(based on PRD 92, 2015 \& 94, 2016)
In collaboration with:
George Pappas
Hector Okada
Emanuele Berti

$$
G_{\mu \nu}=8 \pi T_{\mu \nu} ?
$$

Kostas Glampedakis
UNIVERSIDAD DE MURCIA

- IAPP March 2017

Outline

- Neutron stars as gravity probes.
- Gravity-matter degeneracy in neutron stars.
- The post-TOV formalism (interior and exterior).
- Astrophysical applications: redshift, X-ray bursts and QPOs.
- Further/future extensions of the formalism.

GR-exit?

- General Relativity is arguably the most elegant theory invented so far and is, most likely, The theory of (classical) gravity.
- Good science: test all theories, no matter how elegant!
- Build phenomenology \rightarrow how "special" is GR?

- A host of modified theories of gravity on the market.

The zoo of gravity theories

Theory	Field content	Strong EP	Massless graviton	Lorentz symmetry	Linear $T_{\mu \nu}$	Weak EP	Wellposed?	Weak-field constraints
Extra scalar field								
Scalar-tensor	S	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark [30]	[31-33]
Multiscalar	S	x	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$?	[34
Metric $f(R)$	S	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark [35,36	37
Quadratic gravity								
Gauss-Bonnet	S	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark ?	[38]
Chern-Simons	P	x	\checkmark	\checkmark	\checkmark	\checkmark	$x \checkmark$? [39]	40
Generic	S/P	x	\checkmark	\checkmark	\checkmark	\checkmark	?	
Horndeski	S	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark ?	
Lorentz-violating								
E-gravity	SV	x	\checkmark	x	\checkmark	\checkmark	\checkmark ?	41-44]
Khronometric/								
Hor̃ava-Lifshitz	S	x	\checkmark	x	\checkmark	\checkmark	\checkmark ?	[43 46
n -DBI	S	x	\checkmark	x	\checkmark	\checkmark	?	none ([47])
dRGT/Bimetric	SVT	x	x	\checkmark	\checkmark	\checkmark	?	[16]
Galileon	S	x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark ?	[16,48]
Nondynamical fields								
Palatini $f(R)$	-	\checkmark	\checkmark	\checkmark	x	\checkmark	\checkmark	none
Eddington-Born-Infeld	-	\checkmark	\checkmark	\checkmark	x	\checkmark	?	none
Others, not covered here								
TeVeS	SVT	x	\checkmark	\checkmark	\checkmark	\checkmark	?	33]
$f(R) \mathcal{L}_{m}$?	?	\checkmark	\checkmark	\checkmark	x	?	
$f(T)$?	x	\checkmark	x	\checkmark	\checkmark	?	[49]

[Berti et al. 2015]

Testing strong gravity

Probably the "cleanest" probes of gravity, although the Kerr metric (and its geodesics) is not unique to GR.

Many observational "handles" but intrinsically plagued by a mattergravity degeneracy.

Need to go beyond the scale factor $\alpha(t)$, typically this can be "reverse-engineered" by the extra degrees of freedom. The vacuum energy puzzle persists in other theories.

Neutron stars on a napkin

- Relativistic objects $R / M \sim 5$.
- Supra-nuclear density matter.
- Lots of exotic physics (superfluidity, superconductivity, deconfined quarks ...).

- Fast rotation, strong B-fields.
- Future experiments (SKA, NICER ...) should provide accurate NS information (masses, radii).

$$
\begin{aligned}
& M \sim M_{\mathrm{P}}\left(\frac{M_{\mathrm{P}}}{m_{n}}\right)^{2} \approx 1.5 M_{\odot} \\
& R \sim \lambda_{n} \frac{M_{\mathrm{P}}}{m_{n}} \approx 10^{6} \mathrm{~cm} \\
& f_{\mathrm{spin}} \lesssim 1 \mathrm{kHz}
\end{aligned}
$$

Recipe for building neutron stars

Pick your favourite theory

Use perfect fluid stress-energy tensor

Recipe for building neutron stars

Done many times!

[Berti et al. 2015]

Theory	NR	Structure SR	FR	Collapse	Sensitivities	Stability	Geodesics
Extra scalar field							
Scalar-Tensor	[109-114]	[112, 115, 116]	[117-119]	[120-127]	[128]	[129-139]	[118, 140]
Multiscalar	?	?	?	?	?	?	?
Metric $f(R)$	[141-153]	[154]	[155]	[156, 157]	?	[158, 159]	?
Quadratic gravity							
Gauss-Bonnet	[160]	[160]	[77]	?	?	?	?
Chern-Simons	$\equiv \mathrm{GR}$	[25, 40, 161-163]	?	?	[162]	?	?
Horndeski	?	?	?	?	?	?	?
Lorentz-violating							
Æ-gravity	[164, 165]	?	?	166]	[43, 44]	158]	?
Khronometric/							
Hořava-Lifshitz	[167]	?	?	?	[43, 44]	?	?
n -DBI	?	?	?	?	?	?	?
Massive gravity							
dRGT/Bimetric	[168, 169]	?	?	?	?	?	?
Galileon	[170]	[170]	?	[171, 172]	?	?	?
Nondynamical fields							
Palatini $f(R)$	[173-177]	?	?	?	-	?	?
Eddington-Born-Infeld	[178-184]	[178, 179]	?	179]	-	[185, 186]	?

$\mathrm{NR}=$ non-rotating, $\mathrm{SR}=$ slow rotation, $\mathrm{FR}=$ fast rotation

"Matter-gravity" degeneracy

Fixed gravity theory (GR), varying EoS

"Matter-gravity" degeneracy

Fixed EoS (APR), varying gravity
(different theories can cause similar deviations from GR)

A different approach

- Do not commit to any particular "favourite" theory of gravity.
- Parametrize deviations from GR in a PPN theory-manner.
- At the same time allow for strong gravity, by going beyond "simple" PN expansions.
- Examples from the literature:
"Bumpy" or "quasi-Kerr" BH metrics, "post-Friedmannian" cosmology, "post-Einsteinian" GW waveforms.

Strategy for a "post-TOV" formalism

- This is a formalism for relativistic stars in spherical symmetry (i.e. no rotation), not a fully-fledged theory of gravity.

- Main idea:

augment the General Relativistic TOV stellar structure equations by adding 1PN and 2PN corrections with arbitrary coefficients. These terms are to be built out of the available parameters:

$$
p, \rho, \Pi, m, r \quad \text { matter energy density: } \epsilon=\rho(1+\Pi)
$$

- The hydrostatic equations for the pressure $p(r)$ and mass function $m(r)$ take the symbolic form:

$$
\frac{d p}{d r}=\left(\frac{d p}{d r}\right)_{\mathrm{GR}}+\{\text { PN corrections }\}, \frac{d m}{d r}=\left(\frac{d m}{d r}\right)_{\mathrm{GR}}+\{\text { PN corrections }\}
$$

Looking for post-TOV corrections

-1PN order: these can be extracted from the existing PPN theory:

$$
\Lambda_{1} \sim \Pi, \frac{m}{r}, \frac{r^{3} p}{m}
$$

- 2PN : use dimensional analysis (excluding the presence of dimensional coupling constants):

General 2PN term (dimensionless): $\Lambda_{2} \sim \Pi^{\theta}\left(r^{2} p\right)^{\alpha}\left(r^{2} \rho\right)^{\beta}\left(\frac{m}{r}\right)^{2-2 \alpha-\beta-\theta}$

- Limits on $\{\alpha, \beta, \theta\}$: (i) avoid divergence at the stellar center/surface and (ii) assume field equations linear in the stress-energy tensor:

$$
\begin{gathered}
\{\text { geometry }\} \sim 8 \pi T^{\mu \nu} \\
\{\text { geometry }\} \sim(\epsilon+\tau p)^{n} \\
\tau, n=\mathcal{O}(1)
\end{gathered}
$$

$$
\begin{aligned}
& \beta \geq-1 \\
& 0 \leq \theta \leq 2 \text { or } 3 \\
& 0 \leq \alpha \leq 2-\theta \text { or } 3-\theta
\end{aligned}
$$

- In principle, there are infinite 2PN terms ...

It's all about Families!

Family	2PN term	(α, β, θ)
F1	$m^{3} /\left(r^{5} \rho\right)$	$(0,-1,0)$
F2	$(m / r)^{2}$	$(0,0,0)$
F2	$r m \rho$	$(0,1,0)$
F3	$m p /(r \rho)$	$(1,-1,0)$
F3	$r^{2} p$	$(1,0,0)$
F3	$\Pi m^{2} /\left(r^{4} \rho\right)$	$(0,-1,1)$
F3	$\Pi m / r$	$(0,0,1)$
F3	$r^{2} \Pi \rho$	$(0,1,1)$
F4	$r^{3} p^{2} /(\rho m)$	$(2,-1,0)$
F4	$r^{6} p^{2} /\left(m^{2}\right)$	$(2,0,0)$
F4	$\Pi p / \rho$	$(1,-1,1)$
F4	$\Pi r^{3} p / m$	$(1,0,1)$
F4	$\Pi^{2} m /\left(r^{3} \rho\right)$	$(0,-1,2)$
F4	Π^{2}	$(0,0,2)$
F5	$\Pi r^{4} p^{2} /\left(\rho m^{2}\right)$	$(2,-1,1)$
F5	$\Pi r^{7} p^{2} / m^{3}$	$(2,0,1)$
F5	$\Pi^{2} r p / m \rho$	$(1,-1,2)$
F5	$\Pi^{2} r^{4} p / m^{2}$	$(1,0,2)$
F5	$\Pi^{3} /\left(r^{2} \rho\right)$	$(0,-1,3)$
F5	$\Pi^{3} r / m$	$(0,0,3)$

Families: $M-R$ self-similarity

Remarkably, the 2PN terms of the same family lead to self-similar M-R curves when added as post-TOV corrections (results shown assume APR but have been verified for other EoS too).

Post-TOV structure equations (I)

$$
\begin{aligned}
& \frac{d p}{d r}=\left(\frac{d p}{d r}\right)_{\mathrm{GR}}-\frac{\rho m}{r^{2}}\left(\mathcal{P}_{1}+\mathcal{P}_{2}\right) \\
& \frac{d m}{d r}=\left(\frac{d m}{d r}\right)_{\mathrm{GR}}+4 \pi r^{2} \rho\left(\mathcal{M}_{1}+\mathcal{M}_{2}\right)
\end{aligned}
$$

-1PN-order corrections:

$$
\begin{aligned}
\mathcal{P}_{1} & =\delta_{1} \frac{m}{r}+4 \pi \delta_{2} \frac{r^{3} p}{m} \\
\mathcal{M}_{1} & =\delta_{3} \frac{m}{r}+\delta_{4} \Pi
\end{aligned}
$$

- Current PPN limits: $\left|\delta_{i}\right| \ll 1 \rightarrow\left|\mathcal{P}_{1}\right|,\left|\mathcal{M}_{1}\right| \ll 1$

1PN terms can be ignored

Post-TOV structure equations (II)

$$
\frac{d p}{d r} \approx\left(\frac{d p}{d r}\right)_{\mathrm{GR}}-\frac{\rho m}{r^{2}} \mathcal{P}_{2} \quad \frac{d m}{d r} \approx\left(\frac{d m}{d r}\right)_{\mathrm{GR}}+4 \pi r^{2} \rho \mathcal{M}_{2}
$$

use just one representative term per family

- 2PN-order corrections:
self-similarity: all other terms are accounted for by varying the corresponding coefficient
$\left\{\pi_{i}, \mu_{i}\right\} \leftrightarrow F_{i}$ family

$$
\begin{aligned}
& \mathcal{P}_{2}=\pi_{1} \frac{m^{3}}{r^{5} \rho}+\pi_{2} \frac{m^{2}}{r^{2}}+\pi_{3} r^{2} p+\pi_{4} \frac{\Pi p}{\rho} \\
& \mathcal{M}_{2}=\mu_{1} \frac{m^{3}}{r^{5} \rho}+\mu_{2} \frac{m^{2}}{r^{2}}+\mu_{3} r^{2} p+\mu_{4} \frac{\Pi p}{\rho}+\mu_{5} \Pi^{3} \frac{r}{m}
\end{aligned}
$$

post-TOV: sample of $M-R$ curves

Post-TOV as "effective GR"

- The post-TOV equations can be mapped onto an effective GR formulation:

$$
\nabla_{\nu} T_{\mathrm{eff}}^{\mu \nu}=0, \quad T_{\mathrm{eff}}^{\mu \nu}=\left(\epsilon_{\mathrm{eff}}+p\right) u^{\mu} u^{\nu}+p g^{\mu \nu}
$$

$$
\frac{d p}{d r}=-\frac{1}{2}\left(\epsilon_{\mathrm{eff}}+p\right) \frac{d \nu}{d r} \quad \frac{d m}{d r}=4 \pi r^{2} \epsilon_{\mathrm{eff}}
$$

- Gravity-shifted effective EoS:

$$
p=p\left(\epsilon_{\mathrm{eff}}\right), \quad \epsilon_{\mathrm{eff}}=\epsilon+\rho \mathcal{M}_{2}
$$

- Effective interior metric:

$$
g_{\mu \nu}=\operatorname{diag}\left[-e^{\nu(r)},(1-2 m(r) / r)^{-1}, r^{2}, r^{2} \sin ^{2} \theta\right]
$$

Exterior metric (I)

- Our scheme also allows the construction of an exterior metric.
- Set all fluid parameters to zero: $p=\epsilon=\rho=\Pi=0$
$\left\{\frac{d \nu}{d r}=\left(\frac{d \nu}{d r}\right)_{\mathrm{GR}}+2\left(\pi_{2}-\mu_{2}\right) \frac{m^{3}}{r^{4}}\right.$
- The resulting post-TOV equations are:

$$
\frac{d m}{d r}=4 \pi \mu_{1} \frac{m^{3}}{r^{3}}
$$

- Integrating and keeping the leading post-TOV terms:

$$
\begin{array}{cc}
m(r) \approx M_{\infty}\left(1-2 \pi \mu_{1} \frac{M_{\infty}^{2}}{r^{2}}\right) \quad & \Rightarrow \quad M \approx \underbrace{M_{\infty}}_{\text {ADM mass }}\left(1-2 \pi \mu_{1} \frac{M_{\infty}^{2}}{R^{2}}\right) \\
\nu(r) \approx \log \left(1-\frac{2 M_{\infty}}{r}\right)-\frac{2 \chi}{3} \frac{M_{\infty}^{3}}{r^{3}} & \text { Schwarzschild mass } M \equiv m(R)
\end{array}
$$

Exterior metric (II)

- We assume the same effective metric form as in the interior:

$$
g_{\mu \nu}=\operatorname{diag}\left[-e^{\nu(r)},(1-2 m(r) / r)^{-1}, r^{2}, r^{2} \sin ^{2} \theta\right]
$$

- The exterior metric takes a post-Schwarzschild form:

$$
\begin{aligned}
& g_{t t}(r) \approx-\left(1-\frac{2 M_{\infty}}{r}\right)+\frac{2 \chi}{3} \frac{M_{\infty}^{3}}{r^{3}} \\
& g_{r r}(r) \approx\left(1-\frac{2 M_{\infty}}{r}\right)^{-1}-4 \pi \mu_{1} \frac{M_{\infty}^{3}}{r^{3}}
\end{aligned}
$$

where $\chi=\pi_{2}-\mu_{2}-2 \pi \mu_{1}$

post-TOV: astrophysics

Surface redshift (I)

- The first "observable" we can construct is surface redshift (of absorption \& emission lines). This is defined in the usual way:

$$
z_{s}=\frac{f_{s}}{f_{\infty}}-1 \quad \text { compactness } C=M_{\infty} / R
$$

- For any static spacetime:

$$
z_{s}(C)=\underbrace{(1-2 C)^{-1 / 2}-1}+\frac{\chi}{3} C^{3}
$$

$\frac{f_{\infty}}{f_{s}}=\left[\frac{g_{t t}(R)}{g_{t t}(\infty)}\right]^{1 / 2} \Rightarrow$

GR part

$$
C\left(z_{s}\right)=\frac{1}{2}\left[1-\left(1+z_{s}\right)^{-2}\right]\left(1-\frac{\chi}{3} z_{s}^{2}\right)
$$

Surface redshift (II)

- The redshift depends only on $\chi=\pi_{2}-\mu_{2}-2 \pi \mu_{1} \Rightarrow$ degeneracy!

Thermonuclear bursts (I)

- These are X-ray flashes produced by nuclear detonation of accreted matter on the surface of a neutron star.
- We follow the recipe of Psaltis (2008).

all relations as in GR
- The observed flux \& apparent radius:

$$
L_{\infty}=4 \pi D^{2} F_{\infty}=\sigma_{\mathrm{SB}} S_{\mathrm{app}} \bar{T}_{\infty}^{4}
$$

$$
R_{\mathrm{app}} \equiv\left(\frac{S_{\mathrm{app}}}{4 \pi}\right)^{1 / 2}=D\left(\frac{F_{\infty}}{\sigma_{\mathrm{SB}} \bar{T}_{\infty}^{4}}\right)^{1 / 2}
$$

- Relation between the "colour" and effective BB temperature:

$$
\underbrace{\bar{T}_{\infty}}_{\text {lrom }_{\text {from }}^{\text {trum }} \begin{array}{c}
\text { colour } \\
\text { correction" }
\end{array}}=\underbrace{T_{\text {eff }}}_{f_{c} \sqrt{-g_{t t}(R)}}
$$

$$
L_{s}=4 \pi R^{2} \sigma_{\mathrm{SB}} T_{\mathrm{eff}}^{4}
$$

$$
\text { conserved number } L_{\infty}=-g_{t t}(R) L_{s}
$$

of emitted photons:

Thermonuclear bursts (II)

- The second key observable is the Eddington flux ("touchdown luminosity"):

$$
L_{\mathrm{E}}^{\infty}=4 \pi D^{2} F_{\mathrm{E}}^{\infty}=\underbrace{\frac{4 \pi}{\kappa} \frac{R^{2}}{\left(1+z_{s}\right)^{2}}}_{\begin{array}{c}
\text { opacity of matter } \\
\text { (Thomson scattering) }
\end{array}} g_{\mathrm{eff}} \Rightarrow g_{\mathrm{eff}}=\kappa \sigma_{\mathrm{SB}} \frac{F_{\mathrm{E}}^{\infty}}{F_{\infty}}\left(\frac{\bar{T}_{\infty}}{f_{c}}\right)^{4}\left(1+z_{s}\right)^{4}
$$

- Only the effective surface " g " takes a non-GR form:

$$
g_{\mathrm{eff}}=\frac{1}{2 \sqrt{g_{r r}(R)}} \frac{g_{t t}^{\prime}(R)}{g_{t t}(R)} \Rightarrow g_{\mathrm{eff}}=\frac{z_{s}}{2 R} \frac{\left(2+z_{s}\right)}{\left(1+z_{s}\right)}\left(1+\frac{2}{3} \chi z_{s}^{2}\right)
$$

- Combine the above equations to produce a relation:

$$
f\left(\chi, z_{s}\right)=\text { observables }
$$

X-ray bursts (III)

$$
\frac{z_{s}\left(2+z_{s}\right)}{\left(1+z_{s}\right)^{4}}\left(1+\frac{2}{3} x z_{s}^{2}\right)=2 \kappa D \frac{F_{c}^{\infty}}{f_{e}^{2}}\left(\frac{\sigma_{s B} T_{T_{\infty}^{4}}^{4}}{F_{\infty}}\right)^{1 / 2}
$$

measure redshift to get χ !

Geodesics \& QPOs (I)

- In the most popular models, QPOs from accreting systems are associated with geodesic frequencies (the reality, the situation may not be that simple!)
- Azimuthal frequency :

$$
\Omega_{\varphi}^{2}=-\frac{g_{t t}^{\prime}}{g_{\varphi \varphi}^{\prime}} \approx \frac{M_{\infty}}{r^{3}}\left(1+\chi \frac{M_{\infty}^{2}}{r^{2}}\right)
$$

- Radial (epicyclic) frequency:

$$
\Omega_{r}^{2}=-\frac{g^{r r}}{2 \dot{t}^{2}} V_{\mathrm{eff}}^{\prime \prime}(r) \approx \frac{M_{\infty}}{r^{3}}\left(1-\frac{6 M_{\infty}}{r}-\chi \frac{M_{\infty}^{2}}{r^{2}}\right)
$$

- ISCO radius: $\quad r_{\text {isco }} \approx 6 M_{\infty}\left(1+\frac{19}{324} \chi\right)$

Geodesics \& QPOs (II)

post-TOV: how general is it?

- Modified theories of gravity typically include one (or, less frequently, more) additional dynamical degrees of freedom (e.g. a scalar field)
- Our post-TOV formalism, featuring only two equations for $\mathrm{d} p / \mathrm{d} r, \mathrm{~d} m / \mathrm{d} r$, implies that the extra d.o.f. ψ can be expressed in terms of the matter variables, i.e. $\psi=\psi(p, \rho, \Pi)$, when building a NS.
- This is the case for scalar-tensor theory and the same is likely true for other theories with a single extra d.o.f.
- By construction, the post-TOV scheme assumes "small" departures from GR, so it may not capture non-perturbative effects like "spontaneous scalarization".

Outlook

- The post-TOV formalism is a toolkit for building relativistic stellar models with small/moderate departures from GR.
- Its parametrised form should (eventually) encompass a large class of modified theories of gravity.
- Plenty of extensions:
- Include dimensional coupling constants (in progress): more post-TOV terms but families still exist.
- Map formalism onto various alternative theories. Capture non-linear effects (e.g. scalarisation).
- Add slow rotation: necessary step for a realistic framework.
- Study I-Q "universal" relations
(and perhaps break matter-gravity degeneracy?)

