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Introduction

Computing the relativistic evolution of a given distribution of particles is a
common problem in cosmology

Analysis of comic structure
Ô Physics of the cosmic microwave background
Ô Formation of the large scale structure
Ô . . .

In cosmology all information (transported via particles) must first reach
our detectors

Ô Cosmic microwave background observations
Ô Galaxy observations
Ô Transport of supernovae neutrinos
Ô . . .
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Introduction

Collisions with electrons at reionisation: Quantum Mechanics
Transport along non-trivial geodesics (for example gravitational
lensing): General Relativity
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Relativity plus Quantum Field Theory

MicroscopicScale MacroscopicScaleMesoscopicScale

Quantum description in the local Minkowski space on microscopic
scale
Semi-classical particle description on mesoscopic scale
Relativistic description of classical particles on macroscopic scale

Theory is well established for photons (cosmic microwave background)
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Fermion Transport

Number operator: Nrs(p, p′) ≡ a†
r (p)as(p′) where as(p′) are

creation/annihilation operators of helicity states
Distribution function: 〈Ψ|Nrs(p, p′)|Ψ〉 ≡ δ(p − p′)frs(p)

We identify frs with a semi-classical particle distribution on the
mesoscopic scale

Quantum Transport Equations

δ(0)
d

dt
frs = 〈Ψ|dNrs

dt
|Ψ〉 = i〈Ψ|[H ,Nrs ]|Ψ〉 ≡ δ(0)C [frs(t , p)]

Computation of C [fss′(t , p)] involves typical scattering matrix elements
weighted by the distribution functions
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Observer Dependance

In contrast to massless photons, the helicity (and frs ) is observer
dependant

Define the observer independent F b
a (p) ≡

∑
rs

frs(p)us,a(p)ūb
r (p) with

us,a(p) the helicity spinors
We define the parameters

Ô Intensity I ≡ f++ + f−−
Ô Circular polarisation V ≡ f++ − f−−
Ô Linear polarisation Q± ≡

√
2f±∓

Ô Polarisation vector Qµ ≡ Q+ε
µ
+ +Q−ε

µ
−

Ô The combined vector Qµ ≡ Qµ +VSµ

F can be decomposed as F = I
2

(
M + /p

)
+ M

2 γ
5γµQµ + pµΣ̃µνQν

with Σ̃µν ≡ −γ
5

4 [γµ, γν ]

I and Qµ are individually observer dependant, while both helicity and
linear polarisation are not.
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The Macroscopic Evolution

Both I and Qµ are transported trivially in local Minkowski space in the
absence of collisions
In general relativity particles are parallel transported along the
non-trivial geodesics

Ô Obtain a relativistic counterpart by contracting the local vector Qµ with
the tetrad

Ô Compute the impact of the relativistic dynamics on the distribution
functions

Ô The collision term is added locally, taking into account the proper time of
the particles

Relativistic Boltzmann Equation

∂Qα(τ,x ,p)

∂τ
+

P i

P0

∂Qα(τ,x ,p)

∂x i
+

dpi

dτ

∂Qα(τ,x ,p)

∂pi

+ Γαγβ
Pγ

P0
Qβ(τ,x ,p) =

E

P0
Cα

Q
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Conclusions

We have derived a relativistic transport formalism for polarised
fermions
Polarisation of the fermion gas is described by a vector Qα (instead of
a polarisation tensor Fαβ for bosons)
Polarisation can exist in thermal equilibrium
Polarisation is naturally induced by chiral interactions and appears as
circular or linear polarisation dependant on the observer
Charged interactions tend to wash out polarisation
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The Large Scale Structure
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Relativistic N-Body Simulations

The large scale structure of the Universe is expected to be one of the
major cosmological probes in the near future
The precision of large-scale structure data is increasing and will soon
surpass the predictive power of the CMB data
However, current simulations are usually performed using Newtonian
gravity
First relativistic simulations: gevolution, COSIRA

Gauge Freedom of General Relativity
The gauge defines the coordinates
The gauge specifies the dynamical equations
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What Does a Simulation Compute?

1. Compute the density: ρN = 1
a3

∑
particles

m δ
(3)
D (x − xp)

2. Compute the Newtonian potential: ∇2ΦN = −4πGā2ρN

3. Move the particles:
(
∂
∂η + ȧ

a

)
vN = ∇ΦN

The Metric Including Linear Perturbations

ds2 = a2
(
− (1 + 2A)dη2 − 2∂iB dxidη +

[
δij (1 + 2HL) + 2D ijHT

]
dxidxj

)
The full density ρ = (1− 3HL)ρN takes deformation of space into account
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The N-Body Gauge (B =v , HL = 0)

Set HL = 0: No volume perturbations
Ô Simulation does compute the relativistic density

SetB =v : ∇2Φ = −4πGā2ρ̄δ

Ô The Bardeen potential is computed according to GR in the N-body
simulation

Relativistic Corrections(
∂

∂η
+

ȧ

a

)
v = ∇Φ + ∇γ

γ = ḦT +
ȧ

a
ḢT − 8πGa2pΠ

with the total anisotropic stress Π
In ΛCDM γ vanishes as HT = 3ζ is the comoving curvature perturbation
and therefore conserved
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Newtonian N-Body Simulations in N-Body
Gauge

Motion of particles is correctly simulated in a Newtonian N-body
simulation
Particle positions must be interpreted on the N-body gauge metric
Radiation and late time anisotropic stresses are ignored

General Relativity
Gauge theory with gauge dependant forces

Ô Trajectories depend on the gauge

τini

τ1

τ2

τ3

N-body gauge

τini

τ1

τ2

τ3

Newtonian motion gauge

τini

τ1

τ2

τ3

N-body simulation
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Using the Newtonian Motion Gauges

The Newtonian motion gauges decouple the full relativistic evolution
Into the non-linear but Newtonian collapse of matter

Ô Can be simulated by existing N-body codes

And the relativistic but linear analysis of the underlying space-time
Ô Can be implemented in existing Boltzmann codes

Recipe for a Relativistic Simulation
Set up the relativistic Newtonian motion gauge initial conditions
Run a Newtonian particle simulation to compute the dark matter
evolution
Solve for the Newtonian motion gauge space-time in a Boltzmann code
(e.g. in CLASS)
Interpret the trajectories on this space-time
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The Newtonian Motion Gauge Metric
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A Simulation in Newtonian Motion Gauge

0.001 0.01 0.1

0.96

0.97

0.98

0.99

1.00

z = 0.0

before Nm → Nb
linear prediction
after Nm → Nb

re
la
ti
v
e
p
ow

er

k [h/Mpc]

Both numerical advantages and disadvantages compared to hybrid
simulations (COSIRA, gevolution)
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Backscaling in the Newtonian Motion Gauges
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Conclusions

Newtonian motion gauges allow a consistent embedding of Newtonian
simulations in general relativity
Numerically efficient and simple to use
ΛCDM simulations using back-scaled initial conditions are in
agreement with linear relativity if interpreted on the N-body gauge
space-time
Potential to include baryons, massive neutrinos, modified gravity, ...

Thank You For Your Attention
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Example: Decaying Dark Matter
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