Spontaneous scalarization: a promising avenue for gravitational-wave astronomy Davide Gerosa

arXiv:1602.????? (hopefully soon) with U. Sperhake, C. Ott

arXiv:1505.07462 (cog 32:204001) with M. Horbatsch, H. Silva, P. Pani, E. Berti and L. Gualtieri, U. Sperhake

January 25th, 2016 GReCO seminars Paris d.gerosa@damtp.cam.ac.uk

www.damtp.cam.ac.uk/user/dg438

Outline

- 1. Why scalar-tensor theory?
- 2. Action, equations, **numerics**
- 3. Core collapse and GW breathing mode
- 4. Multi-scalars and target space

Why testing GR?

~1919:

Journalist: "Herr Einstein, what if the theory turned out to be wrong?" **Einstein**: "I would feel sorry for the dear Lord. The theory is correct."

Theory:

- Where is quantum mechanics?
- Are there really singularities around?

Puzzling observations:

- Dark energy makes up most of the Universe
- Why is Lambda so small?

Tests

- GR is extremely well tested "in between"
- these two regimes $1 \,\mathrm{mm} \lesssim L \lesssim 1 \,\mathrm{AU}$

Extreme challenge for theorists

Why scalar-tensor theory?

Damour and Esposito-Farese 1992

 Modifications of GR from high-energy theory often lead to the introduction of additional degrees of freedom (Lovelock theorem)

see eg. Sotiriou et al 2007

- (Multi-)Scalar-tensor theories: gravity mediated by the metric and additional scalar field(s)
- Some high-energy theories predict GR + scalars as their low-energy limit. cf e.g. review by Will 2014

Complicated enough

to introduce testable modifications (e.g. the Eddington PPN parameters)

Simple enough

to work out predictions (and even do full numerical simulations)

A tale of two formulations

Jordan frame

$$S = \int dx^4 \sqrt{-g} \left[\frac{F(\phi)}{16\pi} R - \frac{1}{2} g^{\mu\nu} (\partial_\mu \phi) (\partial_\nu \phi) - V(\phi) \right] + S_m(\psi_m, g_{\mu\nu})$$

The most general action...

 single scalar field coupled non-minimally
 invariant under space-time diffeomorphisms
 at most two space-time derivatives
 satisfy the Weak Equivalence Principle (WEP) Damour and Esposito-Farese 1992

Moreover...

- 1. Vanishing potential $V(\phi) = 0$
- 2. Coupling function $F = F(\phi)$
- 3. Note the WEP!

Conformal tranformation: $\bar{g}_{\mu\nu} = F g_{\mu\nu}$

Einstein frame

$$S = \frac{1}{16\pi} \int dx^4 \sqrt{-\bar{g}} \left[\bar{R} - 2\bar{g}^{\mu\nu} (\partial_\mu \varphi) (\partial_\nu \varphi) \right] + S_m [\psi_m, \bar{g}_{\mu\nu}/F]$$

Dominant corrections to GR

Spontaneous scalarization

Damour and Esposito-Farese 1993, 1996

Perturbative corrections enters as...

$$\alpha_0^2 \times \left[\lambda_0 + \lambda_1 \frac{Gm}{Rc^2} + \lambda_2 \left(\frac{Gm}{Rc^2}\right)^2 + \cdots\right]$$

If $\alpha_0 \sim 0$ the theory is *perturbative* equivalent to GR, but if

 $\frac{Gm}{Rc^2} \sim 0.2$ (so, neutron stars!)

Strong-field non-linearities!

Fundamental threshold:

Novak 1998, Harada 1998

$$\beta_0 \lesssim -4.35$$

Core collapse in a nutshell

- End of star's life: iron core supported by degenerate pressure of rel. electrons.
- Collapse, outgoing shock, Type II supernova
- Core is left behind as a neutron star
- Accretion: BH formation

Type II SN are as luminous as entire galaxies

Are non-trivial scalar-field profiles excited following corecollapse? How about GWs?

Hydrodynamics in ST theories

Jordan frame $S = \int dx^4 \sqrt{-g} \left[\frac{F(\phi)}{16\pi} R - \frac{1}{2} g^{\mu\nu} (\partial_\mu \phi) (\partial_\nu \phi) - V(\phi) \right] + S_m(\psi_m, g_{\mu\nu})$

Radial gauge $f(x) = g_{\mu\nu}dx^{\mu}dx^{\nu} = -\alpha^{2}dt^{2} + X^{2}dr^{2} + \frac{r^{2}}{F}d\Omega^{2}$ **Perfect fluid** $T_{\alpha\beta} = \rho h u_{\alpha}u_{\beta} + Pg_{\alpha\beta} \qquad u^{\mu} = \frac{1}{\sqrt{1-v^{2}}} \left[\frac{1}{\alpha}, \frac{v}{X}, 0, 0\right]$

1. Curvature equations

Constraints for the enclosed mass and metric potential

(2.)Scalar-field wave equations

3 first-order PDEs

second-order finite differences + outgoing boundary condition

Code built on top of GR1D O'Connor & Ott 2010

Mimicking nuclear physics

We need an equation of state to close the system

Piecewise polytropic

• Iron core collapse

 $\Gamma_1 \lesssim 4/3$

• Stiffening at nuclear densities

 $\Gamma_2 \simeq 2.5 - 3$

Ideal gas

 Response of the heated post-shock material

 $4/3 < \Gamma_{\rm th} < 5/3$

Tested against finite-temperature EOS: Dimmelmeier et al. 2007, 2008

Collapse, bounce, shock... and NS

Initial profile: realistic SN progenitor $M_{\text{ZAMS}} = 12M_{\odot \text{Woosley & Heger 2007}}$ ST theory $\alpha_0 = 10^{-4}$ $\beta_0 = -4.35$ **First collapse** of realistic massive star through bounce in ST theory

Collapse, bounce, shock... and BH

Mass density

Scalar field

Proof of convergence

 $\alpha_0 = 10^{-4}$ $\beta_0 = -4.5$

Breathing mode

In ST theories there are GWs in spherical symmetry

Coupling with the detector

Microphysics

Hybrid EOS:

$P = P_{\rm c} + P_{\rm th}$		
$P_{\rm c} = \begin{cases} K_1 \rho^{\Gamma_1} \\ K_2 \rho^{\Gamma_2} \end{cases}$	if if	$ ho \le ho_{ m nuc}$ $ ho > ho_{ m nuc}$
$P_{\rm th} = (\Gamma_{\rm th} - 1)$	$P_{\rm th} = (\Gamma_{\rm th} - 1)\rho\epsilon_{\rm th}$	

(o) Fast relaxation initial profile is GR, not ST!

(i) Collapse

(ii) Bounce!

(iii) Core forms a NS

(iv) Collapse to a BH

$$\alpha_0 = 10^{-4} \ \beta_0 = -4.35$$

One, two, many.

Tensor-multi-scalar theories

$$S = \frac{1}{4\pi G_{\star}} \int d^4x \sqrt{-g} \left[\frac{R}{4} - \frac{1}{2} g^{\mu\nu} \gamma_{AB}(\varphi) \partial_{\mu} \varphi^A \partial_{\nu} \varphi^B - V(\varphi) \right] + S_{\rm m} [A^2(\varphi) g_{\mu\nu}; \Psi]$$

One example: maximally symmetric two fields

Interactions between the fields: target space Basically unconstrained! Genuine two-field physics?

Outline

- 1. Why scalar-tensor theory?
- 2. Action, equations, numerics
- 3. Core collapse and GW breathing mode
- 4. Multi-scalars and target space arXiv:1505.07462

