Post-TOV modelling of relativistic stars and astrophysical applications

(based on PRD 92, 2015 & 94, 2016)
In collaboration with:
George Pappas
Hector Okada
Emanuele Berti

IAP, March 2017

 $G_{\mu\nu} = 8\pi T_{\mu\nu} ?$

Kostas Glampedakis

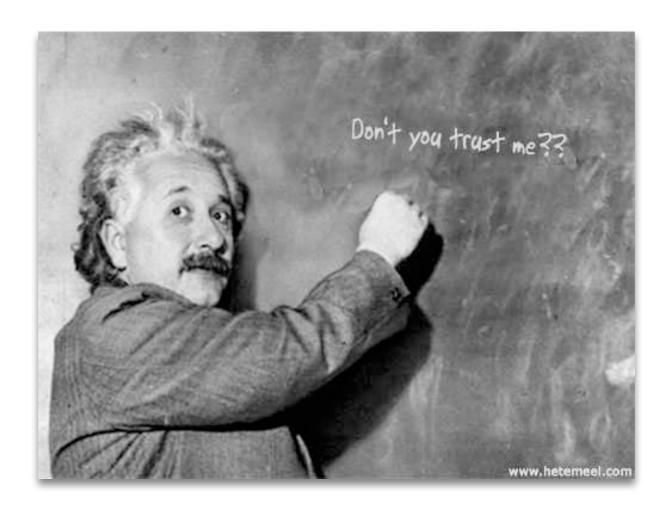
UNIVERSIDAD DE MURCIA

Outline

- Neutron stars as gravity probes.
- Gravity-matter degeneracy in neutron stars.
- The post-TOV formalism (interior and exterior).
- Astrophysical applications: redshift, X-ray bursts and QPOs.
- Further/future extensions of the formalism.

GR-exit?

- General Relativity is arguably the most elegant theory invented so far and is, most likely, *The* theory of (classical) gravity.
- Good science: test all theories, no matter how elegant!
- Build phenomenology -> how "special" is GR?
- A host of modified theories of gravity on the market.

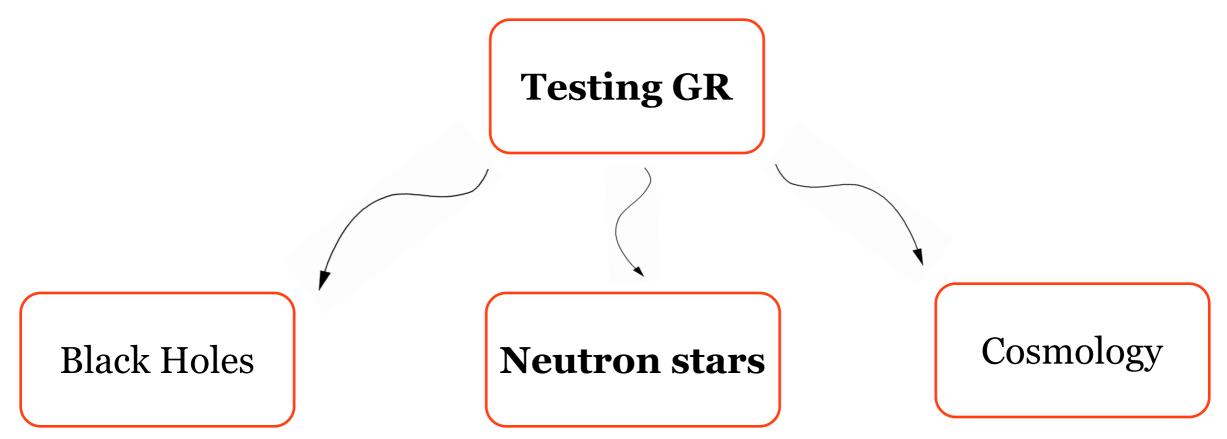


The zoo of gravity theories

Theory	Field content	Strong EP	Massless graviton	Lorentz symmetry	Linear $T_{\mu\nu}$	Weak EP	Well- posed?	Weak-field constraints
Extra scalar field								
Scalar-tensor	S	×	✓	✓	✓	✓	√ [30]	[31 - 33]
Multiscalar	S	×	✓	✓	✓	✓	√?	34
Metric $f(R)$	S	×	✓	✓	✓	✓	√ 35,36	34 37
Quadratic gravity		1						
Gauss-Bonnet	S	×	✓	✓	✓	✓	√?	38
Chern-Simons	Р	×	✓	✓	✓	✓	X √? [39]	40
Generic	S/P	×	✓	✓	✓	✓	?	<u> </u>
Horndeski	S	×	✓	✓	✓	✓	√?	
Lorentz-violating		1					1	
Æ-gravity	SV	×	✓	×	✓	✓	√?	41 - 44
Khronometric/								
Hořava-Lifshitz	S	×	✓	×	\checkmark	✓	√?	43-46
n-DBI	S	×	✓	×	\checkmark	✓	?	none ([47])
Massive gravity								
dRGT/Bimetric	SVT	×	×	\checkmark	\checkmark	✓	?	[16]
Galileon	S	×	✓	✓	\checkmark	✓	√?	[16, 48]
Nondynamical fields								
Palatini $f(R)$	_	 ✓ 	✓	✓	×	✓	 ✓ 	none
Eddington-Born-Infeld	_	 ✓ 	✓	✓	×	✓	?	none
Others, not covered here								
TeVeS	SVT	×	✓	\checkmark	\checkmark	\checkmark	?	[33]
$f(R)\mathcal{L}_m$?	?	✓	\checkmark	\checkmark	×	?	
f(T)	?	×	✓	×	\checkmark	\checkmark	?	[49]

[Berti et al. 2015]

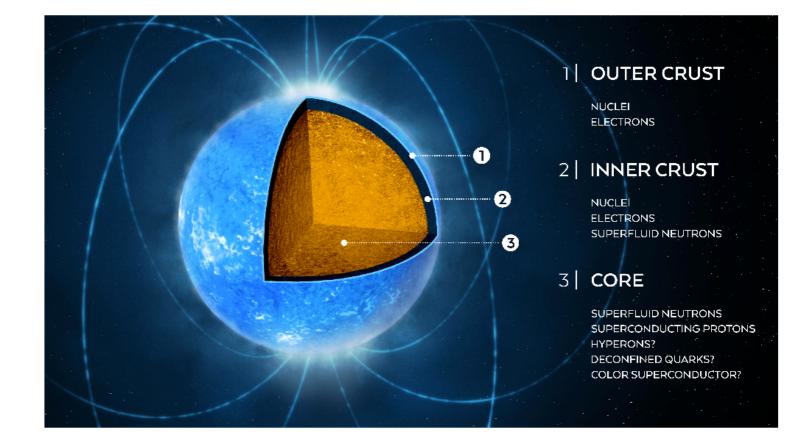
Testing strong gravity



Probably the "cleanest" probes of gravity, although the Kerr metric (and its geodesics) is not unique to GR. Many observational "handles" but intrinsically plagued by a mattergravity degeneracy. Need to go beyond the scale factor $\alpha(t)$, typically this can be "reverse-engineered" by the extra degrees of freedom. The vacuum energy puzzle persists in other theories.

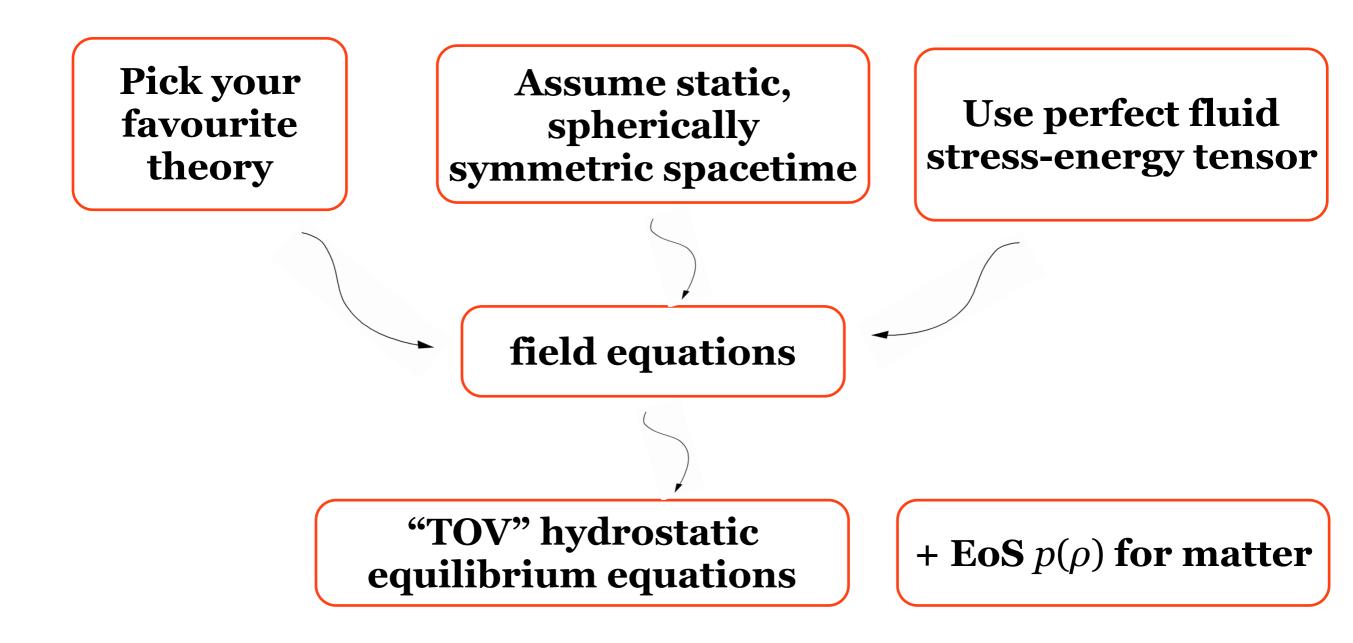
Neutron stars on a napkin

- Relativistic objects $R/M \sim 5$.
- Supra-nuclear density matter.
- Lots of exotic physics (superfluidity, superconductivity, deconfined quarks ...).
- Fast rotation, strong B-fields.
- Future experiments (SKA, NICER ...) should provide accurate NS information (masses, radii).



$$\begin{split} M &\sim M_{\rm P} \left(\frac{M_{\rm P}}{m_n}\right)^2 \approx 1.5 \, M_{\odot} \\ R &\sim \lambda_n \frac{M_{\rm P}}{m_n} \approx 10^6 \, {\rm cm} \\ f_{\rm spin} \lesssim 1 \, {\rm kHz} \end{split}$$

Recipe for building neutron stars



Recipe for building neutron stars

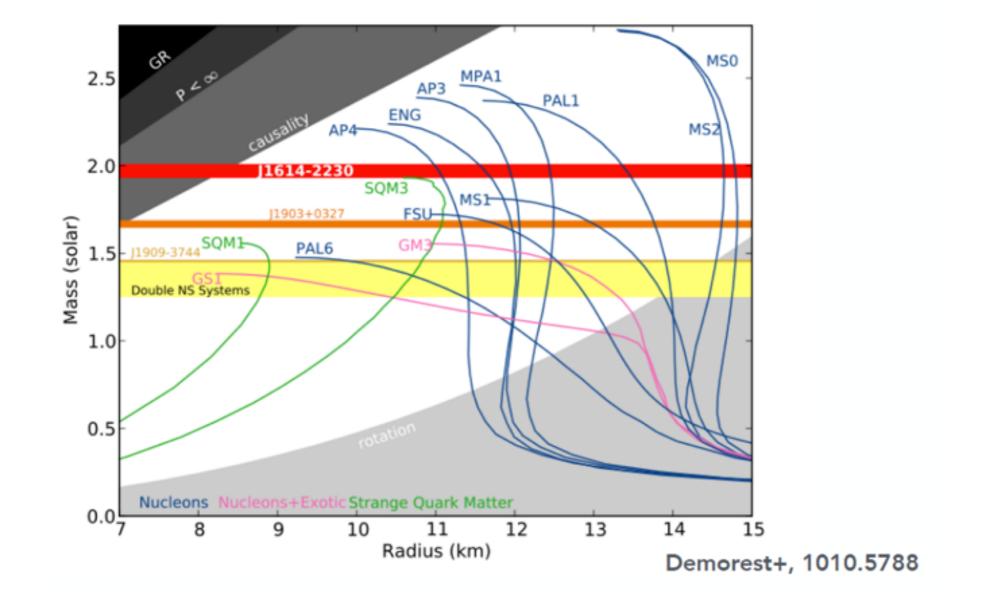
Done many times!

[Berti et al. 2015]

Theory		Structure		Collapse	Sensitivities	Stability	Geodesics
	NR	\mathbf{SR}	\mathbf{FR}				
Extra scalar field							
Scalar-Tensor	[109-114]	[112, 115, 116]	[117 - 119]	[120 - 127]	[128]	[129 - 139]	[118, 140]
Multiscalar	?	?	?	?	?	?	?
Metric $f(R)$	[141 - 153]	[154]	[155]	[156, 157]	?	[158, 159]	?
Quadratic gravity							
Gauss-Bonnet	[160]	[160]	[77]	?	?	?	?
Chern-Simons	$\equiv GR$	[25, 40, 161 - 163]	?	?	[162]	?	?
Horndeski	?	?	?	?	?	?	?
Lorentz-violating							
Æ-gravity	[164, 165]	?	?	[166]	[43, 44]	[158]	?
Khronometric/							
Hořava-Lifshitz	[167]	?	?	?	[43, 44]	?	?
n-DBI	?	?	?	?	?	?	?
Massive gravity							
dRGT/Bimetric	168,169	?	?	?	?	?	?
Galileon	170	[170]	?	[171, 172]	?	?	?
Nondynamical fields							
Palatini $f(R)$	[173 - 177]	?	?	?	_	?	?
Eddington-Born-Infeld	178 - 184	[178, 179]	?	[179]	_	[185, 186]	?

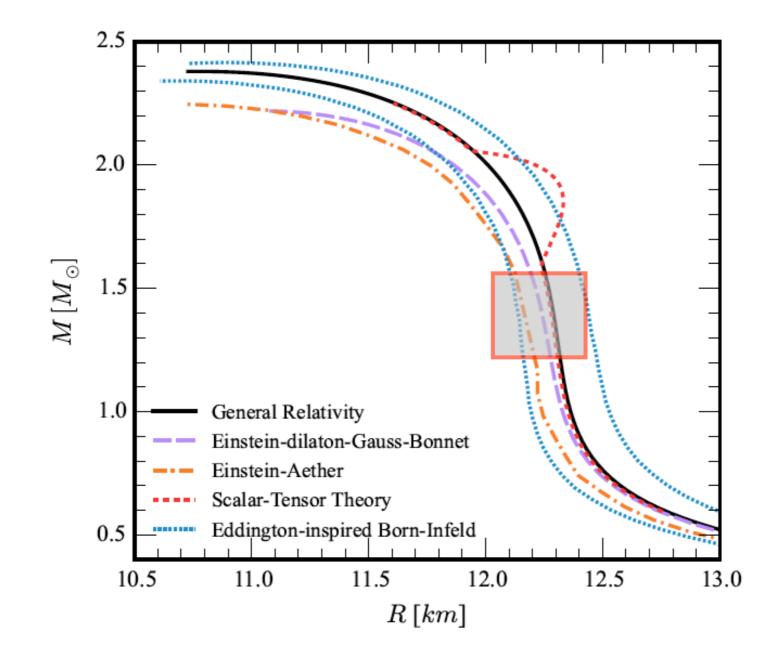
NR = non-rotating, SR = slow rotation, FR = fast rotation

"Matter-gravity" degeneracy



Fixed gravity theory (GR), varying EoS

"Matter-gravity" degeneracy



Fixed EoS (APR), varying gravity

(different theories can cause similar deviations from GR)

A different approach

- Do not commit to any particular "favourite" theory of gravity.
- Parametrize deviations from GR in a PPN theory-manner.
- At the same time allow for strong gravity, by going beyond "simple" PN expansions.
- Examples from the literature:
 "Bumpy" or "quasi-Kerr" BH metrics,
 "post-Friedmannian" cosmology,
 "post-Einsteinian" GW waveforms.

Strategy for a "post-TOV" formalism

• This is a formalism for *relativistic stars in spherical symmetry* (i.e. no rotation), *not* a fully-fledged theory of gravity.

• Main idea:

augment the General Relativistic TOV stellar structure equations by adding 1PN and 2PN corrections with *arbitrary coefficients*. These terms are to be built out of the available parameters:

$$p, \ \rho, \ \Pi, \ m, \ r$$
 matter energy density: $\epsilon = \rho(1 + \Pi)$

• The hydrostatic equations for the pressure *p*(*r*) and mass function *m*(*r*) take the symbolic form:

$$\frac{dp}{dr} = \left(\frac{dp}{dr}\right)_{\rm GR} + \{\text{PN corrections}\}, \quad \frac{dm}{dr} = \left(\frac{dm}{dr}\right)_{\rm GR} + \{\text{PN corrections}\}$$

Looking for post-TOV corrections

• **1PN order**: these can be extracted from the existing PPN theory:

$$\Lambda_1 \sim \Pi, \ \frac{m}{r}, \ \frac{r^3 p}{m}$$

• **2PN** : use dimensional analysis (excluding the presence of dimensional coupling constants):

General 2PN term (dimensionless): $\Lambda_2 \sim \Pi^{\theta} (r^2 p)^{\alpha} (r^2 \rho)^{\beta} \left(\frac{m}{r}\right)^{2-2\alpha-\beta-\theta}$

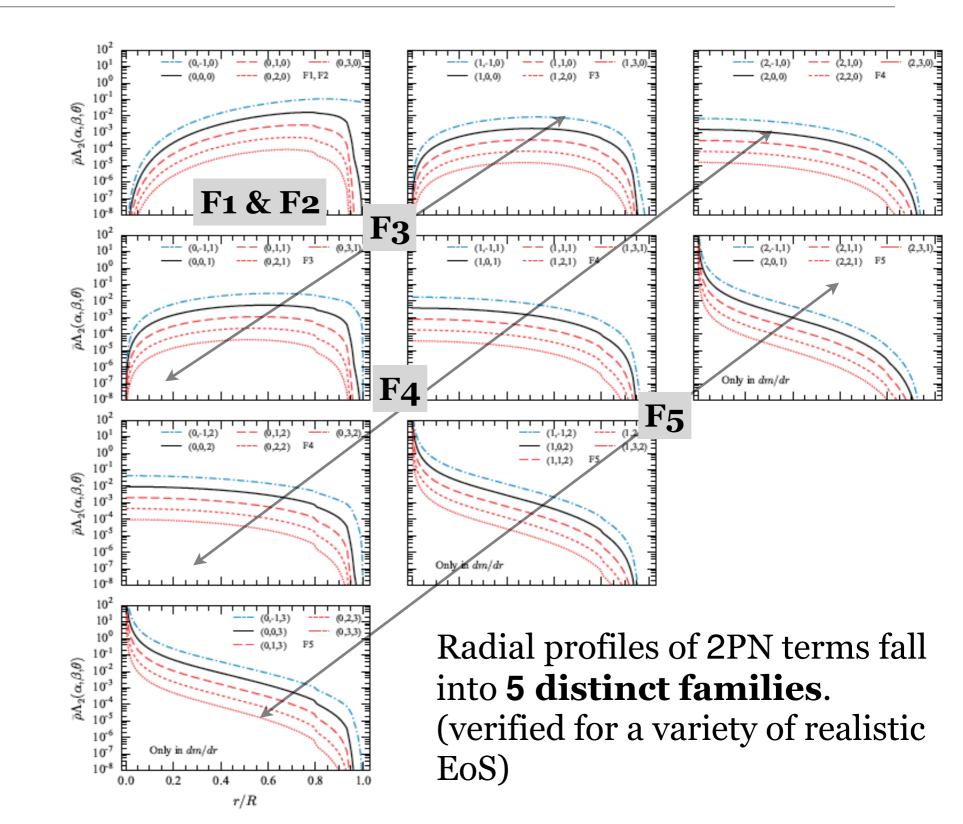
• Limits on { α , β , θ }: (i) avoid divergence at the stellar center/surface and (ii) assume field equations *linear* in the stress-energy tensor:

$$\{ \text{geometry} \} \sim 8\pi T^{\mu\nu} \\ \{ \text{geometry} \} \sim (\epsilon + \tau p)^n \\ \tau, n = \mathcal{O}(1)$$

$$\begin{cases} \beta \ge -1 \\ 0 \le \theta \le 2 \text{ or } 3 \\ 0 \le \alpha \le 2 - \theta \text{ or } 3 - \theta \end{cases}$$
 In principle, there are infinite 2PN terms ...
$$2PN \text{ terms} \dots$$

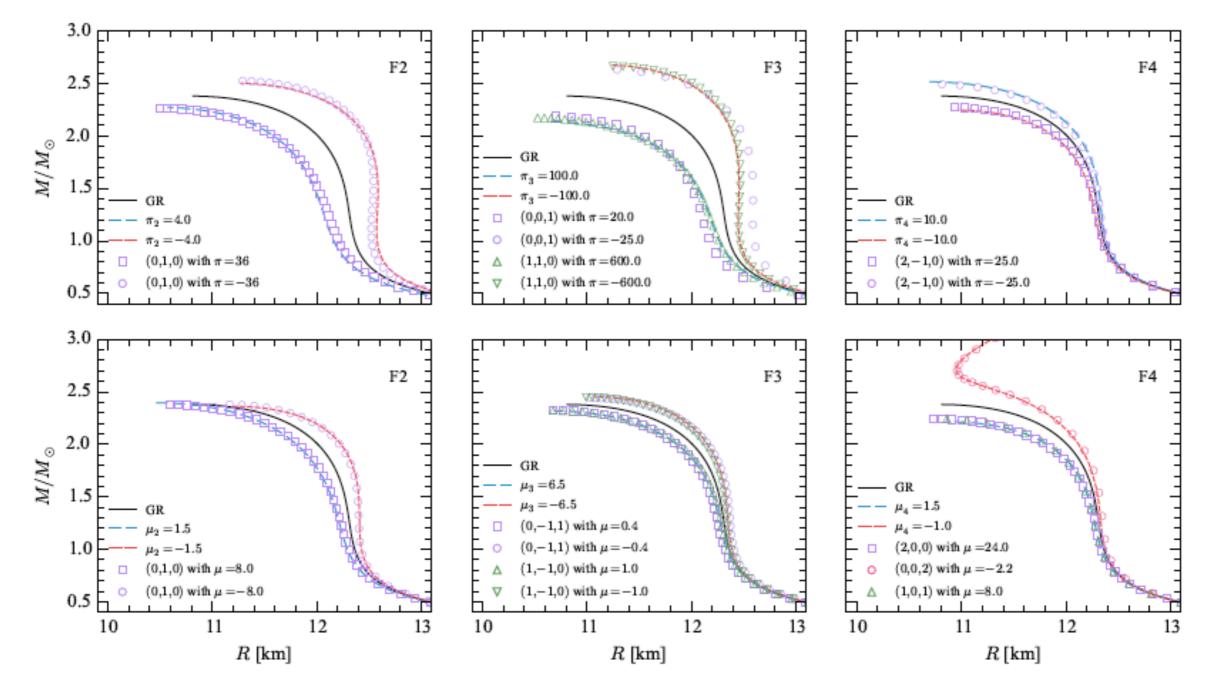
It's all about Families!

Family	2PN term	(lpha,eta, heta)
F1	$m^3/(r^5 ho)$	(0, -1, 0)
F2	$(m/r)^2$	(0,0,0)
F2	rm ho	(0, 1, 0)
F3	mp/(r ho)	(1, -1, 0)
F3	r^2p	(1, 0, 0)
F3	$\Pi m^2/(r^4 ho)$	(0, -1, 1)
F3	$\Pi m/r$	(0,0,1)
F3	$r^2\Pi ho$	(0, 1, 1)
F4	$r^3p^2/(ho m)$	(2, -1, 0)
F4	$r^6 p^2/(m^2)$	(2, 0, 0)
F4	$\Pi p/ ho$	(1, -1, 1)
F4	$\Pi r^3 p/m$	(1, 0, 1)
F4	$\Pi^2 m/(r^3 ho)$	(0, -1, 2)
F4	Π^2	(0, 0, 2)
F5	$\Pi r^4 p^2 / (ho m^2)$	(2, -1, 1)
F5	$\Pi r^7 p^2/m^3$	(2, 0, 1)
F5	$\Pi^2 rp/m ho$	(1, -1, 2)
F5	$\Pi^2 r^4 p/m^2$	(1, 0, 2)
F5	$\Pi^3/(r^2 ho)$	(0, -1, 3)
F5	$\Pi^3 r/m$	(0, 0, 3)



Families: *M*-*R* self-similarity

Remarkably, the 2PN terms of the same family lead to self-similar M-R curves when added as post-TOV corrections (results shown assume APR but have been verified for other EoS too).



Post-TOV structure equations (I)

$$\frac{dp}{dr} = \left(\frac{dp}{dr}\right)_{\rm GR} - \frac{\rho m}{r^2} \left(\mathcal{P}_1 + \mathcal{P}_2\right)$$

$$\frac{dm}{dr} = \left(\frac{dm}{dr}\right)_{\rm GR} + 4\pi r^2 \rho \left(\mathcal{M}_1 + \mathcal{M}_2\right)$$

• 1PN-order corrections:

 $\mathcal{P}_1 = \delta_1 \, \frac{m}{r} + 4\pi \delta_2 \, \frac{r^3 p}{m}$

$$\mathcal{M}_1 = \delta_3 \, \frac{m}{r} + \delta_4 \, \Pi$$

• Current PPN limits: $|\delta_i| \ll 1 \rightarrow |\mathcal{P}_1|, |\mathcal{M}_1| \ll 1$

1PN terms can be ignored

Post-TOV structure equations (II)

$$\frac{dp}{dr} \approx \left(\frac{dp}{dr}\right)_{\rm GR} - \frac{\rho m}{r^2} \mathcal{P}_2 \qquad \qquad \frac{dm}{dr} \approx \left(\frac{dm}{dr}\right)_{\rm GR} + 4\pi r^2 \rho \mathcal{M}_2$$

use just one representative term per family

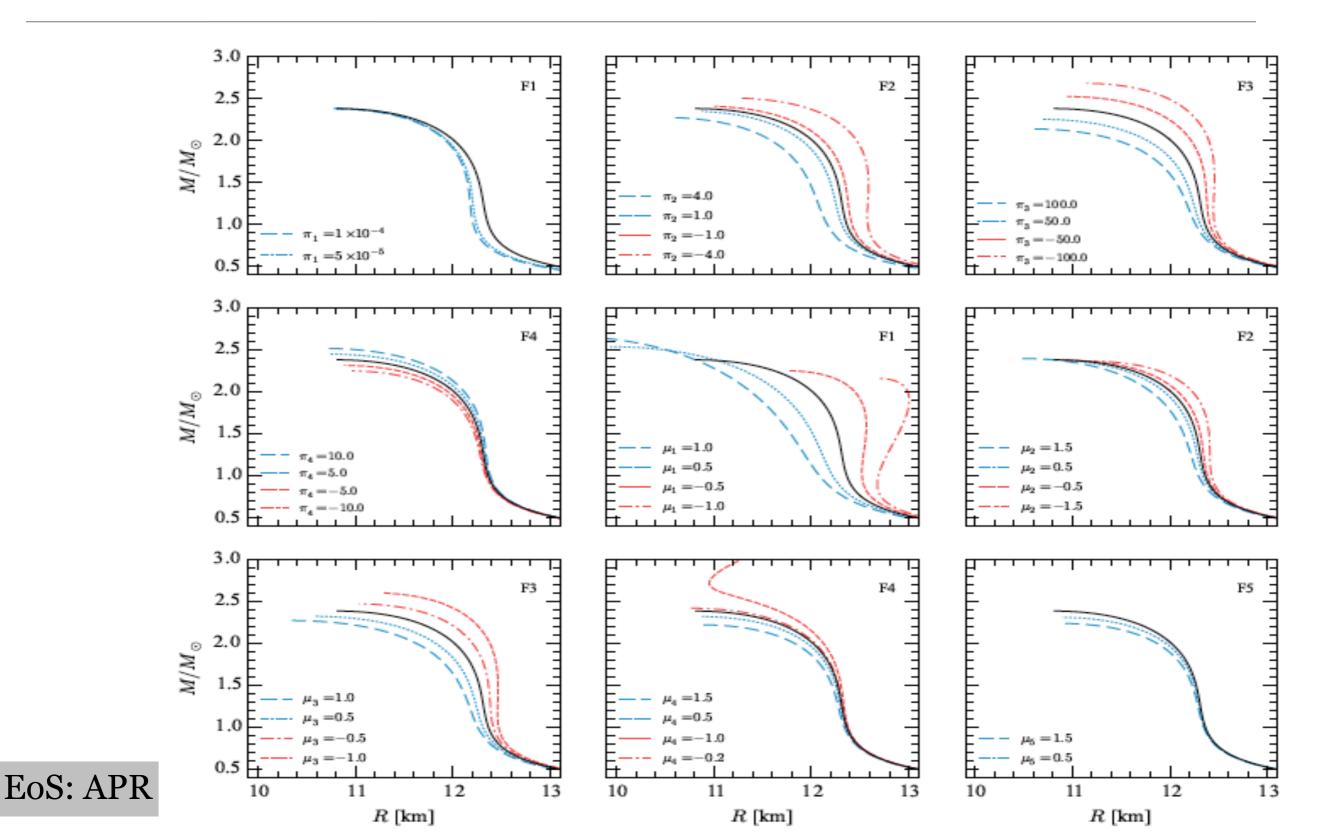
• 2PN-order corrections: self-similarity: all other terms are accounted

for by varying the corresponding coefficient

$$\begin{array}{l} \{\pi_i, \mu_i\} \leftrightarrow F_i \\ \text{family} \end{array}$$

$$\mathcal{P}_{2} = \pi_{1} \frac{m^{3}}{r^{5}\rho} + \pi_{2} \frac{m^{2}}{r^{2}} + \pi_{3} r^{2}p + \pi_{4} \frac{\Pi p}{\rho}$$
$$\mathcal{M}_{2} = \mu_{1} \frac{m^{3}}{r^{5}\rho} + \mu_{2} \frac{m^{2}}{r^{2}} + \mu_{3} r^{2}p + \mu_{4} \frac{\Pi p}{\rho} + \mu_{5} \Pi^{3} \frac{r}{m}$$

post-TOV: sample of *M*-*R* curves



Post-TOV as "effective GR"

• The post-TOV equations can be mapped onto an *effective* GR formulation:

$$\nabla_{\nu} T_{\text{eff}}^{\mu\nu} = 0, \qquad T_{\text{eff}}^{\mu\nu} = (\epsilon_{\text{eff}} + p) u^{\mu} u^{\nu} + p g^{\mu\nu}$$

$$\left\langle \frac{dp}{dr} = -\frac{1}{2} \left(\epsilon_{\text{eff}} + p\right) \frac{d\nu}{dr} \qquad \frac{dm}{dr} = 4\pi r^2 \epsilon_{\text{eff}}$$

- Gravity-shifted effective EoS: $p = p(\epsilon_{\text{eff}}), \quad \epsilon_{\text{eff}} = \epsilon + \rho \mathcal{M}_2$
- Effective *interior* metric:

$$g_{\mu\nu} = \text{diag}[-e^{\nu(r)}, (1-2m(r)/r)^{-1}, r^2, r^2 \sin^2 \theta]$$

Exterior metric (I)

 \Rightarrow

- Our scheme also allows the construction of an exterior metric.
- Set all fluid parameters to zero: $p = \epsilon = \rho = \Pi = 0$

• The resulting post-TOV equations are:

$$\begin{cases} \frac{d\nu}{dr} = \left(\frac{d\nu}{dr}\right)_{\rm GR} + 2(\pi_2 - \mu_2)\frac{m^3}{r^4}\\ \frac{dm}{dr} = 4\pi\mu_1\frac{m^3}{r^3} \end{cases}$$

• Integrating and keeping the leading post-TOV terms:

$$m(r) \approx M_{\infty} \left(1 - 2\pi\mu_1 \frac{M_{\infty}^2}{r^2} \right)$$
$$\nu(r) \approx \log \left(1 - \frac{2M_{\infty}}{r} \right) - \frac{2\chi}{3} \frac{M_{\infty}^3}{r^3}$$

$$M \approx M_{\infty} \left(1 - 2\pi\mu_1 \frac{M_{\infty}^2}{R^2} \right)$$

ADM mass

Schwarzschild mass
$$M \equiv m(R)$$

Exterior metric (II)

• We assume the *same* effective metric form as in the interior:

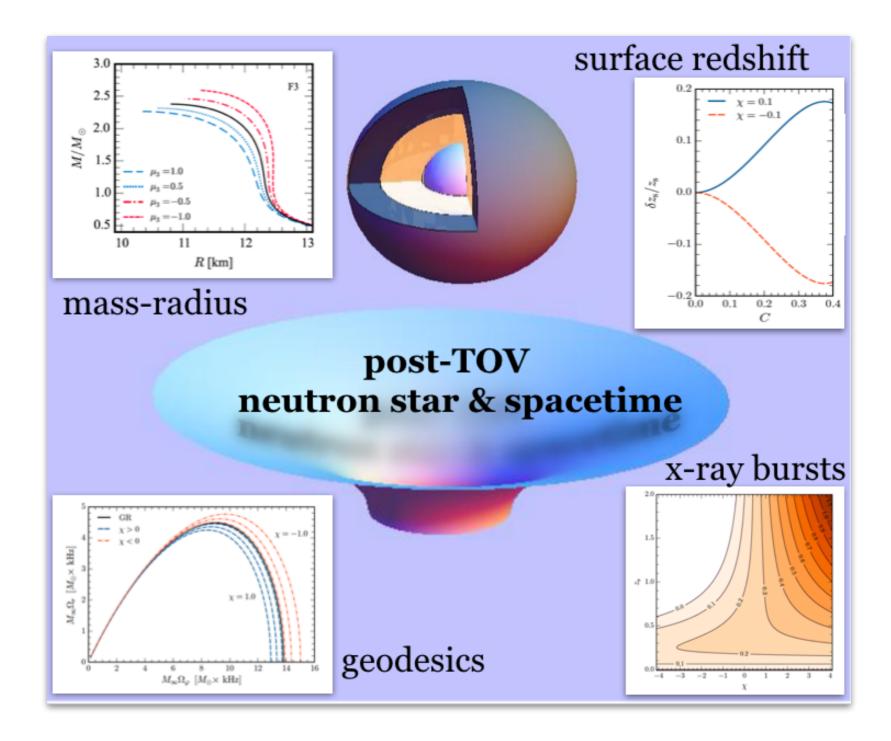
$$g_{\mu\nu} = \text{diag}[-e^{\nu(r)}, (1-2m(r)/r)^{-1}, r^2, r^2 \sin^2 \theta]$$

• The exterior metric takes a *post-Schwarzschild* form:

$$g_{tt}(r) \approx -\left(1 - \frac{2M_{\infty}}{r}\right) + \frac{2\chi}{3} \frac{M_{\infty}^3}{r^3}$$
$$g_{rr}(r) \approx \left(1 - \frac{2M_{\infty}}{r}\right)^{-1} - 4\pi\mu_1 \frac{M_{\infty}^3}{r^3}$$

where
$$\chi = \pi_2 - \mu_2 - 2\pi\mu_1$$

post-TOV: astrophysics



Surface redshift (I)

• The first "observable" we can construct is surface redshift (of absorption & emission lines). This is defined in the usual way:

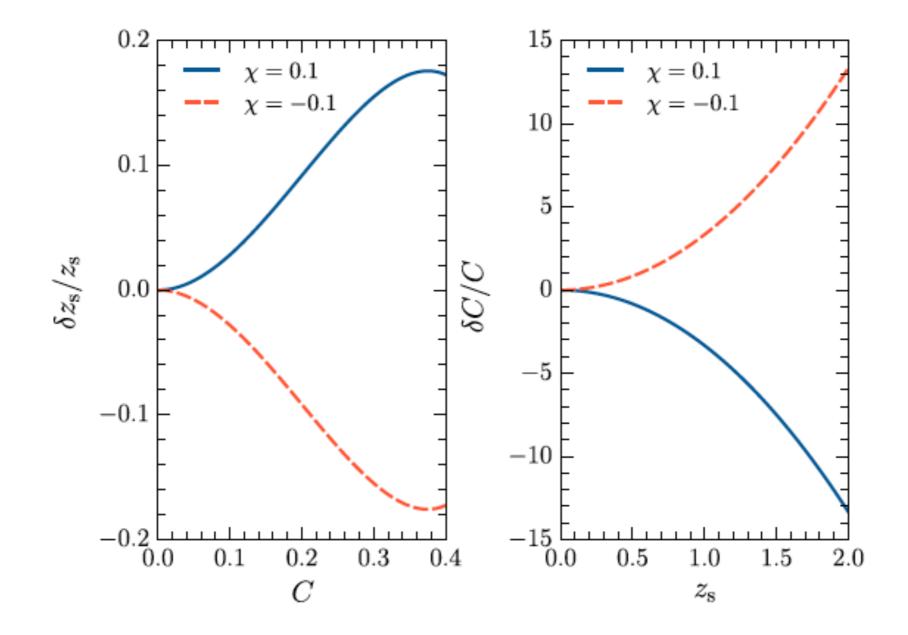
• For any static spacetime:

$$z_{s} = \frac{f_{s}}{f_{\infty}} - 1 \qquad \text{compactness } C = M_{\infty}/R$$
• For any static spacetime:

$$\frac{f_{\infty}}{f_{s}} = \left[\frac{g_{tt}(R)}{g_{tt}(\infty)}\right]^{1/2} \Rightarrow \begin{cases} z_{s}(C) = (1 - 2C)^{-1/2} - 1 + \frac{\chi}{3}C^{3} \\ GR \text{ part} \\ C(z_{s}) = \frac{1}{2}\left[1 - (1 + z_{s})^{-2}\right] \left(1 - \frac{\chi}{3}z_{s}^{2}\right) \end{cases}$$

Surface redshift (II)

• The redshift depends *only* on $\chi = \pi_2 - \mu_2 - 2\pi\mu_1 \Rightarrow$ degeneracy!

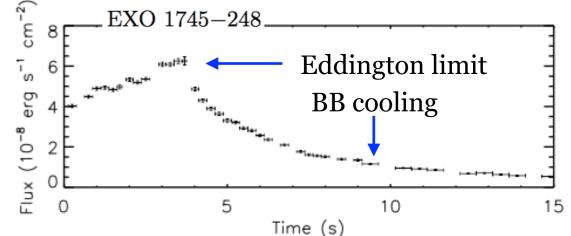


Thermonuclear bursts (I)

- These are X-ray flashes produced by nuclear detonation of accreted matter on the surface of a neutron star.
- We follow the recipe of Psaltis (2008).

all relations as in GR

• The *observed* flux & apparent radius:



 $L_s = 4\pi R^2 \sigma_{\rm SB} T_{\rm eff}^4$

$$L_{\infty} = 4\pi D^2 F_{\infty} = \sigma_{\rm SB} S_{\rm app} T_{\infty}^4$$
$$R_{\rm app} \equiv \left(\frac{S_{\rm app}}{4\pi}\right)^{1/2} = D \left(\frac{F_{\infty}}{\sigma_{\rm SB} \bar{T}_{\infty}^4}\right)^{1/2}$$

• Relation between the "colour" and effective BB temperature:

$$\bar{T}_{\infty} = f_c \sqrt{-g_{tt}(R)} T_{\text{eff}}$$

extracted from "c BB spectrum corr

"colour correction" conserved number $L_{\infty} = -g_{tt}(R)L_s$ of emitted photons:

Thermonuclear bursts (II)

• The second key observable is the Eddington flux ("touchdown luminosity"):

$$L_{\rm E}^{\infty} = 4\pi D^2 F_{\rm E}^{\infty} = \frac{4\pi}{\kappa} \frac{R^2}{(1+z_s)^2} g_{\rm eff} \quad \Rightarrow \quad g_{\rm eff} = \kappa \sigma_{\rm SB} \frac{F_{\rm E}^{\infty}}{F_{\infty}} \left(\frac{\bar{T}_{\infty}}{f_c}\right)^4 (1+z_s)^4$$
opacity of matter
(Thomson scattering)

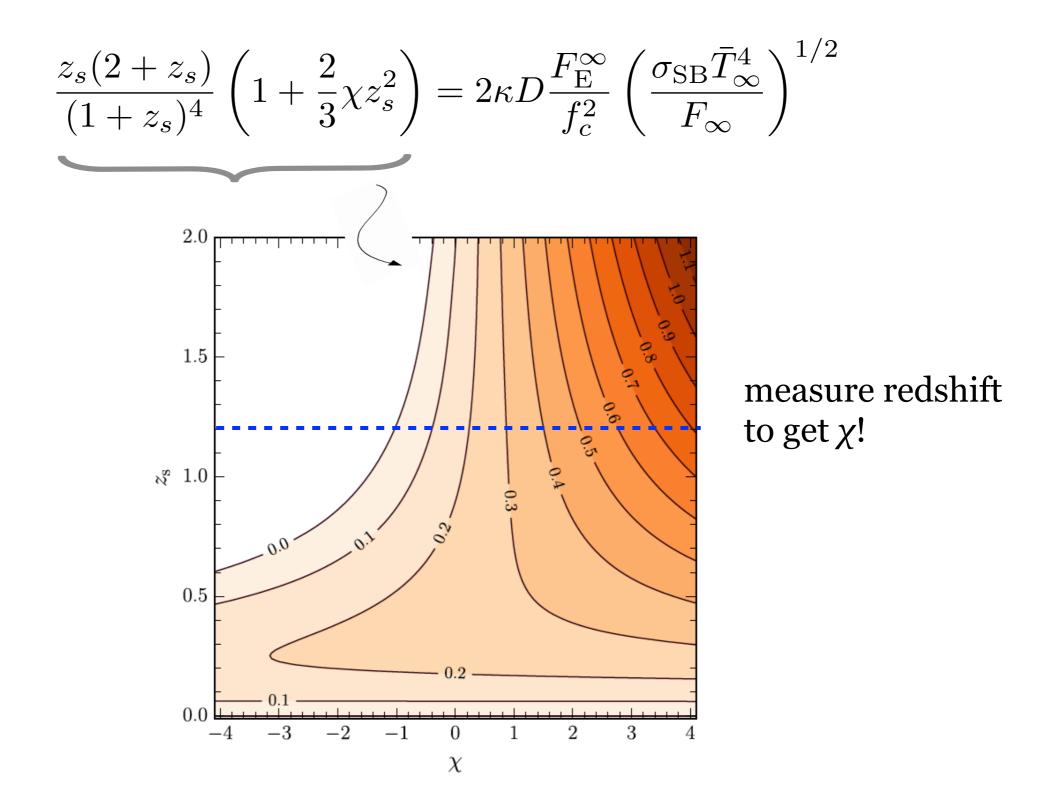
• Only the effective surface "g" takes a non-GR form:

$$g_{\rm eff} = \frac{1}{2\sqrt{g_{rr}(R)}} \frac{g_{tt}'(R)}{g_{tt}(R)} \quad \Rightarrow \quad g_{\rm eff} = \frac{z_s}{2R} \frac{(2+z_s)}{(1+z_s)} \left(1 + \frac{2}{3}\chi z_s^2\right)$$

• Combine the above equations to produce a relation:

$$f(\chi, z_s) =$$
 observables

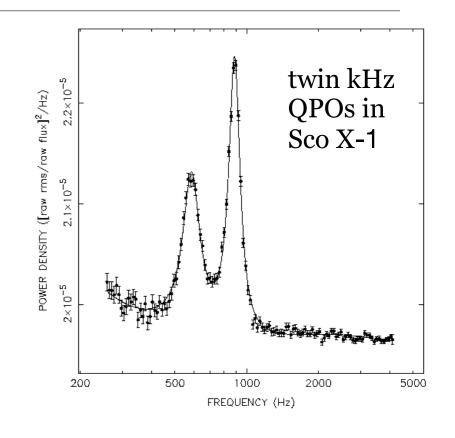
X-ray bursts (III)



Geodesics & QPOs (I)

- In the most popular models, QPOs from accreting systems are associated with geodesic frequencies (the reality, the situation may not be that simple!)
- Azimuthal frequency :

$$\Omega_{\varphi}^{2} = -\frac{g_{tt}'}{g_{\varphi\varphi}'} \approx \frac{M_{\infty}}{r^{3}} \left(1 + \chi \frac{M_{\infty}^{2}}{r^{2}}\right)$$

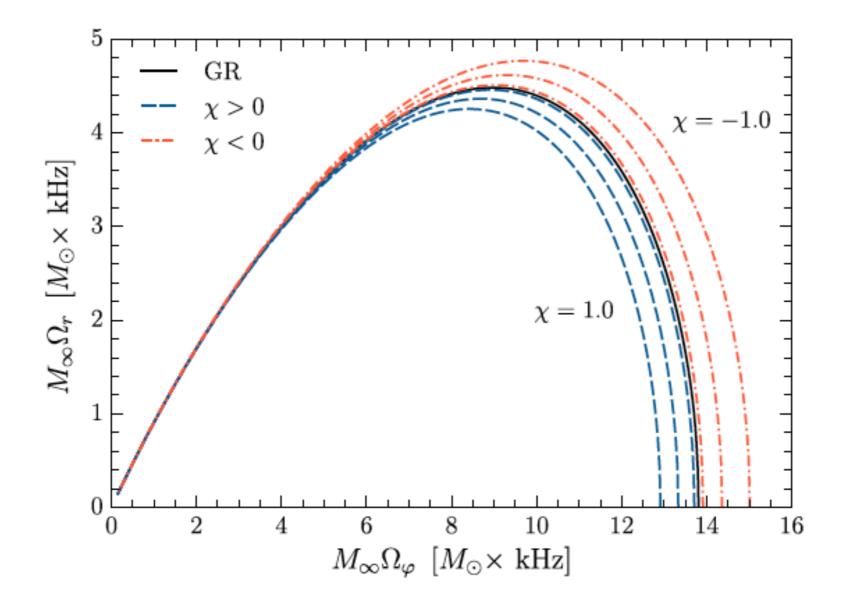


• Radial (epicyclic) frequency:

$$\Omega_r^2 = -\frac{g^{rr}}{2\dot{t}^2} V_{\text{eff}}''(r) \approx \frac{M_\infty}{r^3} \left(1 - \frac{6M_\infty}{r} - \chi \frac{M_\infty^2}{r^2}\right)$$

• ISCO radius:
$$r_{\rm isco} \approx 6M_{\infty} \left(1 + \frac{19}{324}\chi\right)$$

Geodesics & QPOs (II)



post-TOV: how general is it?

- Modified theories of gravity typically include one (or, less frequently, more) additional dynamical degrees of freedom (e.g. a scalar field)
- Our post-TOV formalism, featuring only two equations for dp/dr, dm/dr, implies that the extra d.o.f. ψ can be expressed in terms of the matter variables, i.e. $\psi = \psi(p, \rho, \Pi)$, when building a NS.
- This is the case for scalar-tensor theory and the same is likely true for other theories with a single extra d.o.f.
- By construction, the post-TOV scheme assumes "small" departures from GR, so it may *not* capture non-perturbative effects like "spontaneous scalarization".

Outlook

- The post-TOV formalism is a toolkit for building relativistic stellar models with small/moderate departures from GR.
- Its parametrised form should (eventually) encompass a large class of modified theories of gravity.

• Plenty of extensions:

- Include *dimensional* coupling constants (in progress): more post-TOV terms but families still exist.
- Map formalism onto various alternative theories. Capture non-linear effects (e.g. scalarisation).
- Add *slow rotation*: necessary step for a realistic framework.
- Study I-Q "universal" relations
 (and perhaps break matter-gravity degeneracy?)