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IntrOd UCtion catholique

de Louvain

Computing the relativistic evolution of a given distribution of particles is a
common problem in cosmology

m Analysis of comic structure
- Physics of the cosmic microwave background
- Formation of the large scale structure
> ...

m In cosmology all information (transported via particles) must first reach
our detectors
- Cosmic microwave background observations
- Galaxy observations
- Transport of supernovae neutrinos
> ...
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Collisions with electrons at reionisation:

Transport along non-trivial geodesics (for example gravitational
lensing):
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Relativity plus Quantum Field Theory A
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MicroscopicScale MesoscopicScale MacroscopicScale

m Quantum description in the local Minkowski space on microscopic
scale

m Semi-classical particle description on mesoscopic scale

m Relativistic description of classical particles on macroscopic scale

Theory is well established for photons (cosmic microwave background)
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m Number operator: N,;(p, p') = a(p)as(p’) where a,(p’) are
creation/annihilation operators of helicity states

m Distribution function: (U| N, (p, p")|¥) = 8(p — p')frs(p)

m We identify f.; with a semi-classical particle distribution on the
mesoscopic scale

Quantum Transport Equations

dN,.
dt

Computation of C[fs(t, p)] involves typical scattering matrix elements
weighted by the distribution functions

W) = i(W|[H, N ]| V) = 4(0) Clfrs (¢, p)]
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In contrast to massless photons, the helicity (and f,.;) is observer
dependant

m Define the observer independent F,°(p) = Zfrs( )us,a(p)ul (p) with

us o(p) the helicity spinors
m We define the parameters
= Intensity I = fi+ + f-—
- Circular polarisation V = fi4 — f-_
= Linear polarisation Q1 = v/2fi+
- Polarisation vector Q" = Q ¢}y + Q¢
- The combined vector 9" = Q* + VS*
m F can be decomposed as F' = £ (M + p) + 457,01 + p"3,,, Q"
with X#7 = — [y "]
m [ and Q* are individually observer dependant, while both helicity and
linear polarisation are not.
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m Both I and Q" are transported trivially in local Minkowski space in the
absence of collisions
m In general relativity particles are parallel transported along the
non-trivial geodesics
- Obtain a relativistic counterpart by contracting the local vector ©Q* with
the tetrad
- Compute the impact of the relativistic dynamics on the distribution
functions
- The collision term is added locally, taking into account the proper time of
the particles

Relativistic Boltzmann Equation

09%(r,x,p) P 0Q%(r,x,p) . dp’ 0Q°(t,z, p)

or - PO oz’ dr Op*

-+ wPOQ (1,2,p) =
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m We have derived a relativistic transport formalism for polarised
fermions

m Polarisation of the fermion gas is described by a vector 9~ (instead of
a polarisation tensor F*8 for bosons)

m Polarisation can exist in thermal equilibrium

m Polarisation is naturally induced by chiral interactions and appears as
circular or linear polarisation dependant on the observer

m Charged interactions tend to wash out polarisation
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m The large scale structure of the Universe is expected to be one of the
major cosmological probes in the near future

m The precision of large-scale structure data is increasing and will soon
surpass the predictive power of the CMB data

m However, current simulations are usually performed using Newtonian
gravity

m First relativistic simulations: gevolution, COSIRA

Gauge Freedom of General Relativity

The gauge defines the coordinates
The gauge specifies the dynamical equations
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1. Compute the density:  pn= 2 2 m & (@ — x,)

particles
2. Compute the Newtonian potential: V2®y = —4nGa?py
: . 9 a
3. Move the particles: (87; + E) N = VO

The Metric Including Linear Perturbations

ds? = az( — (14 24)dn? — 20'B dz;dn + [(5’7(1 +2H) + 2D'inT} (I:Ei(le)

The full density p = (1 — 3Hy,)pn takes deformation of space into account
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m Set Hr, = 0: No volume perturbations
- Simulation does compute the relativistic density
m SetB =v: V2® = —41Ga’ps
- The Bardeen potential is computed according to GR in the N-body
simulation

Relativistic Corrections

= HT + EHT — 871'Ga2p1_[
a

with the total anisotropic stress II
In ACDM ~ vanishes as Hr = 3¢ is the comoving curvature perturbation
and therefore conserved
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Newtonian N-Body Simulations in N-Body S
G auge G louain

m Motion of particles is correctly simulated in a Newtonian N-body

simulation
m Particle positions must be interpreted on the N-body gauge metric

m Radiation and late time anisotropic stresses are ignored

General Relativity

Gauge theory with forces
Trajectories depend on the gauge

N-body simulation

N-body gauge Newtonian motion gauge
— —A —
ES {
] Ta\U ~H 73
~k 7 7 7
TNz 72
L
/V
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Using the Newtonian Motion Gauges Universié
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The Newtonian motion gauges decouple the full relativistic evolution
m Into the non-linear but Newtonian collapse of matter
- Can be simulated by existing N-body codes
m And the relativistic but linear analysis of the underlying space-time
- Can be implemented in existing Boltzmann codes

Recipe for a Relativistic Simulation
Set up the relativistic Newtonian motion gauge initial conditions
Run a Newtonian particle simulation to compute the dark matter

evolution

Solve for the Newtonian motion gauge space-time in a Boltzmann code
(e.g. in CLASS)

Interpret the trajectories on this space-time
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Both numerical advantages and disadvantages compared to hybrid

simulations (COSIRA, gevolution)
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m Newtonian motion gauges allow a consistent embedding of Newtonian
simulations in general relativity

m Numerically efficient and simple to use

m ACDM simulations using back-scaled initial conditions are in
agreement with linear relativity if interpreted on the N-body gauge
space-time

m Potential to include baryons, massive neutrinos, modified gravity, ...

Thank You For Your Attention
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