Relativistic Transport Equations

in collaboration with C Pitrou and J Adamek, R Crittenden, K Koyama, C Rampf, T Tram, D Wands arXiv: 1505.04756, 1606.05588, 1701.08844, 1702.03221

Cosmology, Particle Physics and Phenomenology - CP3

Christian Fidler

Today

Relativistic Transport Equations

Fermion Transport

Relativistic Transport and the Large Scale Structure

Christian Fidler

Cosmology, Particle Physics and Phenomenology - CP3

Computing the relativistic evolution of a given distribution of particles is a common problem in cosmology

- Analysis of comic structure
 - → Physics of the cosmic microwave background
 - → Formation of the large scale structure
 - → ...
- In cosmology all information (transported via particles) must first reach our detectors
 - → Cosmic microwave background observations
 - → Galaxy observations
 - → Transport of supernovae neutrinos
 - → ...

Introduction

Collisions with electrons at reionisation: Quantum Mechanics
Transport along non-trivial geodesics (for example gravitational lensing): General Relativity

Christian Fidler N-body

Relativity plus Quantum Field Theory

- Quantum description in the local Minkowski space on microscopic scale
- Semi-classical particle description on mesoscopic scale
- Relativistic description of classical particles on macroscopic scale

Theory is well established for photons (cosmic microwave background)

Christian Fidler

catholique de Louvair

- Number operator: $N_{rs}(p, p') \equiv a_r^{\dagger}(p)a_s(p')$ where $a_s(p')$ are creation/annihilation operators of helicity states
- Distribution function: $\langle \Psi | N_{rs}(p, p') | \Psi \rangle \equiv \underline{\delta}(p p') f_{rs}(p)$
- We identify *f_{rs}* with a semi-classical particle distribution on the mesoscopic scale

Quantum Transport Equations

$$\underline{\delta}(0)\frac{\mathrm{d}}{\mathrm{d}t}f_{rs} = \langle \Psi | \frac{\mathrm{d}N_{rs}}{\mathrm{d}t} | \Psi \rangle = i \langle \Psi | [H, N_{rs}] | \Psi \rangle \equiv \underline{\delta}(0) C[f_{rs}(t, p)]$$

Computation of $C[f_{ss'}(t, p)]$ involves typical scattering matrix elements weighted by the distribution functions

Christian Fidler

In contrast to massless photons, the helicity (and $f_{\mbox{\tiny TS}})$ is observer dependant

• Define the observer independent $F_{\mathfrak{a}}{}^{\mathfrak{b}}(p) \equiv \sum_{rs} f_{rs}(p) u_{s,\mathfrak{a}}(p) \bar{u}_{r}^{\mathfrak{b}}(p)$ with

 $u_{s,\mathfrak{a}}(p)$ the helicity spinors

- We define the parameters
 - → Intensity $I \equiv f_{++} + f_{--}$
 - → Circular polarisation $V \equiv f_{++} f_{--}$
 - → Linear polarisation $Q_{\pm} \equiv \sqrt{2} f_{\pm\mp}$
 - → Polarisation vector $Q^{\mu} \equiv Q_{+}\epsilon^{\mu}_{+} + Q_{-}\epsilon^{\mu}_{-}$
 - → The combined vector $Q^{\mu} \equiv Q^{\mu} + VS^{\mu}$
- *F* can be decomposed as $F = \frac{I}{2} \left(M + \not p \right) + \frac{M}{2} \gamma^5 \gamma_\mu Q^\mu + p^\mu \tilde{\Sigma}_{\mu\nu} Q^\nu$ with $\tilde{\Sigma}^{\mu\nu} \equiv -\frac{\gamma^5}{4} [\gamma^\mu, \gamma^\nu]$
- I and Q^μ are individually observer dependant, while both helicity and linear polarisation are not.

The Macroscopic Evolution

- Both I and Q^µ are transported trivially in local Minkowski space in the absence of collisions
- In general relativity particles are parallel transported along the non-trivial geodesics
 - → Obtain a relativistic counterpart by contracting the local vector \mathcal{Q}^{μ} with the tetrad
 - → Compute the impact of the relativistic dynamics on the distribution functions
 - → The collision term is added locally, taking into account the proper time of the particles

Relativistic Boltzmann Equation

$$\begin{array}{ll} \displaystyle \frac{\partial \mathcal{Q}^{\alpha}(\tau, \boldsymbol{x}, \boldsymbol{p})}{\partial \tau} & + & \displaystyle \frac{P^{i}}{P^{0}} \frac{\partial \mathcal{Q}^{\alpha}(\tau, \boldsymbol{x}, \boldsymbol{p})}{\partial x^{i}} + \displaystyle \frac{\mathrm{d}p^{i}}{\mathrm{d}\tau} \frac{\partial \mathcal{Q}^{\alpha}(\tau, \boldsymbol{x}, \boldsymbol{p})}{\partial p^{i}} \\ & + & \displaystyle \Gamma^{\alpha}_{\gamma\beta} \frac{P^{\gamma}}{P^{0}} \mathcal{Q}^{\beta}(\tau, \boldsymbol{x}, \boldsymbol{p}) = \displaystyle \frac{E}{P^{0}} C^{\alpha}_{\mathcal{Q}} \end{array}$$

Christian Fidler

Cosmology, Particle Physics and Phenomenology - CP3

- We have derived a relativistic transport formalism for polarised fermions
- Polarisation of the fermion gas is described by a vector Q^α (instead of a polarisation tensor F^{αβ} for bosons)
- Polarisation can exist in thermal equilibrium
- Polarisation is naturally induced by chiral interactions and appears as circular or linear polarisation dependant on the observer
- Charged interactions tend to wash out polarisation

The Large Scale Structure

- The large scale structure of the Universe is expected to be one of the major cosmological probes in the near future
- The precision of large-scale structure data is increasing and will soon surpass the predictive power of the CMB data
- However, current simulations are usually performed using Newtonian gravity
- First relativistic simulations: gevolution, COSIRA

Gauge Freedom of General Relativity

- The gauge defines the coordinates
- The gauge specifies the dynamical equations

What Does a Simulation Compute?

- 1. Compute the density: $\rho_{N} = \frac{1}{a^{3}} \sum_{\text{particles}} m \, \delta_{D}^{(3)}(\boldsymbol{x} \boldsymbol{x}_{p})$
- 2. Compute the Newtonian potential: $\nabla^2 \Phi_N = -4\pi G \bar{a}^2 \rho_N$
- 3. Move the particles:

$$\left(\frac{\partial}{\partial\eta} + \frac{\dot{a}}{a}\right) \boldsymbol{v}_{\mathsf{N}} = \boldsymbol{\nabla} \Phi_{\mathsf{N}}$$

The Metric Including Linear Perturbations

$$\mathrm{d}s^2 = a^2 \Big(-(1+2A)\mathrm{d}\eta^2 - 2\partial^i B \,\mathrm{d}x_i \mathrm{d}\eta + \left[\delta^{ij}(1+2H_\mathrm{L}) + 2D^{ij}H_\mathrm{T} \right] \mathrm{d}x_i \mathrm{d}x_j \Big)$$

The full density $\rho = (1 - 3H_L)\rho_N$ takes deformation of space into account

Christian Fidler

- Set $H_{\rm L} = 0$: No volume perturbations
 - → Simulation does compute the relativistic density

• Set
$$B = v$$
: $\nabla^2 \Phi = -4\pi G \bar{a}^2 \bar{\rho} \delta$

→ The Bardeen potential is computed according to GR in the N-body simulation

Relativistic Corrections

$$\left(\frac{\partial}{\partial\eta} + \frac{\dot{a}}{a}\right) \boldsymbol{v} = \boldsymbol{\nabla}\Phi + \boldsymbol{\nabla}\gamma$$

$$\gamma = \ddot{H}_{\rm T} + \frac{a}{a}\dot{H}_{\rm T} - 8\pi G a^2 p\Pi$$

with the total anisotropic stress Π In $\Lambda \rm CDM~\gamma$ vanishes as $H_{\rm T}=3\zeta$ is the comoving curvature perturbation and therefore conserved

Christian Fidler

Newtonian N-Body Simulations in N-Body Gauge

- Motion of particles is correctly simulated in a Newtonian N-body simulation
- Particle positions must be interpreted on the N-body gauge metric
- Radiation and late time anisotropic stresses are ignored

General Relativity

- Gauge theory with gauge dependant forces
 - → Trajectories depend on the gauge

The Newtonian motion gauges decouple the full relativistic evolution

- Into the non-linear but Newtonian collapse of matter
 - → Can be simulated by existing N-body codes
- And the relativistic but linear analysis of the underlying space-time
 - → Can be implemented in existing Boltzmann codes

Recipe for a Relativistic Simulation

- Set up the relativistic Newtonian motion gauge initial conditions
- Run a Newtonian particle simulation to compute the dark matter evolution
- Solve for the Newtonian motion gauge space-time in a Boltzmann code (e.g. in CLASS)
- Interpret the trajectories on this space-time

The Newtonian Motion Gauge Metric

A Simulation in Newtonian Motion Gauge

Both numerical advantages and disadvantages compared to hybrid simulations (COSIRA, gevolution)

Christian Fidler

N-body

Université catholique de Louvain

Christian Fidler

N-body

UCL

Université catholique de Louvain

- Newtonian motion gauges allow a consistent embedding of Newtonian simulations in general relativity
- Numerically efficient and simple to use
- ACDM simulations using back-scaled initial conditions are in agreement with linear relativity if interpreted on the N-body gauge space-time
- Potential to include baryons, massive neutrinos, modified gravity, ...

Thank You For Your Attention

Christian Fidler

Cosmology, Particle Physics and Phenomenology - CP3

UCL

Université catholique de Louvain