Relativistic Transport Equations

in collaboration with C Pitrou and
J Adamek, R Crittenden, K Koyama, C Rampf, T Tram, D Wands arXiv: 1505.04756, 1606.05588, 1701.08844, 1702.03221

Cosmology, Particle Physics and Phenomenology - CP3
Christian Fidler
Today

Outline

Université catholique de Louvain

Relativistic Transport Equations

Fermion Transport

Relativistic Transport and the Large Scale Structure

Introduction

Computing the relativistic evolution of a given distribution of particles is a common problem in cosmology
■ Analysis of comic structure
\rightarrow Physics of the cosmic microwave background
\rightarrow Formation of the large scale structure
\rightarrow...
■ In cosmology all information (transported via particles) must first reach our detectors
\rightarrow Cosmic microwave background observations
\rightarrow Galaxy observations
\rightarrow Transport of supernovae neutrinos
\rightarrow...

Introduction

Université

- Collisions with electrons at reionisation: Quantum Mechanics
- Transport along non-trivial geodesics (for example gravitational lensing): General Relativity

Relativity plus Quantum Field Theory

Microscopic Scale

Mesoscopic Scale

Macroscopic Scale

- Quantum description in the local Minkowski space on microscopic scale
■ Semi-classical particle description on mesoscopic scale
■ Relativistic description of classical particles on macroscopic scale
Theory is well established for photons (cosmic microwave background)

Fermion Transport

■ Number operator: $N_{r s}\left(p, p^{\prime}\right) \equiv a_{r}^{\dagger}(p) a_{s}\left(p^{\prime}\right)$ where $a_{s}\left(p^{\prime}\right)$ are creation/annihilation operators of helicity states
■ Distribution function: $\langle\Psi| N_{r s}\left(p, p^{\prime}\right)|\Psi\rangle \equiv \underline{\delta}\left(p-p^{\prime}\right) f_{r s}(p)$
■ We identify $f_{r s}$ with a semi-classical particle distribution on the mesoscopic scale

Quantum Transport Equations

$$
\underline{\delta}(0) \frac{\mathrm{d}}{\mathrm{~d} t} f_{r s}=\langle\Psi| \frac{\mathrm{d} N_{r s}}{\mathrm{~d} t}|\Psi\rangle=i\langle\Psi|\left[H, N_{r s}\right]|\Psi\rangle \equiv \underline{\delta}(0) C\left[f_{r s}(t, p)\right]
$$

Computation of $C\left[f_{s s^{\prime}}(t, p)\right]$ involves typical scattering matrix elements weighted by the distribution functions

Observer Dependance

In contrast to massless photons, the helicity (and $f_{r s}$) is observer dependant
■ Define the observer independent $F_{\mathfrak{a}}{ }^{\mathfrak{b}}(p) \equiv \sum_{r s} f_{r s}(p) u_{s, \mathfrak{a}}(p) \bar{u}_{r}^{\mathfrak{b}}(p)$ with $u_{s, \mathfrak{a}}(p)$ the helicity spinors

- We define the parameters
\rightarrow Intensity $I \equiv f_{++}+f_{--}$
\rightarrow Circular polarisation $V \equiv f_{++}-f_{--}$
\rightarrow Linear polarisation $Q_{ \pm} \equiv \sqrt{2} f_{ \pm \mp}$
\rightarrow Polarisation vector $Q^{\mu} \equiv Q_{+} \epsilon_{+}^{\mu}+Q_{-} \epsilon_{-}^{\mu}$
\rightarrow The combined vector $\mathcal{Q}^{\mu} \equiv Q^{\mu}+V S^{\mu}$
■ F can be decomposed as $F=\frac{I}{2}(M+\not p)+\frac{M}{2} \gamma^{5} \gamma_{\mu} \mathcal{Q}^{\mu}+p^{\mu} \tilde{\Sigma}_{\mu \nu} \mathcal{Q}^{\nu}$ with $\widetilde{\Sigma}^{\mu \nu} \equiv-\frac{\gamma^{5}}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$
■ I and \mathcal{Q}^{μ} are individually observer dependant, while both helicity and linear polarisation are not.

The Macroscopic Evolution

Université catholique de Louvain

- Both I and \mathcal{Q}^{μ} are transported trivially in local Minkowski space in the absence of collisions
- In general relativity particles are parallel transported along the non-trivial geodesics
\rightarrow Obtain a relativistic counterpart by contracting the local vector \mathcal{Q}^{μ} with the tetrad
\rightarrow Compute the impact of the relativistic dynamics on the distribution functions
\rightarrow The collision term is added locally, taking into account the proper time of the particles

Relativistic Boltzmann Equation

$$
\begin{aligned}
\frac{\partial \mathcal{Q}^{\alpha}(\tau, \boldsymbol{x}, \boldsymbol{p})}{\partial \tau} & +\frac{P^{i}}{P^{0}} \frac{\partial \mathcal{Q}^{\alpha}(\tau, \boldsymbol{x}, \boldsymbol{p})}{\partial x^{i}}+\frac{\mathrm{d} p^{i}}{\mathrm{~d} \tau} \frac{\partial \mathcal{Q}^{\alpha}(\tau, \boldsymbol{x}, \boldsymbol{p})}{\partial p^{i}} \\
& +\Gamma_{\gamma \beta}^{\alpha} \frac{p^{\gamma}}{P^{0}} \mathcal{Q}^{\beta}(\tau, \boldsymbol{x}, \boldsymbol{p})=\frac{E}{P^{0}} C_{\mathcal{Q}}^{\alpha}
\end{aligned}
$$

Conclusions

Université catholique de Louvain

■ We have derived a relativistic transport formalism for polarised fermions

- Polarisation of the fermion gas is described by a vector \mathcal{Q}^{α} (instead of a polarisation tensor $F^{\alpha \beta}$ for bosons)

■ Polarisation can exist in thermal equilibrium
■ Polarisation is naturally induced by chiral interactions and appears as circular or linear polarisation dependant on the observer
■ Charged interactions tend to wash out polarisation

The Large Scale Structure

Université catholique de Louvain

Relativistic N-Body Simulations

- The large scale structure of the Universe is expected to be one of the major cosmological probes in the near future
- The precision of large-scale structure data is increasing and will soon surpass the predictive power of the CMB data
■ However, current simulations are usually performed using Newtonian gravity
■ First relativistic simulations: gevolution, COSIRA

Gauge Freedom of General Relativity

- The gauge defines the coordinates
- The gauge specifies the dynamical equations

What Does a Simulation Compute?

1. Compute the density: $\quad \rho_{\mathrm{N}}=\frac{1}{a^{3}} \sum_{\text {particles }} m \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{x}-\boldsymbol{x}_{p}\right)$
2. Compute the Newtonian potential: $\quad \nabla^{2} \Phi_{\mathrm{N}}=-4 \pi G \bar{a}^{2} \rho_{\mathrm{N}}$
3. Move the particles:

$$
\left(\frac{\partial}{\partial \eta}+\frac{\dot{a}}{a}\right) \boldsymbol{v}_{\mathrm{N}}=\nabla \Phi_{\mathrm{N}}
$$

The Metric Including Linear Perturbations

$\mathrm{d} s^{2}=a^{2}\left(-(1+2 A) \mathrm{d} \eta^{2}-2 \partial^{i} B \mathrm{~d} x_{i} \mathrm{~d} \eta+\left[\delta^{i j}\left(1+2 H_{\mathrm{L}}\right)+2 D^{i j} H_{\mathrm{T}}\right] \mathrm{d} x_{i} \mathrm{~d} x_{j}\right)$
The full density $\rho=\left(1-3 H_{\mathrm{L}}\right) \rho_{\mathrm{N}}$ takes deformation of space into account

The N-Body Gauge ($B=v, H_{\mathrm{L}}=0$)

■ Set $H_{\mathrm{L}}=0$: No volume perturbations
\rightarrow Simulation does compute the relativistic density
■ Set $B=v: \nabla^{2} \Phi=-4 \pi G \bar{a}^{2} \bar{\rho} \delta$
\rightarrow The Bardeen potential is computed according to GR in the N -body simulation

Relativistic Corrections

$$
\begin{aligned}
& \left(\frac{\partial}{\partial \eta}+\frac{\dot{a}}{a}\right) v=\nabla \Phi+\nabla \gamma \\
& \gamma=\ddot{H}_{\mathrm{T}}+\frac{\dot{a}}{a} \dot{H}_{\mathrm{T}}-8 \pi G a^{2} p \Pi
\end{aligned}
$$

with the total anisotropic stress Π
In Λ CDM γ vanishes as $H_{\mathrm{T}}=3 \zeta$ is the comoving curvature perturbation and therefore conserved

Newtonian N-Body Simulations in N-Body Gauge

■ Motion of particles is correctly simulated in a Newtonian N-body simulation

- Particle positions must be interpreted on the N-body gauge metric

■ Radiation and late time anisotropic stresses are ignored

General Relativity

- Gauge theory with gauge dependant forces
\rightarrow Trajectories depend on the gauge

Newtonian motion gauge

N-body simulation

Using the Newtonian Motion Gauges

The Newtonian motion gauges decouple the full relativistic evolution
■ Into the non-linear but Newtonian collapse of matter
\rightarrow Can be simulated by existing N -body codes
■ And the relativistic but linear analysis of the underlying space-time
\rightarrow Can be implemented in existing Boltzmann codes

Recipe for a Relativistic Simulation

- Set up the relativistic Newtonian motion gauge initial conditions
- Run a Newtonian particle simulation to compute the dark matter evolution
- Solve for the Newtonian motion gauge space-time in a Boltzmann code (e.g. in CLASS)
- Interpret the trajectories on this space-time

The Newtonian Motion Gauge Metric

A Simulation in Newtonian Motion Gauge

Both numerical advantages and disadvantages compared to hybrid simulations (COSIRA, gevolution)

Backscaling in the Newtonian Motion Gauges

$$
\begin{array}{|lll}
-k=10^{-5} \mathrm{Mpc}^{-1} & -k=0.001 \mathrm{Mpc}^{-1} & -k=0.1 \mathrm{Mpc}^{-1} \\
-k=10^{-4} \mathrm{Mpc}^{-1} & -k=0.01 \mathrm{Mpc}^{-1} & -\cdots z=99
\end{array}
$$

Conclusions

Université catholique de Louvain

■ Newtonian motion gauges allow a consistent embedding of Newtonian simulations in general relativity
■ Numerically efficient and simple to use
■ Λ CDM simulations using back-scaled initial conditions are in agreement with linear relativity if interpreted on the N -body gauge space-time
■ Potential to include baryons, massive neutrinos, modified gravity, ...

Thank You For Your Attention

Example: Decaying Dark Matter

Université catholique de Louvain

$$
\begin{array}{lll}
-k=10^{-5} \mathrm{Mpc}^{-1} & -k=0.001 \mathrm{Mpc}^{-1} & -k=0.1 \mathrm{Mpc}^{-1} \\
-k=10^{-4} \mathrm{Mpc}^{-1} & -k=0.01 \mathrm{Mpc}^{-1} & -\cdots z=99
\end{array}
$$

