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Why testing GR?
~1919:
Journalist: “Herr Einstein, what if the theory turned out to be wrong?” 
Einstein: “I would feel sorry for the dear Lord. The theory is correct.”

Theory:  
• Where is quantum mechanics?

• Are there really singularities around?


Puzzling observations: 
• Dark energy makes up most of the Universe 

• Why is Lambda so small? 
Tests 
• GR is extremely well tested “in between” 

these two regimes

Extreme challenge for theorists

1mm . L . 1AU



Strong-field test of gravity
Gravity Parameter Space 5
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Fig. 1.— A parameter space for gravitational fields, showing the regimes probed by a wide range of astrophysical and cosmological
systems. The axes variables are explained in §2 and individual curves are detailed in §3. Some of the label abbreviations are: SS = planets
of the Solar System, MS = Main Sequence stars, WD = white dwarfs, PSRs = binary pulsars, NS = individual neutron stars, BH = stellar
mass black holes, MW = the Milky Way, SMBH = supermassive black holes, BBN = Big Bang Nucleosynthesis.

in Fig. 1 (orange, dashed). Systems below-left of this
acceleration scale cannot be modelled without adding a
contribution to the gravitational field from unseen mat-
ter. This region of the parameter space is then prob-
lematic12 for testing gravity theories, since here there
is a degeneracy between two uncertain components of a
cosmological model: dark matter and an e↵ective dark
energy (which could be due to real fields or corrections
to General Relativity).
One final trend is worth noting before we move on to

describing specific systems. The gravitational field inside

12 But not impossibly so, due to the di↵erent properties of dark
energy and dark matter.
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is constant throughout the sphere. This is the reason
why the galaxy cluster profiles and some of the individual
galaxy profiles in Fig. 1 are approximately vertical (see
also §3.3) – they represent nearly-virialized systems.

3.2. Stellar-Scale Objects

We now place individual objects on the parameter
space, beginning with some simple test-particle-in-orbit-
type systems. When evaluating the potential and curva-
ture probed in these settings, we use the semi-major axis
of the orbit, neglecting any eccentricities as well as grav-
itational interactions between multiple orbiting objects.
We also only need to consider the potential well of

the dominant mass in the system under consideration.
For example, we do not account for the potential well
of the Galaxy when considering the potentials probed by
planets orbiting the Sun. This is because only di↵erences
in potentials are measurable, and the potential profile of
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The purpose of this paper is to introduce a well-
defined, quantitative procedure for comparing the envi-
ronments probed by di↵erent tests of gravity (see Psaltis
2008 for earlier ideas along these lines). Placing all sys-
tems on a common set of axes should facilitate discus-
sion between di↵erent sectors of the gravitational physics
community. Furthermore, making plain the remit of ex-
isting constraints will allow us to sensibly ask the ques-
tion: is there still ‘room’ for departures from GR in the
present state of a↵airs? Are there untested gravitational
environments that might provide the most fruitful direc-
tions for future research?
In §2 we explain our choice of axes for a gravitational

parameter space, and how both astrophysical and cosmo-
logical systems can be mapped onto them. §3 is devoted
to the understanding of this powerful but subtle plot. In
§4 we provide a visualization of experimental constraints,
which indicates where the under-tested regimes of grav-
ity lie. §5 is devoted to a discussion of our results.
In this paper we will work in conformal time ⌘,

denoting derivatives with respect to ⌘ by a dot. The
conformal Hubble factor is H ⌘ ȧ/a. Fractional energy
densities such as ⌦M (⌘) denote time-dependent quanti-
ties; present-day values are indicated by a subscript zero,
e.g. ⌦M0

. The metric signature used is {�,+,+,+}.
Some extended calculations are sequestered in the
Appendix.

2. QUANTIFYING GRAVITATIONAL FIELDS

2.1. Categories of Systems

The gravitational systems considered in this paper fall
into three categories: laboratory, astrophysical and cos-
mological. Most of our discussion will focus on the latter
two categories.
The astrophysical systems are nearly all spherically

symmetric, and many can be approximated by a test
particle in orbit around a central mass, e.g. a planet
orbiting a star, a star orbiting close to a supermassive
black hole, etc. Observations of the test particle’s mo-
tion are considered as a probe of the gravitational field
of the larger body.
Cosmological systems, e.g. the CMB, must instead be

treated as power spectra. These require more careful
handling; a gravitational field must be assigned to each
wavenumber k or angular mode ` in the power spectrum.
We need to define quantifiers analogous to those applied
to astrophysical systems, so that comparisons between
the two categories are possible.
Below we set out the system we will use to assess grav-

itational field strengths for the astrophysical and cosmo-
logical categories. In §4.5 we will explain how equivalent
parameters are assigned to two specific laboratory tests
of gravity.

2.2. Gravitational Quantifiers

In GR, three tensors make up the description of space-
time that enters the Einstein equations: the metric, the
Riemann curvature tensor, and the Ricci tensor7. We
can characterize a gravitational field by assessing how it

screen.
7 We regard the stress-energy tensor of matter as sourcing the

curvature of spacetime, not as part of its description.

is distributed between these three tensors. A loose phys-
ical interpretation runs thus: the metric describes the
curvature of the spacetime at a point; the Ricci tensor
describes how much of that curvature can be attributed
to the local mass at that point (since the Ricci tensor
vanishes in vacuum); the Riemann curvature tensor de-
scribes the total curvature due to both local masses and
the gravitational fields of other masses at a distance.
We wish to construct scalars which quantify the rela-

tive importance of each of these three tensors for a given
gravitational field. However, the obvious choice for the
Ricci tensor – the canonical Ricci scalar – vanishes in vac-
uum and radiation-dominated systems, making it awk-
ward for the purposes of this paper8,9. Hence we will
focus our attention on the remaining two tensors, the
metric and the Riemann curvature tensor.
Let us first consider the example of a test particle situ-

ated at a radial distance r from a central object of mass
M . The deviation of the metric from Minkowski form is
characterized by the magnitude of the Newtonian gravi-
tational potential,

✏ ⌘ GM

rc2
. (1)

The strongest gravitational fields accessible to an ob-
server correspond to the limit ✏ ! O(1), when the cen-
tral object is a black hole and the test particle orbits
close to the event horizon. Although equation (1) is a
coordinate-dependent statement, it can be linked to a di-
rectly observable (and therefore coordinate-independent)
quantity, namely the gravitational redshift of emission
lines from a star or similar object. Hence equation (1)
is a valid parameter for assessing the approximate mag-
nitude of the components of the metric outside a single
object in vacuum.
We will measure the approximate magnitude of the

Riemann curvature tensor through the Kretschmann
scalar (R↵���R↵���)1/2. The Kretschmann scalar for the
Schwarzschild metric is
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The first equality above is coordinate-independent, and
serves as our formal definition of ⇠; the second equality is
merely an illustratory example for the choice of standard
Schwarzchild coordinates. The corresponding expression
for rotating objects is more complicated (Henry 2000).
However, the additional prefactors will make little di↵er-
ence on the axis ranges used in this paper (see Fig. 1),
and so will be neglected.
The parameters ✏ and ⇠ above define a two-dimensional

space on which we can place the gravitational fields
probed by di↵erent objects, observations and experi-
ments. For simplicity we will informally refer to these
parameters as the ‘curvature’ and the ‘potential’ of the
spacetime, though this is not strictly accurate in all the
contexts we consider. We stress that our parameters ✏
and ⇠ depart from the physical potential and curvature

8 For example, R does not distinguish between a particle in orbit
around a black hole (a vacuum situation) and the early universe (a
radiation-dominated situation), since it is zero in both cases.

9 Note that the other semi-obvious choice,
�
R
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larly vanishes.
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Fig. 1.— A parameter space for gravitational fields, showing the regimes probed by a wide range of astrophysical and cosmological
systems. The axes variables are explained in §2 and individual curves are detailed in §3. Some of the label abbreviations are: SS = planets
of the Solar System, MS = Main Sequence stars, WD = white dwarfs, PSRs = binary pulsars, NS = individual neutron stars, BH = stellar
mass black holes, MW = the Milky Way, SMBH = supermassive black holes, BBN = Big Bang Nucleosynthesis.
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is constant throughout the sphere. This is the reason
why the galaxy cluster profiles and some of the individual
galaxy profiles in Fig. 1 are approximately vertical (see
also §3.3) – they represent nearly-virialized systems.

3.2. Stellar-Scale Objects

We now place individual objects on the parameter
space, beginning with some simple test-particle-in-orbit-
type systems. When evaluating the potential and curva-
ture probed in these settings, we use the semi-major axis
of the orbit, neglecting any eccentricities as well as grav-
itational interactions between multiple orbiting objects.
We also only need to consider the potential well of

the dominant mass in the system under consideration.
For example, we do not account for the potential well
of the Galaxy when considering the potentials probed by
planets orbiting the Sun. This is because only di↵erences
in potentials are measurable, and the potential profile of
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is distributed between these three tensors. A loose phys-
ical interpretation runs thus: the metric describes the
curvature of the spacetime at a point; the Ricci tensor
describes how much of that curvature can be attributed
to the local mass at that point (since the Ricci tensor
vanishes in vacuum); the Riemann curvature tensor de-
scribes the total curvature due to both local masses and
the gravitational fields of other masses at a distance.
We wish to construct scalars which quantify the rela-

tive importance of each of these three tensors for a given
gravitational field. However, the obvious choice for the
Ricci tensor – the canonical Ricci scalar – vanishes in vac-
uum and radiation-dominated systems, making it awk-
ward for the purposes of this paper8,9. Hence we will
focus our attention on the remaining two tensors, the
metric and the Riemann curvature tensor.
Let us first consider the example of a test particle situ-

ated at a radial distance r from a central object of mass
M . The deviation of the metric from Minkowski form is
characterized by the magnitude of the Newtonian gravi-
tational potential,

✏ ⌘ GM

rc2
. (1)

The strongest gravitational fields accessible to an ob-
server correspond to the limit ✏ ! O(1), when the cen-
tral object is a black hole and the test particle orbits
close to the event horizon. Although equation (1) is a
coordinate-dependent statement, it can be linked to a di-
rectly observable (and therefore coordinate-independent)
quantity, namely the gravitational redshift of emission
lines from a star or similar object. Hence equation (1)
is a valid parameter for assessing the approximate mag-
nitude of the components of the metric outside a single
object in vacuum.
We will measure the approximate magnitude of the

Riemann curvature tensor through the Kretschmann
scalar (R↵���R↵���)1/2. The Kretschmann scalar for the
Schwarzschild metric is

⇠ =
�
R↵���R↵���

�
1/2

=
p
48

GM

r3c2
. (2)

The first equality above is coordinate-independent, and
serves as our formal definition of ⇠; the second equality is
merely an illustratory example for the choice of standard
Schwarzchild coordinates. The corresponding expression
for rotating objects is more complicated (Henry 2000).
However, the additional prefactors will make little di↵er-
ence on the axis ranges used in this paper (see Fig. 1),
and so will be neglected.
The parameters ✏ and ⇠ above define a two-dimensional

space on which we can place the gravitational fields
probed by di↵erent objects, observations and experi-
ments. For simplicity we will informally refer to these
parameters as the ‘curvature’ and the ‘potential’ of the
spacetime, though this is not strictly accurate in all the
contexts we consider. We stress that our parameters ✏
and ⇠ depart from the physical potential and curvature

8 For example, R does not distinguish between a particle in orbit
around a black hole (a vacuum situation) and the early universe (a
radiation-dominated situation), since it is zero in both cases.

9 Note that the other semi-obvious choice,
�
R

↵�

R↵�

� 1
2 , simi-

larly vanishes.
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Why scalar-tensor theory?
• Modifications of GR from high-energy theory often lead to the 

introduction of additional degrees of freedom (Lovelock theorem)


• (Multi-)Scalar-tensor theories: gravity mediated by the metric and 
additional scalar field(s)


• Some high-energy theories predict GR + scalars as their low-energy limit. 

Damour and Esposito-Farese 1992 

Complicated enough 
to introduce testable modifications 
(e.g. the Eddington PPN parameters)

cf e.g. review by Will 2014

see eg. Sotiriou et al 2007

Simple enough 
to work out predictions (and even 
do full numerical simulations)



Moreover… 
1. Vanishing potential


2. Coupling function 

3.  Note the WEP!

A tale of two formulations

The most general action… 
1. single scalar field coupled non-minimally

2. invariant under space-time diffeomorphisms 

3. at most two space-time derivatives

4. satisfy the Weak Equivalence Principle (WEP)

Tensor-multi-scalar theories 2

1. Introduction

• [Davide: Why st theories: complex enough to model deviations from GR due to some
high-energy theories, but simple enough to carry over calculations and predictions.]

• [Davide: Into to ST theory for astrophysicsts]
• [Davide: Intro to core collapse for relativists]
• [Davide: Tell the story of the Einstein and Jordan frame]
• [Davide: review of Novak’s paper and early work on OppSn collapse in ST]
• [Davide: introduce GR1D [1] and rationale of our work]

[Davide: acronyms used so far:]
Scalar-tensor (ST) theories.
Equation of state (EOS)
General Relativity (GR)
Post Newtonian (PN)

Rembember to cite dust collapse in ST: [2, 3]
The paper is organized as follows... We use units...

2. Evolutionary equations and physical setup

In this Section, we first introduce the different formulation of ST theories (Sec. 2.1)
and we derive the hydrodynamics equations of motion in spherical symmetry using
radial-gauge, polar-slicing coordinates (Sec. 2.2). Secondly, we detail some additional
physical ingredients, namely the EOS (Sec. 2.3) and the coupling function (Sec. 2.4).
We finally describe the initial profiles used in this study (Sec. 2.5).

2.1. A tale of two formulations

In ST theories, gravity is mediated by the spacetime metric g

µ⌫

and an additional
scalar field �. The most general action which (i) involves a single scalar field coupled
non-minimally to the metric, (iii) is invariant under space-time, (iii) has at most two
space-time derivatives and (iv) satisfy the Weak Equivalence Principle (WEP) is [4,5]

S =

Z
dx

4

p�g
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16⇡
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(@
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�)(@
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m

( 

m

, g

µ⌫

) , (2.1)

where R is the Ricci scalar built from g

µ⌫

and symbol  
m

collectively denotes all
non-gravitational fields. The theory has only two free functions of the scalar field:
the potential V = V (�) and the coupling function F = F (�). If the potential V

is a slowly varying function of � –as expected on cosmological grounds, see [6]– it
causes negligible effects on the propagation of � on stellar scales and just fixes the
asymptotic value of the scalar field at spatial infinity. For simplicity, we thus set
V = 0 throughout the paper; GR is then recovered for F = 1. Details on the choice of
the coupling function F are postponed to Sec. 2.4. The WEP –which indeed had been
tested experimentally to very high precision [7]– is guaranteed to hold as long as the
matter part of the action S

m

does not couple to scalar field, and follow geodesics of
the metric g

µ⌫

. The scalar field does not interact with ordinary matter directly, but
influences the motion of particles only through its coupling with the spacetime metric.
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The theory described by the action (2.1) is said to be formulated in the Jordan

frame [8]. Branse-Dicke theory is a special case obtained setting F (�) = � [9]. ST
theories can also be formulated in the so-called Einstein frame. One considers the
conformal tranfromation

ḡ

µ⌫

= Fg

µ⌫

, (2.2)

such that the action of Eq. (2.1) becomes
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where ¯

R is the Ricci scalar built from ḡ

µ⌫

and ' is a redefinition of the scalar field �

through [10,11]
@'

@�

=

r
3

4

F

,�

2

F

2

+
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. (2.4)

The key advantage resulting from this conformal transformation is a minimal coupling
between the conformal metric and the scalar field, evident at the level of the action.
This means, for instance, that BHs cannot be used to place experimental constraints
on the theory because: if in vacuum (S

m

= 0), the action (2.3) reduces to the Einstein-
Hilbert action of GR minimally coupled to a scalar field. From a more pragmatic point
of view, the existence of the Einstein frame implies that numerical tools developed for
BH physics in GR can be trivially extended to explore the phenomenology of ST
theories, see e.g. [12].

The equations of motions in the Jordan frame can be obtained varying the action
of Eq. (2.1) with respect to the spacetime metric g

µ⌫

and the scalar field �:

G
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Combining the Bianchi identities with the field equations can be shown to imply that
the matter part of the energy momentum tensor

T

µ⌫

=

2p�g

�S

m

�g

µ⌫

(2.9)

is conserved on its own, i.e.
r

µ

T

µ⌫

= 0. (2.10)

This feature makes the Jordan frame particularly convenient to study stellar collapse
because the matter equations, which are expected to develop shocks, do not need to
be modified from their GR counterparts (cf. Sec. 2.2.3). The drawback of this choice
is that the scalar field is not minimally coupled to the metric, as indicated by the
additional terms T

F

µ⌫

and T

�

µ⌫

in the Einstein equations.
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This feature makes the Jordan frame particularly convenient to study stellar collapse
because the matter equations, which are expected to develop shocks, do not need to
be modified from their GR counterparts (cf. Sec. 2.2.3). The drawback of this choice
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and we derive the hydrodynamics equations of motion in spherical symmetry using
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non-gravitational fields. The theory has only two free functions of the scalar field:
the potential V = V (�) and the coupling function F = F (�). If the potential V

is a slowly varying function of � –as expected on cosmological grounds, see [6]– it
causes negligible effects on the propagation of � on stellar scales and just fixes the
asymptotic value of the scalar field at spatial infinity. For simplicity, we thus set
V = 0 throughout the paper; GR is then recovered for F = 1. Details on the choice of
the coupling function F are postponed to Sec. 2.4. The WEP –which indeed had been
tested experimentally to very high precision [7]– is guaranteed to hold as long as the
matter part of the action S

m

does not couple to scalar field, and follow geodesics of
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. The scalar field does not interact with ordinary matter directly, but
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Damour and Esposito-Farese 1992 



Dominant corrections to GR
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5 C O N S T R A I N T S O N SC A L A R – T E N S O R
T H E O R I E S O F G R AV I T Y

The most natural alternatives to GR involve a scalar field ϕ con-
tributing to the gravitational interaction, in addition to the met-
ric gµν describing usual spin-2 gravitons. In these theories, mat-
ter is assumed to be universally coupled to a physical metric
g̃µν ≡ A2(ϕ)gµν , where A(ϕ) is a non-vanishing function defin-
ing the matter–scalar coupling.

It is convenient to expand this function around the background
value ϕ0 imposed by the cosmological evolution, as ln A(ϕ) =
ln A(ϕ0) + α0(ϕ − ϕ0) + 1

2 β0(ϕ − ϕ0)2 + · · ·, where α0 defines the
linear matter–scalar coupling constant, β0 the quadratic coupling
of matter to two scalar particles, and we will not consider higher-
order vertices in the following (those corresponding to α0 and β0

are diagrammatically represented on the axes of Figs 7 and 8, the
circles meaning a matter source). GR corresponds to α0 = β0 =
0, and the Brans–Dicke theory (Jordan 1959; Fierz 1956; Brans &
Dicke 1961) to α2

0 = 1/(2ωBD + 3) and β0 = 0.
The predictions of such theories have been carefully studied in

the literature (Will 1993; Damour & Esposito-Farèse 1992, 1993,
1996a,b, 1998). In strong-field conditions, notably within and near
a neutron star, the coupling constants α0 and β0 are modified by
self-gravity effects, and become body-dependent quantities, αA and
βA (A being a label for the body), which can be computed by
numerical integration of the field equations. One needs to assume
a specific EOS for nuclear matter in such integrations, and we will
use the moderate one of Damour & Esposito-Farèse (1996b) in the

Figure 7. Solar system and binary pulsar 1σ constraints on the matter–
scalar coupling constants α0 and β0. Note that a logarithmic scale is used
for the vertical axis |α0|, i.e. that GR (α0 = β0 = 0) is sent at an infinite
distance down this axis. LLR stands for Lunar Laser Ranging, Cassini for
the measurement of a Shapiro time-delay variation in the Solar system, and
SEP for tests of the strong equivalence principle using a set of neutron star–
WD low-eccentricity binaries (see text). The allowed region is shaded, and
it includes GR. PSR J1738+0333 is the most constraining binary pulsar,
although the Cassini bound is still better for a finite range of quadratic
coupling β0.

Figure 8. Similar theory plane as in Fig. 7, but now for the (non-conformal)
matter–scalar coupling described in the text, generalizing the TeVeS model.
Above the upper horizontal dashed line, the non-linear kinetic term of the
scalar field may be a natural function; between the two dashed lines, this
function needs to be tuned; and below the lower dashed line, it cannot exist
any longer. The allowed region is shaded. It excludes GR (α0 = β0 = 0)
because such models are built to predict MOND at large distances. Note that
binary pulsars are more constraining than Solar system tests for this class of
models (and that the Cassini bound of Fig. 7 does not exist any longer here).
For a generic non-zero β0, PSR J1738+0333 is again the most constraining
binary pulsar, while for β0 ≈ 0, the magnitude of |α0| is bounded by the
J0737−3039 system.

following. The dependence on the stiffness of the EOS is illustrated
in Damour & Esposito-Farèse (1998), but this does not change the
relative strength of the various binary–pulsar tests.

The body-dependent parameters αA and βA enter all observable
predictions, and for instance, the effective gravitational constant
between two bodies A and B reads

G̃AB ≡ G∗A
2(ϕ0) · (1 + αAαB ), (18)

where G∗ denotes Newton’s bare constant.4 This induces a generic
time dependence of the gravitational constant (cf. equation 15), as
well as a violation of the strong equivalence principle (SEP): the
acceleration of a body depends on its gravitational binding energy.
Let us also quote the expressions taken by the generalizations of
Eddington’s PPN parameters γ PPN and βPPN (Eddington 1923), as
the former will differ in Section 6:

γAB ≡ 1 − 2
αAαB

1 + αAαB

, (19)

βA
BC ≡ 1 + 1

2
βAαBαC

(1 + αAαB )(1 + αAαC)
, (20)

where A, B, C denote a priori three bodies, but B = C is allowed. The
relativistic periastron advance, proportional to (2 + 2γ PPN − βPPN)

4 Newton’s constant G, as measured in the Cavendish experiment, is given
by G∗A2(ϕ0)(1 + α2

0).

C⃝ 2012 The Authors, MNRAS 423, 3328–3343
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS
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where ✏

th
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c

is the thermal contribution to the internal energy, computed
from the primitive variable ✏. The flow is adiabatic before bounce, meaning that
✏ ' ✏

c

and the total pressure is well described by its cold contribution only. At core
bounce, hydrodynamical shocks make the flow non adiabatic and trigger the thermal
contribution to the EOS.

We consider families of the hybrid EOS described by three parameters: �

1

, �

2

and �

th

. The physical range of these adiabatic indexes has been explicitly studied in
Ref. [24,25], where 2+1 GR simulations of core collapse have been used to compute the
effective adiabatic index using the finite-temperature EOSs of Lattimer and Swesty
[27, 28] and Shen et al. [29, 30]. At low density before bounce, finite-temperature
effects decreases the effective adiabatic index below the value �

1

= 4/3 predicted for
a relativistic gas of electrons. More precisely, the physical range spans from �

1

' 1.32

to �

1

' 1.28 [24,25]. In particular, lower values of �

1

are found when deleptonization
is taken into account because electron capture onto nuclei before neutrino decreases
Y

e

for given ⇢. thus softening the EOS. Collapse is stopped by a stiffening of the
EOS at nuclear density, due to increasing repulsion from nuclear forces which rises
the effective adiabatic index �

2

above 4/3. Ref. [25] finds �

2

' 2.5 for the Shen et al.

EOS and �

2

' 3 for the Lattimer-Swesty EOS. Finally, the thermal adiabatic index
�

th

models a mixture of relativistic and non-relativistic gas, and is thus physically
bounded to 4/3 < �

th

< 5/3. We select fiducial values �

1

= 1.3, �

2

= 2.5, �

th

= 1.5

in the code test presented in Sec. 3.2, and we perform a parameter study around this
fiducial model in Sec. [Davide: REF-TO-RESULTS] .

2.4. Coupling function

As introduced in Sec. 2.1, ST theories with a single scalar field and vanishing potential
are described by a single free function F ('). The phenomenology of ST is remarkably
simple, because modifications of gravity at 1PN only depends on two parameters,
namely the asymptotic values of the first and second derivatives of logF [4, 31,32]⇤
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The effective gravitational constants between two bodies measured by a Cavendish
experiment is

˜

G = G(1 + ↵

2

0

) , (2.49)

[where G = 1 is the bare gravitational constants entering the action], while the
Eddington PPN parameters [34,35] are given by
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2(1 + ↵
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. (2.50)

An interpretation of Eq. (2.50) in terms of fundamental interactions is given in
Ref. [36]. Since only the first two coefficients in a Taylor expansion of logF about

⇤ We introduce factors 1/2 in Eq. (2.47-2.48), an consequently a factor 2 in Eq. (2.51), to be consistent
with previous studies e.g. Ref. [4, 31, 33].
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[where G = 1 is the bare gravitational constants entering the action], while the
Eddington PPN parameters [34,35] are given by

�

PPN � 1 =

↵

2

0

�

0

2(1 + ↵

2

0

)

2

, �

PPN � 1 = �2

↵

2

0

1 + ↵

2

0

. (2.50)

An interpretation of Eq. (2.50) in terms of fundamental interactions is given in
Ref. [36]. Since only the first two coefficients in a Taylor expansion of logF about

⇤ We introduce factors 1/2 in Eq. (2.47-2.48), an consequently a factor 2 in Eq. (2.51), to be consistent
with previous studies e.g. Ref. [4, 31, 33].

1PN corrections in ST theories

depend on two parameters only

coupling function

Freire et al. 2012

Experimental  
constraints

Let’s take this subset of ST theories

'0 = lim
r!1

'

Stellar collapse in scalar-tensor theories 11

3.2. Coupling function

As introduced in Sec. 2.1, ST theories with a single scalar field and vanishing potential
are described by a single free function F ('). The phenomenology of ST theories is
simplified, however, by the fact that all modifications of gravity at first post-Newtonian
(PN) order depend only on two parameters. These are the asymptotic values of the
first and second derivatives of log F [12, 13,29]⇤

↵0 = �1

2

@ log F

@'

����
'='0

, (3.5)

�0 = �1

2

@

2
log F

@'

2

����
'='0

. (3.6)

The effective gravitational constant determining the attraction between two bodies as
measured in a Cavendish experiment is

˜

G = G(1 + ↵

2
0) , (3.7)

where G is the bare gravitational constant entering the action. Furthermore, the
Eddington Parameterized post-Newtonian (PPN) parameters [71,72] can be expressed
exclusively in terms of ↵0 and �0 through

�

PPN � 1 =

↵

2
0�0

2(1 + ↵

2
0)

2
, �

PPN � 1 = �2

↵

2
0

1 + ↵

2
0

; (3.8)

for an interpretation of these equations in terms of fundamental interactions, see
Ref. [73]. In consequence, weak-field deviations from GR are completely determined
by Taylor expansion of log F to quadratic order about lim

r!1 ' = '0 while this
form of the conformal factor additionally leads to new non-perturbative effects such
as spontaneous scalarization. Note furthermore that the zeroth order term has no
physical relevance, as one can always choose units such that it vanishes [49]. For these
reasons, most of the literature on ST theories has focussed on coupling functions of
quadratic form [28,29] and we follow this approach by employing a coupling function

F = exp

⇥�2↵0(' � '0) � �0(' � '0)
2
⇤

. (3.9)

The asymptotic value '0 does not represent an additional degree of freedom in the
theory because it can be reabsorbed by a field redefinition ' ! ' + '0 and we
therefore set '0 = 0 without loss of generality in the rest of this paper.† We can
furthermore assume ↵0 � 0 because the sign of ↵0 is degenerate with the field
redefinition ' ! �'. Despite its apparent simplicity, this two-parameter family of ST
theories is representative of all ST theories with the same phenomenology up to 1PN.
Brans-Dicke theory [11] is a special case of Eq. (3.9) with !BD = (1 � 6↵

2
0)/2↵

2
0 and

�0 = 0.
It is well known that all deviations in the structure of spherically symmetric

bodies in ST theory from their general relativistic counterparts are given in terms

⇤ We introduce factors �1/2 in Eq. (3.5-3.6), an consequently a factor �2 in Eq. (3.9), to be consistent
with previous studies e.g. Ref. [12, 28, 29].

† The class of theories here parametrized by (↵0,�0) can equivalently be represented using
F = exp(�2�0'2

) [Uli: Should this not be F = exp(�2�0(' � '0)
2
?] but keeping '0 as an

independent parameter, as done e.g. in Ref. [28].



Spontaneous scalarization
Damour and Esposito-Farese 1993, 1996 

ϕc

Energysm
all m

/R (Sun)

critical m
/R
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/R

(neutron star)

0

α0 = 0

ln A(ϕ)

ϕ

β0 < 0 large slope ≈ scalar charge

FIG. 2: Heuristic argument to explain the phenomenon of “spontaneous scalarization”. When
β0 < 0 and the compactness Gm/Rc2 of a body is large enough, it is energetically favorable to

create a local scalar field different from the background value. The body becomes thus strongly
coupled to the scalar field.

the star symbol to light deflection as measured by Very Long Baseline Interferometry [16]:

|γPPN − 1| < 4 × 10−4, (7)

and the label “Cassini” to the impressive recent constraint obtained by measuring the time
delay variation to the Cassini spacecraft near solar conjunction [17]:

γPPN − 1 = (2.1 ± 2.3) × 10−5. (8)

Solar-system tests thus constrain the first derivative α0 to be small, i.e., the linear interaction
between matter and the scalar field to be weak. On the other hand, the second derivative
β0 may take large values (of either sign), i.e., matter may be strongly coupled to two scalar
lines.

B. Nonperturbative strong-field effects

At higher post-Newtonian orders 1/cn, a simple diagrammatic argument shows that any
deviation from GR involves at least two factors α0, and has the schematic form

deviation from GR = α2
0 ×

[

λ0 + λ1
Gm

Rc2
+ λ2

(
Gm

Rc2

)2

+ · · ·

]

, (9)

where m and R denote the mass and radius of the considered body, and λ0, λ1, . . . are
constants built from the coefficients α0, β0, . . . of expansion (3). Since α2

0 is experimentally
known to be small, we thus expect the theory to be close to GR at any order. However, some
nonperturbative effects may occur in strong-field conditions: If the compactness Gm/Rc2

5

Perturbative corrections enters as…


recovers the usual minimally coupled massless scalar. The theory above can be obtained as a
particular case of the action (2.3) after a field redefinition.

Lima, Matsas and Vanzella showed that the vacuum expectation value of nonminimally
coupled scalar fields can grow exponentially in relativistic stars [138]. At the classical level,
this quantum instability can be interpreted in terms of the spontaneous scalarization discussed
above [139]. The instability can occur for both positive and negative values of ξ. When ξ < 0
and x is large enough, the instability can occur even for Newtonian stars. For a detailed
analysis of the approach to the classical limit and of the relation between the quantum and
classical nature of the final state, see [140, 141].

Slowly rotating solutions. Spinning NSs at first order in the Hartle–Thorne slow-rotation
approximation were studied by Damour and Esposito-Farèse [116] and later by Sotani [119].

Figure 15. NS configurations in GR (solid lines) and in two scalar–tensor theories
defined by equation (2.4) with A e

1
2 0

2( )j º b j and V 0( )j º . Dashed lines refer to
4.50b = - , 4 100

3j p =¥ - ; dashed–dotted lines refer to β0 = −6,
4 100

3j p =¥ - . Each panel shows results for three different EOS models (FPS,
APR and MS1). Top-left panel, left inset: relation between the nonrotating mass M and
the radius R in the Einstein frame. Top-left panel, right inset: relative mass correction
δM/M induced by rotation as a function of the mass M of a nonspinning star with the
same central energy density. Top-right panel, left inset: scalar charge q M˜ as a function
of M. Top-right panel, right inset: relative correction to the scalar charge q q˜ ˜d induced
by rotation as a function of M. Bottom-left panel: Jordan-frame moment of inertia Ĩ
(left inset) and Jordan-frame quadrupole moment Q̃ (right inset) as functions of M.
Bottom-right panel: Jordan-frame tidal (l̃) and rotational ( rotl̃ ) Love numbers as
functions of M. (From [120].)
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⇠ 0.2 (so, neutron stars!)
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Strong-field 
non-linearities!
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Core collapse in a nutshell
• End of star’s life: iron core supported by 

degenerate pressure of rel. electrons.

• Collapse, outgoing shock, Type II supernova

• Core is left behind as a neutron star 
• Accretion: BH formation

Are non-trivial 
scalar-field 

profiles excited 
following core-

collapse? 
How about GWs? 

Type II SN are as luminous 
as entire galaxies 



Hydrodynamics in ST theories

Tensor-multi-scalar theories 3

The theory described by the action (2.1) is said to be formulated in the Jordan

frame [8]. Branse-Dicke theory is a special case obtained setting F (�) = � [9]. ST
theories can also be formulated in the so-called Einstein frame. One considers the
conformal tranfromation

ḡ

µ⌫

= Fg

µ⌫

, (2.2)

such that the action of Eq. (2.1) becomes

S =

1

16⇡

Z
dx
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+ S

m
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m

, ḡ

µ⌫

/F ] , (2.3)

where ¯

R is the Ricci scalar built from ḡ

µ⌫

and ' is a redefinition of the scalar field �

through [10,11]
@'

@�

=

r
3

4

F

,�

2

F

2

+

4⇡

F

. (2.4)

The key advantage resulting from this conformal transformation is a minimal coupling
between the conformal metric and the scalar field, evident at the level of the action.
This means, for instance, that BHs cannot be used to place experimental constraints
on the theory because: if in vacuum (S

m

= 0), the action (2.3) reduces to the Einstein-
Hilbert action of GR minimally coupled to a scalar field. From a more pragmatic point
of view, the existence of the Einstein frame implies that numerical tools developed for
BH physics in GR can be trivially extended to explore the phenomenology of ST
theories, see e.g. [12].

The equations of motions in the Jordan frame can be obtained varying the action
of Eq. (2.1) with respect to the spacetime metric g

µ⌫

and the scalar field �:

G

µ⌫

=
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F

�
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, (2.5)
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⇢
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F
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Combining the Bianchi identities with the field equations can be shown to imply that
the matter part of the energy momentum tensor

T

µ⌫

=

2p�g

�S

m

�g

µ⌫

(2.9)

is conserved on its own, i.e.
r

µ

T

µ⌫

= 0. (2.10)

This feature makes the Jordan frame particularly convenient to study stellar collapse
because the matter equations, which are expected to develop shocks, do not need to
be modified from their GR counterparts (cf. Sec. 2.2.3). The drawback of this choice
is that the scalar field is not minimally coupled to the metric, as indicated by the
additional terms T

F

µ⌫

and T

�

µ⌫

in the Einstein equations.
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1. Introduction

• [Davide: Why st theories: complex enough to model deviations from GR due to some
high-energy theories, but simple enough to carry over calculations and predictions.]

• [Davide: Into to ST theory for astrophysicsts]
• [Davide: Intro to core collapse for relativists]
• [Davide: Tell the story of the Einstein and Jordan frame]
• [Davide: review of Novak’s paper and early work on OppSn collapse in ST]
• [Davide: introduce GR1D [1] and rationale of our work]

[Davide: acronyms used so far:]
Scalar-tensor (ST) theories.
Equation of state (EOS)
General Relativity (GR)
Post Newtonian (PN)

Rembember to cite dust collapse in ST: [2, 3]
The paper is organized as follows... We use units...

2. Evolutionary equations and physical setup

In this Section, we first introduce the different formulation of ST theories (Sec. 2.1)
and we derive the hydrodynamics equations of motion in spherical symmetry using
radial-gauge, polar-slicing coordinates (Sec. 2.2). Secondly, we detail some additional
physical ingredients, namely the EOS (Sec. 2.3) and the coupling function (Sec. 2.4).
We finally describe the initial profiles used in this study (Sec. 2.5).

2.1. A tale of two formulations

In ST theories, gravity is mediated by the spacetime metric g

µ⌫

and an additional
scalar field �. The most general action which (i) involves a single scalar field coupled
non-minimally to the metric, (iii) is invariant under space-time, (iii) has at most two
space-time derivatives and (iv) satisfy the Weak Equivalence Principle (WEP) is [4,5]

S =

Z
dx

4

p�g


F (�)

16⇡

R � 1

2

g

µ⌫

(@

µ

�)(@

⌫

�) � V (�)

�
+ S

m

( 

m

, g

µ⌫

) , (2.1)

where R is the Ricci scalar built from g

µ⌫

and symbol  
m

collectively denotes all
non-gravitational fields. The theory has only two free functions of the scalar field:
the potential V = V (�) and the coupling function F = F (�). If the potential V

is a slowly varying function of � –as expected on cosmological grounds, see [6]– it
causes negligible effects on the propagation of � on stellar scales and just fixes the
asymptotic value of the scalar field at spatial infinity. For simplicity, we thus set
V = 0 throughout the paper; GR is then recovered for F = 1. Details on the choice of
the coupling function F are postponed to Sec. 2.4. The WEP –which indeed had been
tested experimentally to very high precision [7]– is guaranteed to hold as long as the
matter part of the action S

m

does not couple to scalar field, and follow geodesics of
the metric g

µ⌫

. The scalar field does not interact with ordinary matter directly, but
influences the motion of particles only through its coupling with the spacetime metric.

Jordan frame

Einstein equations

Wave equation

Tensor-multi-scalar theories 4

2.2. Equation of motions

We now restrict the equations of motion to spherical symmetry in radial-gauge, polar-
slicing coordinates [13]. The line element in the Jordan frame is

ds

2

= g

µ⌫

dx

µ

dx

⌫

= �↵

2

dt

2

+ X

2

dr

2

+

r

2

F

d⌦

2

, (2.11)

where the metric functions ↵ = ↵(t, r) and X = X(t, r) can be more conveniently
rewritten in terms of the metric potential

� = log(

p
F↵) , (2.12)

and the enclosed mass

m =

r

2

✓
1 � 1

FX

2

◆
. (2.13)

Note that in Eq. (2.11) we multiplied the angular part of the metric d⌦

2 by a
factor 1/F , thus effectively imposing the radial gauge in the Einstein frame. In this
formulation, the (Jordan-frame) areal radius is given by r/

p
F . This choice allows

for comparisons with Refs. [14–16], where the analysis is entirely carried out in the
Einstein frame. Following Ref. [1], we assume ideal hydrodynamics as described by
the energy-momentum tensor

T

↵�

= ⇢hu

↵

u

�

+ Pg

↵�

, (2.14)

and the matter current density

J

↵

= ⇢u

↵

, (2.15)

where ⇢ is the baryonic density, P is the fluid pressure, h is the specific enthalpy
(which si related to the specific internal energy ✏ by h = 1 + ✏ + P/⇢) and u

µ is the
4-velocity of the fluid. Sperical symmetry implies

u

µ

=

1p
1 � v

2


1

↵

,

v

X

, 0, 0

�
, (2.16)

where v = v(t, r).
As clarified bewlow, the equations of motions can be written down using conserved

variables, suitable to be implemented in high-resolution shock-capturing schemes
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The definitions above generalize Eq. (8) in Ref. [1] to ST theory. Even if we work in the
Jordan frame, we take advantage of the Einstein-frame scalar-field redefinition � ! '
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Note that in Eq. (2.11) we multiplied the angular part of the metric d⌦
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The definitions above generalize Eq. (8) in Ref. [1] to ST theory. Even if we work in the
Jordan frame, we take advantage of the Einstein-frame scalar-field redefinition � ! '
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The definitions above generalize Eq. (8) in Ref. [1] to ST theory. Even if we work in the
Jordan frame, we take advantage of the Einstein-frame scalar-field redefinition � ! '

Radial gauge



1. Curvature equations

2. Scalar-field wave equations
3 first-order PDEs

second-order finite differences + outgoing boundary condition

Constraints for the enclosed mass and metric potential

Primitive 
variables

⇢ : mass density
h : enthalpy
v : radial velocity

Conserved 
variables

3. Matter equations
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where the asymptotic value '

0

can thought of cosmological origin and ! is called
scalar charge of the star. We impose an outgoing boundary condition [19] at spatial
infinity

lim

r!1
'(t, r) = '

0

+

f(t � r)

r

+ O(r

�2

) , (2.30)

where f is a free function. This conditions can be translated in the following differential
expressions for ⌘ and  
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= 0 , (2.32)

together with Eq. (2.26) for ' .

2.2.3. Matter equations in flux-conservative form. The evolutionary equations (2.5-
2.8) can be conveniently written in flux-conservative form [18]
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where U is the vector of the conserved variables U = [D,S

r

, ⌧ ] defined in Eqs. (2.17-
2.19). The fluxes f(U) and the source s(U) are given by
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We note that Eqs. (2.37) and (2.39) differ from Eqs. (8-10) in Ref. [16]. Notably,
the term proportional to ⌘v in Eq. (2.39), let us cast all three matter equations in
the very same form given in Eq. (2.33), in contrast with Ref. [16] where additional
considerations are required to integrate the evolution of D (c.f. the discussion reported
in Sec. 2.1 therein).

The hyperbolic structure of the system of equations (2.33) is dictated by the
Jacobian matrix (see e.g [20])

JU =

@f(U)
@U

. (2.40)

Integrated with high-resolution 
shock-capturing schemes

Code built on top of  GR1D O’Connor & Ott 2010

cf. also Novak 1998a,b 
Novak & Ibanez 2000



Mimicking nuclear physics
We need an equation of state to close the system

Hybrid EOS:
Janka, Zwerger, Moenchmeyer 1993  
Zwerger, Mueller 1997  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The characteristic speeds associated with the propagation of the matter fields are the
eigenvalues � of JU

� =


v,

v + c

s

1 + v c

s

,

v � c

s

1 � v c

s

�
, (2.41)

where c

s

is local matter sound speed given by

h c

2

s

=

@P

@⇢

+

P

⇢

2

@P

@✏

. (2.42)

The characteristic speeds are therefore exactly the same as in GR, since they do not
contain any dependence on the conformal factor F . The same implementation of the
high-resolution shock-capturing schemes presented in Ref. [1] for GR can be safely
used to in ST theories, provided the conserved variables U and their fluxes f(U) are
generalized using the expressions presented above.

2.3. Equation of state

An EOS is needed to close a hydrodynamical system. The EOS provides the pressure
P as a function of the mass density, internal energy (or temperature) and possibly
the composition. In this paper we study stellar collapse using the hybrid EOS. First
introduced in Ref. [21], the hybrid EOS is an analytic EOS which qualitatively capture
the expected stiffening at nuclear density and include nonisentropic (thermal) effects
to model the response of shocked material. The hybrid EOS has been widely used
in early core-collapse simulations [22, 23], and has been critically compared against
modern finite-temperature EOSs in Ref. [24, 25].

The hybrid EOS consists in a cold and a thermal part:

P = P

c

+ P

th

. (2.43)

The cold components P

c

is in turns a piecewise polytropic with adiabatic indexes
�

1

and �

2

. P

c

models both pressure contributions from relativistic electrons and the
stiffening of a realistic EOS at nuclear density due to the repulsive character of nuclear
forces. The two components are matched at the nuclear density ⇢

nuc

= 2⇥10

14

g/cm

3

P

c

=

(
K

1

⇢

�1
if ⇢  ⇢

nuc

,

K

2

⇢

�2
if ⇢ > ⇢

nuc

.

(2.44)

We set K

1

= 4.9345 ⇥ 10

14

[cgs], as predicted for a relativistic degenerate gas of
electrons with composition Y

e

= 0.5 [26], while K

2

= K

1

⇢

�1��2
nuc

is set by continuity at
⇢ = ⇢

nuc

. The specific internal energy follows from the first law of thermodynamics in
case of adiabatic transformations

✏
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(
K1

�1�1
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�1�1

if ⇢  ⇢

nuc

,

K2
�2�1

⇢

�2�1

+ E

3

if ⇢ > ⇢

nuc

,

(2.45)

where the integration constant E

3

is set by continuity at ⇢ = ⇢

nuc

. The thermal
contribution is described by an ideal gas EOS with adiabatic index �

th

P

th

= (�

th

� 1)⇢✏

th

, (2.46)
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Piecewise polytropic 
• Iron core collapse 

• Stiffening at nuclear densities

Ideal gas 
• Response of the heated 

post-shock material�1 . 4/3

�2 ' 2.5� 3
4/3 < �th < 5/3

Dimmelmeier et al. 2007, 2008 Tested against finite-temperature EOS:

✏th = ✏� ✏c



Collapse, bounce, shock… and NS
Mass density Scalar field

↵0 = 10�4 �0 = �4.35
First collapse of realistic massive star through bounce in ST theory 

Initial profile: realistic SN progenitor Woosley & Heger 2007 
ST theory

MZAMS = 12M�

Movies available at www.damtp.cam.ac.uk/user/dg438/corecollapse



Collapse, bounce, shock… and BH
Mass density Scalar field

↵0 = 10�4 �0 = �4.35
First collapse of realistic massive star through bounce in ST theory 

Initial profile: realistic SN progenitor
Woosley & Heger 2007 

ST theory
MZAMS = 40M�

Movies available at www.damtp.cam.ac.uk/user/dg438/corecollapse



Proof of convergence
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and iterate the procdure till convergence. Note that X = 1/

p
F (1 � 2m/r) can be

computed directly from the conserved variables from the equations reported in Sec. 2.2.
The evolution of the scalar field turns out to be susceptible to numerical noise near

the origin r = 0. We achieved long-term stable evolutions using artificial dissipation
of Berger-Olliger type [53]. We add a dissipation term of the form D ⇥ �r ⇥ @

4

u/@r

4

to the to the right-hand-side of Eqs. (2.26)-(2.28), where u stands for either of the
scalar-field variables, �r is the width of the cell and D is a dissipation coefficient. In
practice, we have obtained good results using D = 0.5/C.

3.2. Self-convergence test

Here we present proof of convergence of our dynamical code. Given three simulations
of increasing resolutions with grid spacings dr

1

> dr

2

> dr

3

, the self-convergence
factor Q of a quantity q is defined by

Q =

q

1

� q

2

q

2

� q

3

=

(dr

1

)

n � (dr

2

)

n

(dr

2

)

n � (dr

3

)

n

, (3.4)

where q

i

indicates the quantity q for the run at resolution dr

i

and n is the convergence
order of the numerical scheme implemented.

We consider the evolution a � = 4/3 polytrope in a ST theory with ↵

0

= 10

�4

and �

0

= �4.5 using the hybrid EOS with �

1

= 1.3, �

2

= 2.5 and �

th

= 1.5.
Evolution is performed for three equally spaced grids of size R

out

= 2 ⇥ 10

3

Km and
number of zones N = 6000, 12000 and 24000. We therefore expect Q = 2 (Q = 4) for
first- (second-) order convergence. The bottom panels of Fig. 3.1 show the convergence
properties of the gravitational mass m and the scalar field ' at various timesteps. Solid
line show the difference between the coarse and the medium resolution runs q

1

� q

2

;
dashed (dotted) lines show the difference between the medium and the fine resolution
runs q

2

� q

3

multiplied by the expected first- (second-) order self-convergence factor
Q = 2 (Q = 4). In practice, second order convergence is achieved if solid and dotted
lines coincide, while the code is only first-order convergent if solid and dashed lines
coincide. The evolution of ⇢ and ' is reported in the top panels for convenience. The
star does not evolve to a spontaneously scalarized solution because the compactness
of the core (m/r ⇠ 0.03 at 10 Km) remains lower than the threshold at which multiple
solutions appear (m/r ⇠ 0.2). The scalar charge ! evolves from ⇠ �1.3 ⇥ 10

�4

M�
to ⇠ �1.5 ⇥ 10

�4

M� during the entire explosion.
The enclosed mass m shows good second-order convergence properties before

bounce t . 38 ms, while convergence deteriorates to first order as the shock propagate
outwards t & 38 ms. This is characteristic feature of high-resolution shock-capturing
schemes, which reduce to a standard second-order scheme in smooth parts of the
flow and to a first-order scheme when discontinuities form [1]. The scalar field ' is
evolved using second-order finite differences. At the beginning of the evolution, the
central regions of the star shows second-order convergence. However, after a crossing
time R

out

/c ⇠ 7 ms, numerical errors originated from the boundary conditions lower
the convergence to first order [Davide: please, can you me here?] . Second-order
convergence is restored as soon as numerical errors start being dominated by the
evolutionary scheme. After bounce, discontinuities in the matter variables inevitably
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When plotting h

c

and h

n

on a log-log scale, the area between the source and detector curves is related
to the SNR. The more common convention used for detector sensitivity curves is the square root of
the power-spectral density:

p
S

n

(f) =
h

n

(f)p
f

. (10.7)

By analogy, one defines

p
S

h

(f) =
h

c

(f)p
f

= 2
p

f |h̃(f)| . (10.8)

GW plots typically compare
p

S

n

(f) and
p

S

h

(f). With some confusion,
p

S

n

(f) and
p

S

h

(f) are
both called GW strain; sometimes the label n is replaced with h even for the detector. In this kind
of plots, the area between two curves is not related to the SNR in a simple way. Note that h

n

(f) and
h

c

(f) are dimensionless, while
p

S

n

(f) and
p

S

h

(f) have dimension Hz�1/2. The LIGO collaboration
provides the expected

p
S

n

(f) for Advanced LIGO: datafiles are available at [1]; we will use their
Zero Det, High Power configuration.
In Ref. [4], Damour and Esposito-Farese shows that the analogous expression to h(t) for a monopolar
scalar wave is

h(t) =
2

D

↵

0

r(' � '

0

) (10.9)

where D is the distance between the detector and the source. See Eq.(5.6) in Ref. [4], also Eq. (3.4) in
[13] and Eq. (4.2) in [12]. Note that a (typically small) factor ↵

0

is present; this is due to the coupling
between the scalar field and the matter of which the detector is built. Note that Eq. (3.6) in Novak’s
Ref. [13] misses a factor 2 when compared to our Eq. (10.8).
At a given extraction radius r

ext

, we extract '(t) from our simulations and we compute h(t) from
Eq. (10.9); we then obtain h̃(f) using a FFT algorithm and finally compute

p
S

h

(f) from Eq.(10.8).
This is compared with

p
S

n

(f), as provided by the LIGO collaboration.

Breathing mode
In ST theories there are GWs in spherical symmetry

Damour and Esposito-Farese 1992 

Time domain waveform Extraction radius

Scalar field

Distance
Coupling with the detector
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The characteristic speeds associated with the propagation of the matter fields are the
eigenvalues � of JU

� =
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1 + v c
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,
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1 � v c

s

�
, (2.41)

where c

s

is local matter sound speed given by

h c

2

s

=

@P

@⇢

+

P

⇢

2

@P

@✏

. (2.42)

The characteristic speeds are therefore exactly the same as in GR, since they do not
contain any dependence on the conformal factor F . The same implementation of the
high-resolution shock-capturing schemes presented in Ref. [1] for GR can be safely
used to in ST theories, provided the conserved variables U and their fluxes f(U) are
generalized using the expressions presented above.

2.3. Equation of state

An EOS is needed to close a hydrodynamical system. The EOS provides the pressure
P as a function of the mass density, internal energy (or temperature) and possibly
the composition. In this paper we study stellar collapse using the hybrid EOS. First
introduced in Ref. [21], the hybrid EOS is an analytic EOS which qualitatively capture
the expected stiffening at nuclear density and include nonisentropic (thermal) effects
to model the response of shocked material. The hybrid EOS has been widely used
in early core-collapse simulations [22, 23], and has been critically compared against
modern finite-temperature EOSs in Ref. [24, 25].

The hybrid EOS consists in a cold and a thermal part:

P = P

c

+ P

th

. (2.43)

The cold components P

c

is in turns a piecewise polytropic with adiabatic indexes
�

1

and �

2

. P

c

models both pressure contributions from relativistic electrons and the
stiffening of a realistic EOS at nuclear density due to the repulsive character of nuclear
forces. The two components are matched at the nuclear density ⇢

nuc

= 2⇥10

14

g/cm

3

P

c

=

(
K

1

⇢

�1
if ⇢  ⇢

nuc

,

K

2

⇢

�2
if ⇢ > ⇢

nuc

.

(2.44)

We set K

1

= 4.9345 ⇥ 10

14

[cgs], as predicted for a relativistic degenerate gas of
electrons with composition Y

e

= 0.5 [26], while K

2

= K

1

⇢

�1��2
nuc

is set by continuity at
⇢ = ⇢

nuc

. The specific internal energy follows from the first law of thermodynamics in
case of adiabatic transformations

✏

c

=

(
K1

�1�1

⇢
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nuc

,

K2
�2�1

⇢

�2�1

+ E

3
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nuc

,

(2.45)

where the integration constant E

3

is set by continuity at ⇢ = ⇢

nuc

. The thermal
contribution is described by an ideal gas EOS with adiabatic index �

th

P

th

= (�

th

� 1)⇢✏

th

, (2.46)
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(o) Fast relaxation 
initial profile is GR, not ST!
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Monopolar GWs
Can’t get enough compactness 
for spontaneous scalarization 
• We need better microphysics! 

Neutrino transfer and cooling?

Marginal detectability 
with Ad. LIGO for 
galactic sources 
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One, two, many.
Tensor-multi-scalar theories

Tensor-multi-scalar theories 5

The N -tuple of scalar fields 'A
(x) = ('1

(x), . . . ,'N
(x)) takes values in a

coordinate patch of an N -dimensional Riemannian target-space manifold. Indices
on target-space tensors are denoted by early capital Roman letters A, B, C, . . ., and
take integer values 1, . . . , N . Components of the Riemannian target-space metric are
denoted by �AB('), and the associated Christoffel symbols are denoted by �C

AB(').
The target-space Riemann curvature tensor is denoted by RA

BCD('), with obvious
notation for derived quantities such as the Ricci tensor and the Ricci scalar. If the
target space has a Hermitian structure⇤, then indices on complexified tensors are
denoted by lower-case Roman letters, and take values 1, 2, . . . , N/2. Holomorphic
coordinates are denoted by ('a, '̄a

), and the components of the Hermitian metric in
these coordinates are denoted by �āb(', '̄). For reference, in Table 1 we provide an
overview of the meaning of the various symbols and conventions used in this paper.

2.2. Action and field equations for N real scalars

We consider a gravitational theory with metric tensor gµ⌫ , and scalar fields '1, . . . ,'N

which take values in a coordinate patch of an N -dimensional target-space manifold.
We assume that all non-gravitational fields, denoted collectively by  , couple only to
the Jordan-frame metric g̃µ⌫ = A2

(')gµ⌫ , so that the matter action has the functional
form Sm[ ; g̃µ⌫ ]. This assumption guarantees that the Weak Equivalence Principle
(WEP), which has been experimentally verified with great accuracy [10], will hold.
The quantity A(') is a conformal factor relating the metrics g̃µ⌫ and gµ⌫ .

The most general action which is invariant under space-time and target-space
diffeomorphisms (up to boundary terms and field redefinitions), and has at most two
space-time derivatives, can be written in the form [13]

S =

1

4⇡G?

Z
d4x

p�g


R

4

� 1

2

gµ⌫�AB(')@µ'
A @⌫'

B � V (')

�
+ Sm[A

2
(')gµ⌫ ; ] ,

(2.1)

where G? is a bare gravitational constant, and g and R are the determinant and Ricci
scalar of gµ⌫ , respectively. The positive-definiteness of the target-space Riemannian
metric �AB(') guarantees the absence of negative-energy excitations. The scalars
'A are dimensionless and the potential V (') has length dimensions minus two. The
conformal factor A(') is dimensionless. In the case of a single scalar (N = 1), the
target-space metric �AB(') reduces to a scalar function �('), and the choice �(') = 1

can be made without loss of generality.
The field equations of the theory, obtained by varying the action (2.1) with respect

to gµ⌫ and ', take the form

Rµ⌫ = 2�AB(')rµ'
Ar⌫'

B
+ 2V (')gµ⌫ + 8⇡G?

✓
Tµ⌫ � 1

2

Tgµ⌫

◆
, (2.2)

⇤'A
= ��A

BC(')g
µ⌫rµ'

Br⌫'
C
+ �AB

(')
@V (')

@'B
� 4⇡G?�

AB
(')

@ logA(')

@'B
T .

(2.3)

Here rµ is the covariant derivative associated with gµ⌫ , and ⇤ ⌘ rµrµ is the
corresponding d’Alembertian operator. The Ricci tensor built out of the metric gµ⌫

⇤ For an introduction to Hermitian structures and complex differential geometry, see e.g. [48].

One example: maximally symmetric  two fields
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2.4. A two-real-scalar model with maximally symmetric target space

The simplest extension of a ST theory with a single real scalar field is the case of two
real scalar fields. We will mostly focus on this model to illustrate the basic features
of the new phenomenology arising in TMS theories relative to the case of a single
real scalar. If the target space is assumed to be maximally symmetric, then there are
three possibilities for its geometry: flat, spherical, or hyperbolic. In the flat case, the
target space may be trivially identified with the complex plane C. In the spherical
case, the target space may be conformally mapped to the one-point-compactification
ˆ

C of the complex plane C by means of stereographic projection. In the case of a
hyperboloid of two sheets, the target space may be conformally mapped to ˆ

C\S1, also
by means of stereographic projection (we shall neglect the case of a hyperboloid of
one sheet); see Appendix A for details. Using the complex formulation discussed in
Section 2.3, we work with a single complex scalar rather than two real scalars, for
which the action (2.9) reduces to

S =

1

4⇡G?

Z
d4x

p�g


R

4

� gµ⌫�(', '̄)rµ'̄r⌫'� V (', '̄)

�
+ Sm[A

2
(', '̄)gµ⌫ ; ] ,

(2.13)

and the field equations are

Rµ⌫ = 4�(', '̄)r(µ'̄r⌫)'+ 2V (', '̄)gµ⌫ + 8⇡G?

✓
Tµ⌫ � 1

2

Tgµ⌫

◆
, (2.14)

⇤' = �@ log �(', '̄)

@'
gµ⌫rµ'r⌫'+ ��1

(', '̄)
@V (', '̄)

@'̄

� 4⇡G?�
�1

(', '̄)
@ logA(', '̄)

@'̄
T . (2.15)

Hereafter we assume that the potential vanishes, i.e. V (', '̄) = 0, and that the target
space is maximally symmetric. Therefore, upon stereographic projection and field
redefinition (see Appendix A), the target-space metric can be written as

�(', '̄) =
1

2

⇣
1 +

'̄'

4r2

⌘�2

, (2.16)

where r is the radius of curvature of the target-space geometry: for a spherical
geometry we have r2 > 0, for a hyperbolic geometry r2 < 0, and in the limit r ! 1
the geometry is flat.

With the above choices, the field equations become

Rµ⌫ = 2

⇣
1 +

'̄'

4r2

⌘�2

@(µ'̄@⌫)'+ 8⇡G?

✓
Tµ⌫ � 1

2

Tgµ⌫

◆
, (2.17)

⇤' =

✓
2'̄

'̄'+ 4r2

◆
gµ⌫@µ'@⌫'� 4⇡G?

⇣
1 +

'̄'

4r2

⌘
̄(', '̄)T , (2.18)

where we introduced

(', '̄) ⌘ 2

⇣
1 +

'̄'

4r2

⌘ @ logA(', '̄)

@'
, (2.19)

the so-called scalar-matter coupling function.
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the so-called scalar-matter coupling function.
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The function A(', '̄), whose derivative enters into the field equations, determines
the scalar-matter coupling through Eq. (2.19). Without loss of generality we assume
that far away from the source the field vanishes, i.e. that the asymptotic value of the
scalar field is '1 = 0. We then expand the function logA in a series about ' = 0:

logA(', '̄) = ↵⇤'+ ↵̄⇤'̄+

1

2

�0''̄+

1

4

�⇤
1'

2
+

1

4

¯�⇤
1 '̄

2
+ . . . , (2.20)

where �0 is real, while ↵⇤ and �⇤
1 are in general complex numbers⇤. Although the

five real parameters Re[↵⇤
], Im[↵⇤

],�0,Re[�⇤
1 ], Im[�⇤

1 ] are defined in terms of a specific
target-space coordinate system, the four real quantities (|↵⇤|,�0, |�⇤

1 |, arg↵⇤� 1
2 arg �

⇤
1)

may be expressed solely in terms of target-space scalar quantities, and thus have an
invariant geometric meaning†. The remaining real parameter is an unmeasurable
overall complex phase.

To make this explicit, redefine �⇤
1 ⌘ �1ei✓, where ✓ is chosen such that �1 is

real. Then, after defining ↵⇤ ⌘ ↵ei✓/2 and a new field  ⌘ 'ei✓/2, the field equations
become

Rµ⌫ = 2

✓
1 +

¯  

4r2

◆�2

@(µ ¯ @⌫) + 8⇡G?

✓
Tµ⌫ � 1

2

Tgµ⌫

◆
, (2.21)

⇤ =

✓
2

¯ 
¯  + 4r2

◆
gµ⌫@µ @⌫ � 4⇡G?

✓
1 +

¯  

4r2

◆
̄( , ¯ )T , (2.22)

where the function  is defined in Eq. (2.19) and

logA( , ¯ ) = ↵ + ↵̄ ¯ +

1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2
+ . . . . (2.23)

Therefore, any solution of the original theory (formulated with respect to ' and
complex coupling coefficients ↵⇤ and �⇤

1) can be obtained from a theory where we
consider the field  , a real-valued �1 and a generically complex ↵. The solution for
the theory corresponding to the conformal factor (2.20) is then given by a simple
rotation, ' =  exp (�i✓/ 2).

The model just described represents the simplest, yet quite comprehensive,
generalization of the model of single ST theory investigated originally in Ref. [23].

Note that the quantity |↵|2 ⌘ ↵↵̄ ⌘ Re[↵]2 + Im[↵]2 is strongly constrained by
observations (cf. Appendix B), similarly to the single-scalar case. When ↵ = 0, the
conformal coupling reduces to

logA( , ¯ ) =
1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2 , (2.24)

where we neglected higher-order terms in the scalar field. However, in TMS theories
↵ is a complex quantity and its argument, arg↵, is completely unconstrained in the
weak-field regime. In Section 3.2.2 we will show that compact stars in theories with
↵ = 0 and ↵ 6= 0 are rather different.

⇤ At the onset of spontaneous scalarization |'| ⌧ 1, and we can always expand the conformal factor
as in Eq. (2.20). For scalarized solutions the field amplitude may be large, the higher-order terms
in the expansion may not be negligible, and the expansion (2.20) should be considered as an ansatz
for the conformal factor. For a general functional form of the conformal factor, the series expansion
used here (and in Ref. [23]) can only provide a qualitative description of the scalarized solution.

† The eigenvalues of the quadratic form in (2.20), given by �0 ± |�⇤
1 |, are target-space scalars. The

phase difference arg↵⇤� 1
2 arg �⇤

1 arises when this quadratic form is contracted with ↵⇤, see Eq. (B.6).

Interactions between the fields: target space
Basically unconstrained! Genuine two-field physics?

Curvature radius Coupling function
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The function A(', '̄), whose derivative enters into the field equations, determines
the scalar-matter coupling through Eq. (2.19). Without loss of generality we assume
that far away from the source the field vanishes, i.e. that the asymptotic value of the
scalar field is '1 = 0. We then expand the function logA in a series about ' = 0:

logA(', '̄) = ↵⇤'+ ↵̄⇤'̄+

1

2

�0''̄+

1

4

�⇤
1'

2
+

1

4

¯�⇤
1 '̄

2
+ . . . , (2.20)

where �0 is real, while ↵⇤ and �⇤
1 are in general complex numbers⇤. Although the

five real parameters Re[↵⇤
], Im[↵⇤

],�0,Re[�⇤
1 ], Im[�⇤

1 ] are defined in terms of a specific
target-space coordinate system, the four real quantities (|↵⇤|,�0, |�⇤

1 |, arg↵⇤� 1
2 arg �

⇤
1)

may be expressed solely in terms of target-space scalar quantities, and thus have an
invariant geometric meaning†. The remaining real parameter is an unmeasurable
overall complex phase.

To make this explicit, redefine �⇤
1 ⌘ �1ei✓, where ✓ is chosen such that �1 is

real. Then, after defining ↵⇤ ⌘ ↵ei✓/2 and a new field  ⌘ 'ei✓/2, the field equations
become

Rµ⌫ = 2

✓
1 +

¯  

4r2

◆�2

@(µ ¯ @⌫) + 8⇡G?

✓
Tµ⌫ � 1

2

Tgµ⌫

◆
, (2.21)

⇤ =

✓
2

¯ 
¯  + 4r2

◆
gµ⌫@µ @⌫ � 4⇡G?

✓
1 +

¯  

4r2

◆
̄( , ¯ )T , (2.22)

where the function  is defined in Eq. (2.19) and

logA( , ¯ ) = ↵ + ↵̄ ¯ +

1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2
+ . . . . (2.23)

Therefore, any solution of the original theory (formulated with respect to ' and
complex coupling coefficients ↵⇤ and �⇤

1) can be obtained from a theory where we
consider the field  , a real-valued �1 and a generically complex ↵. The solution for
the theory corresponding to the conformal factor (2.20) is then given by a simple
rotation, ' =  exp (�i✓/ 2).

The model just described represents the simplest, yet quite comprehensive,
generalization of the model of single ST theory investigated originally in Ref. [23].

Note that the quantity |↵|2 ⌘ ↵↵̄ ⌘ Re[↵]2 + Im[↵]2 is strongly constrained by
observations (cf. Appendix B), similarly to the single-scalar case. When ↵ = 0, the
conformal coupling reduces to

logA( , ¯ ) =
1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2 , (2.24)

where we neglected higher-order terms in the scalar field. However, in TMS theories
↵ is a complex quantity and its argument, arg↵, is completely unconstrained in the
weak-field regime. In Section 3.2.2 we will show that compact stars in theories with
↵ = 0 and ↵ 6= 0 are rather different.

⇤ At the onset of spontaneous scalarization |'| ⌧ 1, and we can always expand the conformal factor
as in Eq. (2.20). For scalarized solutions the field amplitude may be large, the higher-order terms
in the expansion may not be negligible, and the expansion (2.20) should be considered as an ansatz
for the conformal factor. For a general functional form of the conformal factor, the series expansion
used here (and in Ref. [23]) can only provide a qualitative description of the scalarized solution.

† The eigenvalues of the quadratic form in (2.20), given by �0 ± |�⇤
1 |, are target-space scalars. The

phase difference arg↵⇤� 1
2 arg �⇤

1 arises when this quadratic form is contracted with ↵⇤, see Eq. (B.6).
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Figure 3.4. Symmetry breaking of the space of solutions. When �1 6= 0, the O(2)-symmetric
solution-space analyzed in the previous section (cf. Fig. 3.1) collapses down to a (Z2⇥Z2)-symmetric
solution-space. This property of the theory is here illustrated for stellar models with the same equation
of state and central energy density as in Fig. 3.1, �0 = �5.0 and r = 5.0.

scalarized models exist if �0 + �1 . �4.35 when Re[ ] 6= 0, or �0 � �1 . �4.35 when
instead Im[ ] 6= 0. We have checked this expectation by calculating models for the
parameter sets (i) 1/r = 0, �1 = 0 and (ii) 1/r = 2, �1 = 0. For each of these cases, we
have varied the central density from 10

�5
km

�2 to 0.0015 km

�2 in steps of 10�5
km

�2.
We applied our shooting algorithm for a scalar field amplitude | (r = 0)| 2 [0, 1] in
steps of 0.1, choosing discrete values of the complex phase ✓ = 0, ⇡/2, ⇡, 3⇡/2, and
varying �0 2 [�20, 3] in steps of 0.01. For all values of the central density and �0,
the shooting method identifies one GR solution model with vanishing scalar charge.
For sufficiently negative �0, we additionally identify scalarized models. Among these
models we then identify for a given value of �0 the scalarized model with the lowest
baryon mass, and thus generate a scalarization plot analogous to Fig. 2 in [46] for ST
theory with a single scalar field. The result is shown in Fig. 3.5. The small difference
between the curves for different curvature radius r likely arises from the small but finite
amplitude of the scalar field appearing in the lowest-mass scalarized binaries, which
is a byproduct of finite discretization in the mass parameter space. In the continuum
limit of infinitesimal amplitudes of the scalar field in scalarized models, we expect this
difference to disappear completely and the dotted and dashed curves to overlap. This
is indeed supported by an analytic calculation.⇤ These results confirm the prediction
of Eq. (C.5) and agree (qualitatively and quantitatively) with the single-scalar case
shown in Fig. 2 of [46].

Indeed, in this case the analogy with the single-scalar case can be made more
formal. Let us consider without loss of generality the subspace of the solution space

⇤ This calculation uses Riemann-normal coordinates at '1 in target space, and finds that target-
space-curvature terms appear in the field equations at third order in the scalar-amplitude expansion.
Details will be published elsewhere [51].

α=0:$symmetry$breaking$
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The field equations can be also written in terms of two real scalars. For this
purpose, let us split the field  into real and imaginary parts:  ⌘ Re[ ] + i Im[ ].
Then the conformal factor (2.24), again in the ↵ = ↵̄ = 0 case, reads:

logA( , ¯ ) =
1

2

⇥
(�0 + �1)Re[ ]

2
+ (�0 � �1)Im[ ]2

⇤
. (2.25)

The structure of this TMS theory is ultimately determined by three real parameters:
�0+�1, �0��1 and the target-space curvature defined by r2. When ↵ 6= 0, two further
parameters (|↵| and arg↵) are necessary to define the theory.

3. Stellar structure in tensor-multi-scalar theories

In this section we consider the structure of relativistic stars in the context of the TMS
theory introduced in Section 2.4. We first derive the equations of structure for a slowly
rotating star in the Hartle-Thorne formalism [49, 50] (Section 3.1), then we integrate
these equations and discuss some properties of scalarized solutions in increasingly
complex scenarios (Section 3.2).

3.1. Equations of hydrostatic equilibrium

We describe a stationary, axisymmetric star, composed by a perfect fluid, slowly
rotating with angular velocity ⌦, using coordinates xµ

= (t, r, ✓,�) and the line element

gµ⌫dx
µdx⌫

= �e⌫(r)dt2 +
dr2

1� 2µ(r)
+ r2(d✓2 + sin

2 ✓d�2)

+ 2 [!(r)� ⌦] r2 sin2 ✓dtd�. (3.1)

where we neglect terms of order ⇠ ⌦

2 and higher in the metric and in the
hydrodynamical quantities. The variable µ(r) is related to the more familiar mass
function m(r) by µ = m/r. The energy-momentum tensor of the perfect fluid takes
the usual form

Tµ⌫
= A4

( , ¯ ) [(⇢+ P )uµu⌫
+ Pgµ⌫ ] , (3.2)

where ⇢, P , and ũµ
= A�1

( , ¯ )uµ are the mass-energy density, pressure, and four-
velocity of the fluid, respectively, and

uµ
= e�⌫/2

(1, 0, 0, ⌦) . (3.3)
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3.2.1. The O(2)-symmetric theory In the absence of a scalar potential, the
gravitational part of the action (2.1) is invariant under the target-space isometry group
G. For our simple two-real-scalar model with maximally symmetric target space, G is
the orthogonal group O(3) in the case of spherical geometry, the indefinite orthogonal
group O(2, 1) in the case of hyperbolic geometry, and the inhomogeneous orthogonal
group IO(2) = R

2
oO(2) in the case of flat geometry.

When scalar-matter couplings are introduced, the action is no longer invariant
under all of G, but only under some subgroup H < G. As a first example, let us
consider the particular case in which �1 = ↵ = 0. In this case the conformal factor
A( , ¯ ) given in Eq. (2.24) reduces to

A( , ¯ ) = exp

✓
1

2

�0 ¯ 

◆
, (3.18)

and is obviously invariant under rotations in the complex plane, ( !  ei✓) and
complex conjugation ( ! ¯ ). Therefore, H = O(2). Note that the boundary
condition  1 = 0 is H-invariant. We refer to this special case as the O(2)-symmetric
TMS theory. In this theory, a GR stellar configuration with  ⌘ 0 is always a solution
that is O(2)-invariant.

We now construct scalarized solutions, which spontaneously break the O(2)

symmetry. They depend on the two real parameters (�0 and r2) of this theory, as
well as the central baryon density nB . The O(2)–symmetric character of the scalarized
solution space is exhibited in Fig. 3.1, where we show that, for given values of r and nB ,
there exists an infinite number of scalarized solutions characterized by a different value
of the complex field  0 at the center of the star. The different values of the scalar field
are related by a phase rotation, and the masses and radii of neutron star models along
each of the circles shown in Fig. 3.1 are identical. The target-space curvature r has the
effect of suppressing (r2 < 0) or increasing (r2 > 0) the value of | 0|, and consequently
of the scalar charge Q. Therefore a spherical target space (r2 > 0) produces stronger
scalarization effects in the mass-radius relations with respect to the case of a flat
target-space metric, as illustrated in Fig. 3.2. On the other hand, a hyperbolic target
space (r2 < 0) tends to reduce the effects of spontaneous scalarization. This can be
intuitively, if not rigorously, understood by a glance at Eqs. (2.18) and (2.19): the
curvature term plays the role of an “effective (field-dependent) gravitational constant”
which is either larger or smaller than the “bare” gravitational constant depending on
whether r2 > 0 or r2 < 0. In both cases, as r ! 1 the solution reduces (modulo a
trivial phase rotation) to that of a ST theory with a single real scalar field  and scalar-
matter coupling A( ) = exp

�
1
2�0 

2
�
. We remark that due to the O(2) symmetry,

all solutions of this theory are equivalent to solutions with Im[ ] = 0; as discussed in
Section 3.2.2 below, these are effectively – modulo a field redefinition – solutions of a
single-scalar theory.

Finally, in Fig. 3.3 we illustrate the radial profiles of the mass function m, metric
potential ⌫, mass-energy density ⇢ and scalar field  for scalarized stellar models with
fixed baryonic mass MB = 1.70 M� in theories with �0 = �5.0 and r2 = ±1/4.

3.2.2. The full TMS theory We now turn our attention to the existence of scalarized
stellar models in the theory defined by Eq. (2.23), which depends on three real
parameters (�0, �1 and r2) and the complex constant ↵. When ↵ = 0 and �1 6= 0,
this theory is invariant under the symmetry group Z2 ⇥ Z2 generated by conjugation
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The function A(', '̄), whose derivative enters into the field equations, determines
the scalar-matter coupling through Eq. (2.19). Without loss of generality we assume
that far away from the source the field vanishes, i.e. that the asymptotic value of the
scalar field is '1 = 0. We then expand the function logA in a series about ' = 0:

logA(', '̄) = ↵⇤'+ ↵̄⇤'̄+

1

2

�0''̄+

1

4

�⇤
1'

2
+

1

4

¯�⇤
1 '̄

2
+ . . . , (2.20)

where �0 is real, while ↵⇤ and �⇤
1 are in general complex numbers⇤. Although the five

real parameters Re(↵⇤
), Im(↵⇤

),�0,Re(�⇤
1), Im(�⇤

1) are defined in terms of a specific
target-space coordinate system, the four real quantities (|↵⇤|,�0, |�⇤

1 |, arg↵⇤� 1
2 arg �

⇤
1)

may be expressed solely in terms of target-space scalar quantities, and thus have an
invariant geometric meaning†. The remaining real parameter is an unmeasurable
overall complex phase.

To make this explicit, redefine �⇤
1 ⌘ �1ei✓, where ✓ is chosen such that �1 is

real. Then, after defining ↵⇤ ⌘ ↵ei✓/2 and a new field  ⌘ 'ei✓/2, the field equations
become

Rµ⌫ = 2

✓
1 +

¯  

4r2

◆�2

@(µ ¯ @⌫) + 8⇡G?

✓
Tµ⌫ � 1

2

Tgµ⌫

◆
, (2.21)

⇤ =

✓
2

¯ 
¯  + 4r2

◆
gµ⌫@µ @⌫ � 4⇡G?

✓
1 +

¯  

4r2

◆
̄( , ¯ )T , (2.22)

where the function  is defined in Eq. (2.19) and

logA( , ¯ ) = ↵ + ↵̄ ¯ +

1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2
+ . . . . (2.23)

Therefore, any solution of the original theory (formulated with respect to ' and
complex coupling coefficients ↵⇤ and �⇤

1) can be obtained by considering a theory
where we consider the field  , a real-valued �1 and a generically complex ↵. The
solution for the theory corresponding to the conformal factor (2.20) is then given by
a simple rotation, ' =  exp (�i✓/ 2).

The model just described represents the simplest, yet quite comprehensive,
generalization of the model of single ST theory investigated originally in Ref. [23].

Note that the quantity |↵|2 ⌘ ↵↵̄ ⌘ Re[↵]2 + Im[↵]2 is strongly constrained by
observations (cf. Appendix B), similarly to the single-scalar case. When ↵ = 0, the
conformal coupling reduces to

logA( , ¯ ) =
1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2 , (2.24)

where we neglected higher-order terms in the scalar field. However, in TMS theories
↵ is a complex quantity and its argument, arg↵, is completely unconstrained in the
weak-field regime. In Section 3.2.2 we will show that compact stars in theories with
↵ = 0 and ↵ 6= 0 are rather different.

⇤ At the onset of spontaneous scalarization |'| ⌧ 1, and we can always expand the conformal factor
as in Eq. (2.20). For scalarized solutions the field amplitude may be large, the higher-order terms
in the expansion may not be negligible, and the expansion (2.20) should be considered as an ansatz
for the conformal factor. For a general functional form of the conformal factor, the series expansion
used here (and in Ref. [23]) can only provide a qualitative description of the scalarized solution.

† The eigenvalues of the quadratic form in (2.20), given by �0 ± |�⇤
1 |, are target-space scalars. The

phase difference arg↵⇤� 1
2 arg �⇤

1 arises when this quadratic form is contracted with ↵⇤, see Eq. (B.6).

Rotation symmetry

�1 = 0
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Figure 3.1. Spontaneous scalarization in a TMS theory with O(2) symmetry. The value  0 of
the scalar field at the center of the star for scalarized solutions in the O(2)–symmetric theory with
�0 = �5.0 and central baryon density nB = 10.4nnuc, where the nuclear density is nnuc = 1044 m�3.
Left panel: spherical target space with r2 > 0. Right panel: hyperbolic target space with r2 < 0. In
both panels the origin corresponds to the neutron star solution in GR.

Figure 3.2. Stellar properties in the O(2)–symmetric theory. Left panel: The mass-radius relation
for different values of r and �0 = �5.0. Right panel: Central value of the magnitude of the scalar field
| 0| as a function of the stellar compactness G?M/(R̃c2). Here R̃ is the areal Jordan-frame radius
of the star. The onset of scalarization does not depend on the value of r.

this theory is invariant under the symmetry group Z2 ⇥ Z2 generated by conjugation
( ! ¯ ) and inversion ( ! � ). Introduction of ↵ 2 R partially breaks this
symmetry down to Z2, consisting of conjugation only, whereas introduction of ↵ 2 C\R
fully breaks this symmetry.

An interesting question is whether there exists a region of the parameter space
of this theory in which both fields scalarize⇤. We first searched for such “biscalarized”

⇤ This question is not invariant under field redefinitions. More precisely, we ask whether there exists a
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the scalar field at the center of the star for scalarized solutions in the O(2)–symmetric theory with
�0 = �5.0 and central baryon density nB = 10.4nnuc, where the nuclear density is nnuc = 1044 m�3.
Left panel: spherical target space with r2 > 0. Right panel: hyperbolic target space with r2 < 0. In
both panels the origin corresponds to the neutron star solution in GR.

Figure 3.2. Stellar properties in the O(2)–symmetric theory. Left panel: The mass-radius relation
for different values of r and �0 = �5.0. Right panel: Central value of the magnitude of the scalar field
| 0| as a function of the stellar compactness G?M/(R̃c2). Here R̃ is the areal Jordan-frame radius
of the star. The onset of scalarization does not depend on the value of r.

this theory is invariant under the symmetry group Z2 ⇥ Z2 generated by conjugation
( ! ¯ ) and inversion ( ! � ). Introduction of ↵ 2 R partially breaks this
symmetry down to Z2, consisting of conjugation only, whereas introduction of ↵ 2 C\R
fully breaks this symmetry.

An interesting question is whether there exists a region of the parameter space
of this theory in which both fields scalarize⇤. We first searched for such “biscalarized”

⇤ This question is not invariant under field redefinitions. More precisely, we ask whether there exists a
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The function A(', '̄), whose derivative enters into the field equations, determines
the scalar-matter coupling through Eq. (2.19). Without loss of generality we assume
that far away from the source the field vanishes, i.e. that the asymptotic value of the
scalar field is '1 = 0. We then expand the function logA in a series about ' = 0:

logA(', '̄) = ↵⇤'+ ↵̄⇤'̄+

1

2

�0''̄+

1

4

�⇤
1'

2
+

1

4

¯�⇤
1 '̄

2
+ . . . , (2.20)

where �0 is real, while ↵⇤ and �⇤
1 are in general complex numbers⇤. Although the

five real parameters Re[↵⇤
], Im[↵⇤

],�0,Re[�⇤
1 ], Im[�⇤

1 ] are defined in terms of a specific
target-space coordinate system, the four real quantities (|↵⇤|,�0, |�⇤

1 |, arg↵⇤� 1
2 arg �

⇤
1)

may be expressed solely in terms of target-space scalar quantities, and thus have an
invariant geometric meaning†. The remaining real parameter is an unmeasurable
overall complex phase.

To make this explicit, redefine �⇤
1 ⌘ �1ei✓, where ✓ is chosen such that �1 is

real. Then, after defining ↵⇤ ⌘ ↵ei✓/2 and a new field  ⌘ 'ei✓/2, the field equations
become

Rµ⌫ = 2

✓
1 +

¯  

4r2

◆�2

@(µ ¯ @⌫) + 8⇡G?

✓
Tµ⌫ � 1

2

Tgµ⌫

◆
, (2.21)

⇤ =

✓
2

¯ 
¯  + 4r2

◆
gµ⌫@µ @⌫ � 4⇡G?

✓
1 +

¯  

4r2

◆
̄( , ¯ )T , (2.22)

where the function  is defined in Eq. (2.19) and

logA( , ¯ ) = ↵ + ↵̄ ¯ +

1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2
+ . . . . (2.23)

Therefore, any solution of the original theory (formulated with respect to ' and
complex coupling coefficients ↵⇤ and �⇤

1) can be obtained from a theory where we
consider the field  , a real-valued �1 and a generically complex ↵. The solution for
the theory corresponding to the conformal factor (2.20) is then given by a simple
rotation, ' =  exp (�i✓/ 2).

The model just described represents the simplest, yet quite comprehensive,
generalization of the model of single ST theory investigated originally in Ref. [23].

Note that the quantity |↵|2 ⌘ ↵↵̄ ⌘ Re[↵]2 + Im[↵]2 is strongly constrained by
observations (cf. Appendix B), similarly to the single-scalar case. When ↵ = 0, the
conformal coupling reduces to

logA( , ¯ ) =
1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2 , (2.24)

where we neglected higher-order terms in the scalar field. However, in TMS theories
↵ is a complex quantity and its argument, arg↵, is completely unconstrained in the
weak-field regime. In Section 3.2.2 we will show that compact stars in theories with
↵ = 0 and ↵ 6= 0 are rather different.

⇤ At the onset of spontaneous scalarization |'| ⌧ 1, and we can always expand the conformal factor
as in Eq. (2.20). For scalarized solutions the field amplitude may be large, the higher-order terms
in the expansion may not be negligible, and the expansion (2.20) should be considered as an ansatz
for the conformal factor. For a general functional form of the conformal factor, the series expansion
used here (and in Ref. [23]) can only provide a qualitative description of the scalarized solution.

† The eigenvalues of the quadratic form in (2.20), given by �0 ± |�⇤
1 |, are target-space scalars. The

phase difference arg↵⇤� 1
2 arg �⇤

1 arises when this quadratic form is contracted with ↵⇤, see Eq. (B.6).
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Figure 3.4. Symmetry breaking of the space of solutions. When �1 6= 0, the O(2)-symmetric
solution-space analyzed in the previous section (cf. Fig. 3.1) collapses down to a (Z2⇥Z2)-symmetric
solution-space. This property of the theory is here illustrated for stellar models with the same equation
of state and central energy density as in Fig. 3.1, �0 = �5.0 and r = 5.0.

scalarized models exist if �0 + �1 . �4.35 when Re[ ] 6= 0, or �0 � �1 . �4.35 when
instead Im[ ] 6= 0. We have checked this expectation by calculating models for the
parameter sets (i) 1/r = 0, �1 = 0 and (ii) 1/r = 2, �1 = 0. For each of these cases, we
have varied the central density from 10

�5
km

�2 to 0.0015 km

�2 in steps of 10�5
km

�2.
We applied our shooting algorithm for a scalar field amplitude | (r = 0)| 2 [0, 1] in
steps of 0.1, choosing discrete values of the complex phase ✓ = 0, ⇡/2, ⇡, 3⇡/2, and
varying �0 2 [�20, 3] in steps of 0.01. For all values of the central density and �0,
the shooting method identifies one GR solution model with vanishing scalar charge.
For sufficiently negative �0, we additionally identify scalarized models. Among these
models we then identify for a given value of �0 the scalarized model with the lowest
baryon mass, and thus generate a scalarization plot analogous to Fig. 2 in [46] for ST
theory with a single scalar field. The result is shown in Fig. 3.5. The small difference
between the curves for different curvature radius r likely arises from the small but finite
amplitude of the scalar field appearing in the lowest-mass scalarized binaries, which
is a byproduct of finite discretization in the mass parameter space. In the continuum
limit of infinitesimal amplitudes of the scalar field in scalarized models, we expect this
difference to disappear completely and the dotted and dashed curves to overlap. This
is indeed supported by an analytic calculation.⇤ These results confirm the prediction
of Eq. (C.5) and agree (qualitatively and quantitatively) with the single-scalar case
shown in Fig. 2 of [46].

Indeed, in this case the analogy with the single-scalar case can be made more
formal. Let us consider without loss of generality the subspace of the solution space

⇤ This calculation uses Riemann-normal coordinates at '1 in target space, and finds that target-
space-curvature terms appear in the field equations at third order in the scalar-amplitude expansion.
Details will be published elsewhere [51].

α=0:$symmetry$breaking$
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The field equations can be also written in terms of two real scalars. For this
purpose, let us split the field  into real and imaginary parts:  ⌘ Re[ ] + i Im[ ].
Then the conformal factor (2.24), again in the ↵ = ↵̄ = 0 case, reads:

logA( , ¯ ) =
1

2

⇥
(�0 + �1)Re[ ]

2
+ (�0 � �1)Im[ ]2

⇤
. (2.25)

The structure of this TMS theory is ultimately determined by three real parameters:
�0+�1, �0��1 and the target-space curvature defined by r2. When ↵ 6= 0, two further
parameters (|↵| and arg↵) are necessary to define the theory.

3. Stellar structure in tensor-multi-scalar theories

In this section we consider the structure of relativistic stars in the context of the TMS
theory introduced in Section 2.4. We first derive the equations of structure for a slowly
rotating star in the Hartle-Thorne formalism [49, 50] (Section 3.1), then we integrate
these equations and discuss some properties of scalarized solutions in increasingly
complex scenarios (Section 3.2).

3.1. Equations of hydrostatic equilibrium

We describe a stationary, axisymmetric star, composed by a perfect fluid, slowly
rotating with angular velocity ⌦, using coordinates xµ

= (t, r, ✓,�) and the line element

gµ⌫dx
µdx⌫

= �e⌫(r)dt2 +
dr2

1� 2µ(r)
+ r2(d✓2 + sin

2 ✓d�2)

+ 2 [!(r)� ⌦] r2 sin2 ✓dtd�. (3.1)

where we neglect terms of order ⇠ ⌦

2 and higher in the metric and in the
hydrodynamical quantities. The variable µ(r) is related to the more familiar mass
function m(r) by µ = m/r. The energy-momentum tensor of the perfect fluid takes
the usual form

Tµ⌫
= A4

( , ¯ ) [(⇢+ P )uµu⌫
+ Pgµ⌫ ] , (3.2)

where ⇢, P , and ũµ
= A�1

( , ¯ )uµ are the mass-energy density, pressure, and four-
velocity of the fluid, respectively, and

uµ
= e�⌫/2

(1, 0, 0, ⌦) . (3.3)
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3.2.1. The O(2)-symmetric theory In the absence of a scalar potential, the
gravitational part of the action (2.1) is invariant under the target-space isometry group
G. For our simple two-real-scalar model with maximally symmetric target space, G is
the orthogonal group O(3) in the case of spherical geometry, the indefinite orthogonal
group O(2, 1) in the case of hyperbolic geometry, and the inhomogeneous orthogonal
group IO(2) = R

2
oO(2) in the case of flat geometry.

When scalar-matter couplings are introduced, the action is no longer invariant
under all of G, but only under some subgroup H < G. As a first example, let us
consider the particular case in which �1 = ↵ = 0. In this case the conformal factor
A( , ¯ ) given in Eq. (2.24) reduces to

A( , ¯ ) = exp

✓
1

2

�0 ¯ 

◆
, (3.18)

and is obviously invariant under rotations in the complex plane, ( !  ei✓) and
complex conjugation ( ! ¯ ). Therefore, H = O(2). Note that the boundary
condition  1 = 0 is H-invariant. We refer to this special case as the O(2)-symmetric
TMS theory. In this theory, a GR stellar configuration with  ⌘ 0 is always a solution
that is O(2)-invariant.

We now construct scalarized solutions, which spontaneously break the O(2)

symmetry. They depend on the two real parameters (�0 and r2) of this theory, as
well as the central baryon density nB . The O(2)–symmetric character of the scalarized
solution space is exhibited in Fig. 3.1, where we show that, for given values of r and nB ,
there exists an infinite number of scalarized solutions characterized by a different value
of the complex field  0 at the center of the star. The different values of the scalar field
are related by a phase rotation, and the masses and radii of neutron star models along
each of the circles shown in Fig. 3.1 are identical. The target-space curvature r has the
effect of suppressing (r2 < 0) or increasing (r2 > 0) the value of | 0|, and consequently
of the scalar charge Q. Therefore a spherical target space (r2 > 0) produces stronger
scalarization effects in the mass-radius relations with respect to the case of a flat
target-space metric, as illustrated in Fig. 3.2. On the other hand, a hyperbolic target
space (r2 < 0) tends to reduce the effects of spontaneous scalarization. This can be
intuitively, if not rigorously, understood by a glance at Eqs. (2.18) and (2.19): the
curvature term plays the role of an “effective (field-dependent) gravitational constant”
which is either larger or smaller than the “bare” gravitational constant depending on
whether r2 > 0 or r2 < 0. In both cases, as r ! 1 the solution reduces (modulo a
trivial phase rotation) to that of a ST theory with a single real scalar field  and scalar-
matter coupling A( ) = exp

�
1
2�0 

2
�
. We remark that due to the O(2) symmetry,

all solutions of this theory are equivalent to solutions with Im[ ] = 0; as discussed in
Section 3.2.2 below, these are effectively – modulo a field redefinition – solutions of a
single-scalar theory.

Finally, in Fig. 3.3 we illustrate the radial profiles of the mass function m, metric
potential ⌫, mass-energy density ⇢ and scalar field  for scalarized stellar models with
fixed baryonic mass MB = 1.70 M� in theories with �0 = �5.0 and r2 = ±1/4.

3.2.2. The full TMS theory We now turn our attention to the existence of scalarized
stellar models in the theory defined by Eq. (2.23), which depends on three real
parameters (�0, �1 and r2) and the complex constant ↵. When ↵ = 0 and �1 6= 0,
this theory is invariant under the symmetry group Z2 ⇥ Z2 generated by conjugation
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The function A(', '̄), whose derivative enters into the field equations, determines
the scalar-matter coupling through Eq. (2.19). Without loss of generality we assume
that far away from the source the field vanishes, i.e. that the asymptotic value of the
scalar field is '1 = 0. We then expand the function logA in a series about ' = 0:

logA(', '̄) = ↵⇤'+ ↵̄⇤'̄+

1

2

�0''̄+

1

4

�⇤
1'

2
+

1

4

¯�⇤
1 '̄

2
+ . . . , (2.20)

where �0 is real, while ↵⇤ and �⇤
1 are in general complex numbers⇤. Although the five

real parameters Re(↵⇤
), Im(↵⇤

),�0,Re(�⇤
1), Im(�⇤

1) are defined in terms of a specific
target-space coordinate system, the four real quantities (|↵⇤|,�0, |�⇤

1 |, arg↵⇤� 1
2 arg �

⇤
1)

may be expressed solely in terms of target-space scalar quantities, and thus have an
invariant geometric meaning†. The remaining real parameter is an unmeasurable
overall complex phase.

To make this explicit, redefine �⇤
1 ⌘ �1ei✓, where ✓ is chosen such that �1 is

real. Then, after defining ↵⇤ ⌘ ↵ei✓/2 and a new field  ⌘ 'ei✓/2, the field equations
become

Rµ⌫ = 2

✓
1 +

¯  

4r2

◆�2

@(µ ¯ @⌫) + 8⇡G?

✓
Tµ⌫ � 1

2

Tgµ⌫

◆
, (2.21)

⇤ =

✓
2

¯ 
¯  + 4r2

◆
gµ⌫@µ @⌫ � 4⇡G?

✓
1 +

¯  

4r2

◆
̄( , ¯ )T , (2.22)

where the function  is defined in Eq. (2.19) and

logA( , ¯ ) = ↵ + ↵̄ ¯ +

1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2
+ . . . . (2.23)

Therefore, any solution of the original theory (formulated with respect to ' and
complex coupling coefficients ↵⇤ and �⇤

1) can be obtained by considering a theory
where we consider the field  , a real-valued �1 and a generically complex ↵. The
solution for the theory corresponding to the conformal factor (2.20) is then given by
a simple rotation, ' =  exp (�i✓/ 2).

The model just described represents the simplest, yet quite comprehensive,
generalization of the model of single ST theory investigated originally in Ref. [23].

Note that the quantity |↵|2 ⌘ ↵↵̄ ⌘ Re[↵]2 + Im[↵]2 is strongly constrained by
observations (cf. Appendix B), similarly to the single-scalar case. When ↵ = 0, the
conformal coupling reduces to

logA( , ¯ ) =
1

2

�0 ¯ +

1

4

�1 
2
+

1

4

�1 ¯ 
2 , (2.24)

where we neglected higher-order terms in the scalar field. However, in TMS theories
↵ is a complex quantity and its argument, arg↵, is completely unconstrained in the
weak-field regime. In Section 3.2.2 we will show that compact stars in theories with
↵ = 0 and ↵ 6= 0 are rather different.

⇤ At the onset of spontaneous scalarization |'| ⌧ 1, and we can always expand the conformal factor
as in Eq. (2.20). For scalarized solutions the field amplitude may be large, the higher-order terms
in the expansion may not be negligible, and the expansion (2.20) should be considered as an ansatz
for the conformal factor. For a general functional form of the conformal factor, the series expansion
used here (and in Ref. [23]) can only provide a qualitative description of the scalarized solution.

† The eigenvalues of the quadratic form in (2.20), given by �0 ± |�⇤
1 |, are target-space scalars. The

phase difference arg↵⇤� 1
2 arg �⇤

1 arises when this quadratic form is contracted with ↵⇤, see Eq. (B.6).

Rotation symmetry
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Figure 3.4. Symmetry breaking of the space of solutions. When �1 6= 0, the O(2)-symmetric
solution-space analyzed in the previous section (cf. Fig. 3.1) collapses down to a (Z2⇥Z2)-symmetric
solution-space. This property of the theory is here illustrated for stellar models with the same equation
of state and central energy density as in Fig. 3.1, �0 = �5.0 and r = 5.0.

In Appendix C we perform a linear analysis of the field equations, deriving the
conditions for scalarization to occur. From Eqs. (C.2), (C.3) and (C.5) we expect that
scalarized models exist if �0 + �1 . �4.35 when Re[ ] 6= 0, or �0 � �1 . �4.35 when
instead Im[ ] 6= 0. We have checked this expectation by calculating models for the
parameter sets (i) 1/r = 0, �1 = 0 and (ii) 1/r = 2, �1 = 0. For each of these cases, we
have varied the central density from 10

�5
km

�2 to 0.0015 km

�2 in steps of 10�5
km

�2.
We applied our shooting algorithm for a scalar field amplitude | (r = 0)| 2 [0, 1] in
steps of 0.1, choosing discrete values of the complex phase ✓ = 0, ⇡/2, ⇡, 3⇡/2, and
varying �0 2 [�20, 3] in steps of 0.01. For all values of the central density and �0,
the shooting method identifies one GR solution model with vanishing scalar charge.
For sufficiently negative �0, we additionally identify scalarized models. Among these
models we then identify for a given value of �0 the scalarized model with the lowest
baryon mass, and thus generate a scalarization plot analogous to Fig. 2 in [46] for ST
theory with a single scalar field. The result is shown in Fig. 3.5. The small difference
between the curves for different curvature radius r likely arises from the small but finite
amplitude of the scalar field appearing in the lowest-mass scalarized binaries, which
is a byproduct of finite discretization in the mass parameter space. In the continuum
limit of infinitesimal amplitudes of the scalar field in scalarized models, we expect this
difference to disappear completely and the dotted and dashed curves to overlap. This
is indeed supported by an analytic calculation.⇤ These results confirm the prediction
of Eq. (C.5) and agree (qualitatively and quantitatively) with the single-scalar case
shown in Fig. 2 of [46].

⇤ This calculation uses Riemann-normal coordinates at '1 in target space, and finds that target-
space-curvature terms appear in the field equations at third order in the scalar-amplitude expansion.
Details will be published elsewhere [51].
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