the expression
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is a dimensionless correction factor that takes into ac-
count the temperature dependence of the quark mass
during the EW-transition, namely m2

t (T ) = m2

t (1 �
T 2/T 2

ew

). The end temperature T
end

is the one satisfying
2mt(Tend

) = T
end

when the top quark’s abundance drops
dramatically. The contribution of other massive particles
in the standard model, as well as those tied to simple dark
matter models such as WIMPS. will not a↵ect the order
of magnitude of the estimate. We note that aside from
the correction factor, ✏(T ) ⇡ 10�3—10�4 in the range
of interest, equation (11) could have been guessed from
dimensional analysis. After substitution of the di↵erent
quantities involved and taking T

ew

⇡ 100 GeV [14, 15],
we find:

�⇤ ⇡ 0.6↵⇤
obs

(13)

7 The assumption of radiation domination is appropriate here as
the contributions to the e↵ect in question come mainly from the
early times where R is large. Similarly, when a species becomes
non relativistic conservation of entropy implies that the temper-
ature jumps by reheating due to pair annihilation. This also
implies a temperature dependence of g⇤ as given in table 4.5 of
[13]. Such deviations from the a�1 behaviour of temperature
and the evolution of g⇤ produce only small corrections to our
estimates.
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Figure 1. The value of the phenomenological parameter ↵,
see eq. (6), that fits the observed value of ⇤

obs

as a function
of the electro-weak transition scale Tew in GeV.

where ⇤
obs

is the observed value of the cosmological con-
stant.
Our result is an order of magnitude estimate of the

model (6), and a refined calculation would require de-
tailed considerations of the dynamics of the electro-weak
transition. However, such details are not expected to
modify our result in essential ways. Just to give an idea
of the parametric dependence of the result we plot in Fig-
ure 1 the value of the dimensionless coupling ↵ needed to
fit the observed values as a function of T

ew

. This shows
a low sensitivity of the final value on the onset of the
electroweak transition.
We believe that our proposal has important implica-

tions of various types. At the theoretical level it provides
a novel view that could reconcile Planckian discreteness
and Lorentz invariance and gives possibly valuable in-
sights guiding the search for a theory of quantum grav-
ity. At the empirical level our analysis opens a new path
for searches of new physical manifestations of the grav-
ity/quantum interface.
Concerning the later we note that one might use (6)

to estimate the amount of energy loss in local experi-
ments. Presently (neglecting the cosmic expansion), we
find ⇢̇ ⇡ �↵(⇢/⇢

water

)210�70g/(cm3s) where ⇢
water

is the
density of sea water. The amount of energy produced
is maximal at the EW transition when the density of
the universe ⇢(T

ew

) ⇡ 1025g/cm3, and corresponds to
⇢̇(z⇤) + 3⇢H(a) ⇡ �↵ 10�20g/(cm3s). Such a miniscule
level of energy loss can not have significant e↵ects on the
matter dynamics, and thus would be hard, but not im-
possible to detect. Nevertheless, such phenomenon might
explain the observed late time acceleration of the expan-
sion rate of our universe.

Finally, as the model links ⇢ and its evolution with
the present value of the cosmological constant, and ⇢ di-
rectly enters in the computation of the structure forma-
tion leading to galaxies, stars and eventually humans,
this framework opens, in principle, a path that might
help in addressing the longly debated “coincidence prob-
lem” [13].
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fective degeneracy factor for the temperatures of interest
[13]. Taking into account that temperature scales like
1/a, using Friedman equation and H(a) = ȧ/a, one gets,

dT

T
= �da

a
= �T 2

r
8⇡G

3

⇡2g⇤
30~3| {z }

H(a)

dt, (9)

for a radiation dominated universe. We will now focus
just on the leading contributions. In the ultra-relativistic
regime standard thermodynamics leads to the expression

⇢� 3P ⇡ m2

tT
2

2~3 , (10)

where mt is the top mass respectively. Defining �⇤ ⌘
⇤� ⇤

0

, replacing the leading term in (10) and (9) into
(8), and using that ap/a(t) = T/mp, where mp is the
Planck mass one gets

�⇤ ⇡ ↵

r
320⇡

g⇤

m4

tTew

3

~2m5

p

✏(T
ew

) (11)

where

✏(T
ew

) = � 3

T 3

c

TendZ

Tew

✓
1� T 2

T 2

ew

◆
2

T 2dT (12)

is a dimensionless correction factor that takes into ac-
count the temperature dependence of the quark mass
during the EW-transition, namely m2

t (T ) = m2

t (1 �
T 2/T 2

ew

). The end temperature T
end

is the one satisfying
2mt(Tend

) = T
end

when the top quark’s abundance drops
dramatically. The contribution of other massive particles
in the standard model, as well as those tied to simple dark
matter models such as WIMPS. will not a↵ect the order
of magnitude of the estimate. We note that aside from
the correction factor, ✏(T ) ⇡ 10�3—10�4 in the range
of interest, equation (11) could have been guessed from
dimensional analysis. After substitution of the di↵erent
quantities involved and taking T

ew

⇡ 100 GeV [14, 15],
we find:

�⇤ ⇡ 0.6↵⇤
obs

(13)

7 The assumption of radiation domination is appropriate here as
the contributions to the e↵ect in question come mainly from the
early times where R is large. Similarly, when a species becomes
non relativistic conservation of entropy implies that the temper-
ature jumps by reheating due to pair annihilation. This also
implies a temperature dependence of g⇤ as given in table 4.5 of
[13]. Such deviations from the a�1 behaviour of temperature
and the evolution of g⇤ produce only small corrections to our
estimates.

Figure 1. The value of the phenomenological parameter ↵,
see eq. (6), that fits the observed value of ⇤

obs

as a function
of the electro-weak transition scale Tew in GeV.

where ⇤
obs

is the observed value of the cosmological con-
stant.
Our result is an order of magnitude estimate of the

model (6), and a refined calculation would require de-
tailed considerations of the dynamics of the electro-weak
transition. However, such details are not expected to
modify our result in essential ways. Just to give an idea
of the parametric dependence of the result we plot in Fig-
ure 1 the value of the dimensionless coupling ↵ needed to
fit the observed values as a function of T

ew

. This shows
a low sensitivity of the final value on the onset of the
electroweak transition.
We believe that our proposal has important implica-

tions of various types. At the theoretical level it provides
a novel view that could reconcile Planckian discreteness
and Lorentz invariance and gives possibly valuable in-
sights guiding the search for a theory of quantum grav-
ity. At the empirical level our analysis opens a new path
for searches of new physical manifestations of the grav-
ity/quantum interface.
Concerning the later we note that one might use (6)

to estimate the amount of energy loss in local experi-
ments. Presently (neglecting the cosmic expansion), we
find ⇢̇ ⇡ �↵(⇢/⇢

water

)210�70g/(cm3s) where ⇢
water

is the
density of sea water. The amount of energy produced
is maximal at the EW transition when the density of
the universe ⇢(T

ew

) ⇡ 1025g/cm3, and corresponds to
⇢̇(z⇤) + 3⇢H(a) ⇡ �↵ 10�20g/(cm3s). Such a miniscule
level of energy loss can not have significant e↵ects on the
matter dynamics, and thus would be hard, but not im-
possible to detect. Nevertheless, such phenomenon might
explain the observed late time acceleration of the expan-
sion rate of our universe.

Finally, as the model links ⇢ and its evolution with
the present value of the cosmological constant, and ⇢ di-
rectly enters in the computation of the structure forma-
tion leading to galaxies, stars and eventually humans,
this framework opens, in principle, a path that might
help in addressing the longly debated “coincidence prob-
lem” [13].
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Discussion
• Violations of energy momentum conservation are natural in an e↵ective

description of a fundamentally discrete physics in terms of smooth fields

on smooth spacetime geometry.

• When integrable such violations can be describe in terms of UG, and they

feed a dark energy term in the Einsteins equations.

• Integrability is trivial in FLRW spacetimes. UG is the most general de-

scription of this type of di↵usion in cosmology.

• Vacuum energy does not gravitate in UG.

• Tiny violations (hard to detect in local experiments) can have an impor-

tant cosmological influence.

• We predict the correct order of magnitude for dark energy using: the

structure of UG, the idea that only massive fields are main probes of

discreteness (Lorentz invariance), and some assumptions on the physics

beyond the standard model.

• Can one find another (independent) implication of these ideas?
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\begin{itemize}

\item Violations of energy momentum conservation are natural in an effective description of a fundamentally discrete physics in terms of smooth fields on smooth spacetime geometry.

\item When integrable such violations can be describe in terms of UG, and they feed a dark energy term in the Einsteins equations.

\item Integrability is trivial in FLRW spacetimes. UG is the most general description of this type of diffusion in cosmology.

\item Vacuum energy does not gravitate in UG.

\item Tiny violations (hard to detect in local experiments) can have an important cosmological influence.

\item We predict the correct order of magnitude for dark energy using: the structure of UG, the idea that only massive fields are main probes of discreteness (Lorentz invariance), and some assumptions on the physics beyond the standard model.

\item Can one find another (independent) implication of these ideas?

\end{itemize}
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