صlack hales

in messive gravity

Eugeny Babichev
LPT, Orsay
REVIEW: ARXIV:I503.07529

	$15 \mid 2.04058$
in collaboration with:	1406.6096
R. Brito, M. Crisostomi,	1405.058 I
C. Deffayet,A. Fabbri,P. Pani,	1401.687 I
	1307.3640
	1304.7240
	1304.5992

- Introduction
\downarrow Classes of solutions
- Solutions with a source
- Black holes
\uparrow Perturbations and (in)stability of black holes
- Conclusions

INTRロロー둠

Why modify gravitப?

Why modify gravity?

- cosmological constant problems,
- non-renormalizability problem,
- benchmarks for testing General Relativity
- theoretical curiosity.

Many ways to modify gravity:

- f(R), scalar-tensor theories,
- Galileons, Horndeski (and beyond) theory, KGB, Fab-four,
- higher-dimensions,
- DGP,
- Horava, Khronometric
- massive gravity
- Naively, cancellation of the cosmological constant, because of the Yukawa decay;
- Small cosmological constant due to small graviton mass

صld problems of massive gravity

1.

Physical ghost [boulvaresbeser' 72)
2.

Extra propagating degrees of freedom.
It is difficult to pass basic Solar system gravity tests.
vDVZ discontinuity [van Dam\&veltman'70, Zakharov'70]

Fierz-Pauli massive gravit!

Expand the Einstein-Hilbert action:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

$S_{G R}=M_{P}^{2} \int d^{4} x \sqrt{-g} R=\int d^{4} x\left(-\frac{1}{2} h^{\mu \nu} \mathcal{E}_{\mu \nu}^{\alpha \beta} h_{\alpha \beta}\right)+\mathcal{O}\left(h^{3}\right)$
$\mathcal{E}_{\mu \nu}^{\alpha \beta} h_{\alpha \beta}=-\frac{1}{2} \partial_{\mu} \partial_{\nu} h-\frac{1}{2} \square h_{\mu \nu}+\frac{1}{2} \partial_{\rho} \partial_{\mu} h_{\nu}^{\rho}+\frac{1}{2} \partial_{\rho} \partial_{\nu} h_{\mu}^{\rho}-\frac{1}{2} \eta_{\mu \nu}\left(\partial^{\rho} \partial^{\sigma} h_{\rho \sigma}-\square h\right)$

2 propagating spin: 2 massless gravitons, spin-2

$$
x^{\alpha} \rightarrow x^{\alpha}+\xi^{\alpha}, h_{\mu \nu}=-\xi_{\mu ; \nu}-\xi_{\nu ; \mu}
$$

Fierz-Pauli massive gravitப

Fierz-Pauli action (Fierz\&Pauli'39):

$$
\begin{aligned}
& S_{P F}=M_{P}^{2} \int d^{4} x\left[-\frac{1}{2} h^{\mu \nu} \mathcal{E}_{\mu \nu}^{\alpha \beta} h_{\alpha \beta}-\frac{1}{4} m^{2}\left(h_{\mu \nu} h^{\mu \nu}-h^{2}\right)\right] \\
& \text { Linearized Einstein- } \\
& \text { Hilbert term } \\
& \text { mass term }
\end{aligned}
$$

5 healthy degrees of freedom (because of a particular choice of the potential, $\mathrm{h}=0$) for a generic mass term 6 d.o.f., one is necessary Ostrogradski ghost

Non-linear completion?

Non-linear massive gravitப

Introduce an extra metric to construct a mass term (in order to contract indices)
$g_{\mu \nu}$:physical metric, matter couples to it $f_{\mu \nu}$:an extra metric (may be dynamical or fixed)

Construct a potential, which is invariant under diffeomorphism (common for two metrics)

+ some technical conditions

Non-linear massive gravitப

potential for metric
building block: $\mathrm{g}^{-\mathbf{1}} \mathbf{f}$

$$
\begin{aligned}
S_{\text {int }}^{(2)} & \equiv-\frac{1}{8} m^{2} M_{P}^{2} \int d^{4} x \sqrt{-f} H_{\mu \nu} H_{\sigma \tau}\left(f^{\mu \sigma} f^{\nu \tau}-f^{\mu \nu} f^{\sigma \tau}\right)[\text { Boulware \& Deser'72 } \\
S_{\text {int }}^{(3)} & \equiv-\frac{1}{8} m^{2} M_{P}^{2} \int d^{4} x \sqrt{-g} H_{\mu \nu} H_{\sigma \tau}\left(g^{\mu \sigma} g^{\nu \tau}-g^{\mu \nu} g^{\sigma \tau}\right) \quad \text { [Arkani-Hamed et al'03] }
\end{aligned}
$$

where $H_{\mu \nu}=g_{\mu \nu}-f_{\mu \nu}$

Vainshtein mechanism

screens extra degree of freedom

Non-linear effects restore General Relativity close to the source due to the non-linear effects

[Vainshtein'72]
[EB, Deffayet, Ziour‘09'10]

Problem 2 is solved

Non-linear massive gravitப

®oulvare-ロeser ghost

Generically there are two propagating scalars: one is a ghost!

dRCT massive gravitப

special case of nom-linear massive gravity

Massive gravity without Boulware-Deser ghost
[de Rham, Gabadadze, Tolley‘10'11, Hassan \& Rosen'12]
+many other works

$$
Y=\sqrt{\mathbf{g}^{-\mathbf{1}} \mathbf{f}} \quad \begin{aligned}
& \mathrm{g} \text { is physical metric; } \\
& \mathrm{f} \text { is fixed (flat) or extra dynamical metric. }
\end{aligned}
$$

$$
\begin{aligned}
S= & M_{P}^{2} \int d^{4} x \sqrt{-g}\left[R[g]-m^{2} \sum_{k=0}^{k=4} \beta_{k} e_{k}(Y)\right] \\
& +\kappa M_{P}^{2} \int d^{4} x \sqrt{-f} \mathcal{R}[f]
\end{aligned}
$$

$$
e_{0}=1, e_{1}=[X], e_{2}=\frac{1}{2}\left([X]^{2}-\left[X^{2}\right]\right), e_{3}=\frac{1}{6}\left([X]^{3}-3[X]\left[X^{2}\right]+2\left[X^{3}\right]\right)
$$

$$
e_{4}=\frac{1}{24}\left([X]^{4}-6[X]^{2}\left[X^{2}\right]+3\left[X^{2}\right]^{2}+8[X]\left[X^{3}\right]-6\left[X^{4}\right]\right)
$$

Equations of motion

$$
\begin{aligned}
& G^{\mu}{ }_{\nu}=m^{2}\left(T^{\mu}{ }_{\nu}+\Lambda_{g} \delta_{\nu}^{\mu}\right)+\frac{T^{\mu}{ }_{\nu(\text { matter })}}{M_{P}^{2}} \\
& \mathcal{G}^{\mu}{ }_{\nu}=m^{2}\left(\frac{\sqrt{-g}}{\sqrt{-f}} \frac{\mathcal{T}^{\mu}}{\kappa}+\Lambda_{f} \delta_{\nu}^{\mu}\right)
\end{aligned}
$$

Variation of mass term Non-derivative coupling of the two metrics

$G_{\mu \nu}$ is the Einstein tensor for metric $g_{\mu \nu}$
$\mathcal{G}_{\mu \nu}$ is the Einstein tensor for metric $f_{\mu \nu}$

Sphericel symmetry and

 beyond
Two types of (static) spherically summetric solutions

Bi-diagonal: When two metrics can be put in the diagonal form simultaneously.

Non Bi-diagonal: When this is not the case

A "no-go theorem" for bi-diagonal black holes
[Deffayet, Jacobson'11]

Spherically summetric solutions

Bi-diagonal

- Solutions with source.

Vainshtein mechanism: GR is restored, tiny modification of GR

- Black holes
- Bi-diagonal solutions: the two metrics are GR-like and equal or proportional (horizons coinside).
- hairy black holes (numerics), nonGR
- Stability of black holes
- Black holes are unstable (mild tachyon-like instability)

Non Bi-diagonal

\downarrow Solutions with source.
GR is perfectly restored

- Black holes
- Non bi-diagonal solutions: the two metrics are GR-like and not proportional (horizons may not coinside).
- Stability of black holes
- Black holes are stable
- Rotating solutions
- Two GR-like equal metrics
- Rotating solutions
- Two GR-like non-equal metrics

Solutions with e source

Vainshtein mechanism in bi-gravity

Weak-field approximation [EB,Deffayet, Ziour'10]
Vainshtein mechanism in bi-gravity [Volkov'12] [EB,Crisostomi'13]

$$
\begin{aligned}
& d s^{2}=-e^{\nu} d t^{2}+e^{\lambda} d r^{2}+r^{2} d \Omega^{2} \\
& d f^{2}=-e^{n} d t^{2}+e^{l}(r+r \mu)^{\prime 2} d r^{2}+(r+r \mu)^{2} d \Omega^{2}
\end{aligned}
$$

$\{\lambda, \nu, l, n\} \ll 1, \quad\left\{r \lambda^{\prime}, r \nu^{\prime}, r l^{\prime}, r n^{\prime}\right\} \ll 1$
Linearized Einstein equations for metric g
Linearized Einstein equations for metric f

$$
\begin{aligned}
& \mu^{7}+\ldots=0 \quad \text { Inside the Compton length } r \ll 1 / m \\
& \quad \begin{array}{l}
\text { Algebraic equation of } 7 \text { th order on } \mu \\
\text { All other metric functions depend on } \mu
\end{array}
\end{aligned}
$$

Vainshtein mechanism in bi-gravity recovery of GR

Non-Vainshtein recovers of $\square \boldsymbol{R}$

[EB unpublished]

Physical metric in the EF form,

$$
d s_{g}^{2}=-h(r) d v^{2}+2 k(r) d v d r+r^{2} d \Omega^{2}
$$

Ansatz for the second metric

$$
\frac{d s_{f}^{2}}{C^{2}}=-d v^{2}+2 S d v d r+\left((r \mu)^{\prime 2}-S^{2}\right) d r^{2}+(r \mu)^{2} d \Omega^{2}
$$

For C such that
$\beta(C-1)^{2}-2 \alpha(C-1)+1=0$
Recovery of GR up to a Lambda-term $\sim m^{2}$

シடАСК トロடヲヲ

Plack holes

Schworzschild metric

	$[$ Salam \& Strathdee'77]
Non-bidiagonal BHs	$[$ Isham \& Storey'78]
	$[$ Koyama, Niz, Tasinato'11]+many others

Ansatz (bi-Eddington-Finkelstein form) [EB\& Fabbri'13]

$$
\begin{aligned}
& d s_{g}^{2}=-\left(1-\frac{r_{g}}{r}\right) d v^{2}+2 d v d r+r^{2} d \Omega^{2} \\
& d s_{f}^{2}=C^{2}\left[-\left(1-\frac{r_{f}}{r}\right) d v^{2}+2 d v d r+r^{2} d \Omega^{2}\right]
\end{aligned}
$$

$$
\text { Two choices: }\left\{\begin{aligned}
r_{g} & =r_{f} & & \text { bi-diagonal } \\
\beta(C-1)^{2}-2 \alpha(C-1)+1 & =0 & & \text { non-bidiagonal }
\end{aligned}\right.
$$

For these choices the extra "mass" energy-momentum tensor reduces to effective cosmological constant

Charged صlack holes

Electromagnetic field coupled to g

$$
\begin{gathered}
d s_{g}^{2}=-\left(1-\frac{r_{g}}{r}+\frac{r_{Q}^{2}}{r^{2}}-\frac{r^{2}}{l_{g}^{2}}\right) d v^{2}+2 d v d r+r^{2} d \Omega^{2} \\
d s_{f}^{2}=C^{2}\left[-\left(1-\frac{r_{f}}{r}-\frac{r^{2}}{l_{f}^{2}}\right) d v^{2}+2 d v d r+r^{2} d \Omega^{2}\right]
\end{gathered}
$$

$$
A_{\mu}=\left\{\frac{Q}{r}, 0,0,0\right\}
$$

Rotating Plack holes

Original Kerr metric

$$
\begin{aligned}
d s_{g}^{2}= & -\left(1-\frac{r_{g} r}{\rho^{2}}\right)\left(d v+a \sin ^{2} \theta d \phi\right)^{2} \\
& +2\left(d v+a \sin ^{2} \theta d \phi\right)\left(d r+a \sin ^{2} \theta d \phi\right)+\rho^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
\rho^{2}= & r^{2}+a^{2} \cos ^{2} \theta
\end{aligned}
$$

f is flat, but unusual form

$$
d s_{f}^{2}=C^{2}\left[-d v^{2}+2 d v d r+2 a \sin ^{2} \theta d r d \phi+\rho^{2} d \theta^{2}+\left(r^{2}+a^{2}\right) \sin ^{2} \theta d \phi^{2}\right]
$$

Obtained from $\quad d s_{M}^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}$
by:

$$
\begin{aligned}
& t=v-r, x+i y=(r-i a) e^{i \phi} \sin \theta, z=r \cos \theta \\
& r \rightarrow C r, v \rightarrow C v, a \rightarrow C a
\end{aligned}
$$

Hairy bi-diagonal black holes

Asymptotically AdS hairy solutions exist [Volkov'12]

$$
\begin{aligned}
& g_{\mu \nu} d x^{\mu} d x^{\nu}=-Q^{2} d t^{2}+N^{-2} d r^{2}+R^{2} d \Omega^{2} \\
& f_{\mu \nu} d x^{\mu} d x^{\nu}=-a^{2} d t^{2}+b^{2} d r^{2}+U^{2} d \Omega^{2}
\end{aligned}
$$

Numerical integration of a system of coupled ODEs

$$
\left\{\begin{array}{l}
N^{\prime}=\mathcal{F}_{1}\left(r, N, Y, U, \mu, \kappa, \alpha_{3}, \alpha_{4}\right) \\
Y^{\prime}=\mathcal{F}_{2}\left(r, N, Y, U, \mu, \kappa, \alpha_{3}, \alpha_{4}\right) \\
U^{\prime}=\mathcal{F}_{3}\left(r, N, Y, U, \mu, \kappa, \alpha_{3}, \alpha_{4}\right) .
\end{array}\right.
$$

Hairy bi-diagonal black holes

Asymptotically flat hairy solutions [Brito,Cardoso, Pani'13]

$$
\begin{aligned}
& N=1-\frac{C_{1}}{2 r}+\frac{C_{2}(1+r \mu)}{2 r} e^{-r \mu}, \\
& Y=1-\frac{C_{1}}{2 r}-\frac{C_{2}(1+r \mu)}{2 r} e^{-r \mu}, \\
& U=r+\frac{C_{2}\left(1+r \mu+r^{2} \mu^{2}\right)}{\mu^{2} r^{2}} e^{-r \mu},
\end{aligned}
$$

Yukawa decay

For generic potential only for large BH mass.

$$
r_{s} \sim 1 / H
$$

of ®டA두 Hローヲ

Perturbations

spherically stymmetric ansatz for perturbations

[EB \& Fabbri'14]
Perturbations of both metrics

$$
g_{\mu \nu}=g_{\mu \nu}^{(0)}+h_{\mu \nu}^{(g)}, f_{\mu \nu}=f_{\mu \nu}^{(0)}+h_{\mu \nu}^{(f)}
$$

$$
\delta G^{\mu}{ }_{\nu}=m^{2} \delta T^{\mu}{ }_{\nu}, \quad \delta \mathcal{G}^{\mu}{ }_{\nu}=\frac{m^{2}}{\kappa} \delta\left(\frac{\sqrt{-g}}{\sqrt{-f}} \mathcal{T}^{\mu}{ }_{\nu}\right) .
$$

$$
\begin{align*}
h_{(g)}^{\mu \nu} & =e^{\Omega v}\left(\begin{array}{cccc}
h_{(g)}^{v v}(r) & h_{(g)}^{v r}(r) & 0 & 0 \\
h_{(g)}^{v r}(r) & h_{(g)}^{r r}(r) & 0 & 0 \\
0 & 0 & \frac{h_{(g)}^{\theta \theta}(r)}{r^{2}} & 0 \\
0 & 0 & 0 & \frac{h_{(g)}^{\theta \theta}(r)}{r^{2} \sin ^{2} \theta}
\end{array}\right) \\
h_{(-)}^{\mu \nu} \equiv h_{(g)}^{\mu \nu}-C^{2} h_{(f)}^{\mu \nu} & \text { i.e. }
\end{align*} h_{(-)}^{v v}(r)=h_{(g)}^{v v}(r)-h_{(f)}^{v v}(r) .
$$

Perturbations

spherically sபmmetric ansatz for perturbations

[EB \& Fabbri'14]
Perturbations of both metrics

$$
g_{\mu \nu}=g_{\mu \nu}^{(0)}+h_{\mu \nu}^{(g)}, f_{\mu \nu}=f_{\mu \nu}^{(0)}+h_{\mu \nu}^{(f)}
$$

$$
\delta G^{\mu}{ }_{\nu}=m^{2} \delta T^{\mu}{ }_{\nu}, \quad \delta \mathcal{G}^{\mu}{ }_{\nu}=\frac{m^{2}}{\kappa} \delta\left(\frac{\sqrt{-g}}{\sqrt{-f}} \mathcal{T}^{\mu}{ }_{\nu}\right) .
$$

$$
\left.\begin{array}{rl}
h_{(f)}^{\mu \nu} & =\frac{e^{\Omega v}}{C^{2}}\left(\begin{array}{cccc}
h_{(f)}^{v v}(r) & h_{(f)}^{v r}(r) & 0 & 0 \\
h_{(f)}^{v r}(r) & h_{(f)}^{r r}(r) & 0 & 0 \\
0 & 0 & \frac{h_{(f)}^{\theta \theta}(r)}{r^{2}} & 0 \\
0 & 0 & 0 & \frac{h_{(f)}^{\theta \theta(r)}}{r^{2} \sin ^{2} \theta}
\end{array}\right) \\
h_{(-)}^{\mu \nu} \equiv h_{(g)}^{\mu \nu}-C^{2} h_{(f)}^{\mu \nu} & \text { i.e. }
\end{array} h_{(-)}^{v v}(r)=h_{(g)}^{v v}(r)-h_{(f)}^{v v}(r)\right) .
$$

Spherical Perturbations

Regularity at horizons and infinity!

Perturbations for bidiagonal case

$$
\begin{array}{ll}
h_{\nu}^{(-) \mu} & =h_{\nu}^{\mu}-\tilde{h}_{\nu}^{\mu} \\
h^{(+) \mu} & =h_{\nu}^{\mu}+\kappa \tilde{h}_{\nu}^{\mu}
\end{array}
$$

$$
\mathcal{E}_{\mu \nu}^{\alpha \beta} h_{\alpha \beta}^{(+)}=0
$$

$h_{\mu \nu}^{(-)}$is massive
$h_{\mu \nu}^{(+)} \quad$ is massless
$\nabla^{\nu} h_{\mu \nu}^{(-)}=h^{(-)}=0$
$\square h_{\mu \nu}^{(-)}+2 R^{\sigma}{ }_{\mu}{ }_{\mu}{ }_{\nu} h_{\lambda_{\sigma}}^{(-)}=m^{2} h_{\mu \nu}^{(-)}$

Pi-diagonal case

드 instability

A system of equations of second order plus 2 constraints on $H_{t t}, H_{t r}, H_{r r}, K$
Playing with equations we can obtain a single equation on φ_{0} (a combination of $H_{t t}, H_{r r}$ and $H_{t r}$)

$$
\frac{d^{2}}{d r_{*}^{2}} \varphi_{0}+\left[\omega^{2}-V(r)\right] \varphi_{0}=0
$$

Unstable ($\Omega>0$) mode, satisfying boundary conditions?

$$
V_{0}=\left(1-\frac{r_{g}}{r}\right)\left[\frac{2 M}{r^{3}}+m^{\prime 2}+\frac{24 M(M-r) m^{\prime 2}+6 r^{3}(r-4 M) m^{\prime 4}}{\left(2 M+r^{3} m^{\prime 2}\right)^{2}}\right]
$$

صi-diagonal case: Instabilitப

$0<m^{\prime}<\frac{\mathcal{O}(1)}{r_{S}} \quad$ Instability r_{S}

Confirmed independently by [Brito, Cardoso, Pani'13]

Instability of black holes

rate of instability

Rate of instability

for $m^{\prime} \sim H \rightarrow \tau \sim H^{-1}$
Very slow instability !

Approximately linear $\quad r_{S} \ll 1 / m^{\prime}$ dependance

$$
\Omega=m^{\prime}
$$

Non-bidiegonal case

Ceneral solution for perturbations
[EB \& Fabbri'14]

$$
\begin{aligned}
& h_{(g, f)}^{\mu \nu}=h_{G R}^{\mu \nu(g, f)}+h_{(m)}^{\mu \nu(g, f)} \\
& h_{G R}^{\mu \nu}=-\nabla^{\mu} \xi^{\nu}-\nabla^{\nu} \xi^{\mu}
\end{aligned}
$$

Non-『i-diagonal case

explicit solution for perturbations

$$
\begin{aligned}
h_{G R}^{\mu \nu(f)} & =0 \\
h_{G R}^{\mu \nu(g)} & =e^{\Omega v}\left(\begin{array}{cccc}
0 & \Omega c_{1} & 0 & 0 \\
\Omega c_{1} & c_{0}\left(\Omega-\frac{r_{g}}{2 r^{2}}\right) & 0 & 0 \\
0 & 0 & c_{0} r^{-3} & 0 \\
0 & 0 & 0 & c_{0} \csc ^{2}(\theta) r^{-3}
\end{array}\right) \\
h_{(m)}^{r r(g)} & =\frac{\mathcal{A}\left(r_{g}-r_{f}\right) e^{\Omega v}}{4 \Omega} m^{2} h_{(-)}^{\theta \theta}, \\
h_{(m)}^{r r(f)} & =-\kappa^{-1} h_{(m)}^{r r(g)} .
\end{aligned}
$$

Since at $r \rightarrow \infty \quad v=t+r$ the perturbations are not regular at infinity.
NO unstable modes
Non-bidiagonal solution is stable against radial perturbations

Non-صi-diagonal case

```
[EB,Brito,Pani'15]
```

Decomposition of perturbations in axial and polar modes

The quasinormal modes are the same as those of a Schwarzschild BH in GR!

- QNM are vibration of a relativistic self-gravitating object.
- The boundary conditions are important.

For a mode to be QN, the perturbation must behave as ingoing wave near the horizon,

$$
\sim e^{-i\left(\omega t+k_{-} r_{*}\right)}
$$

and outgoing at the infinity,

$$
\sim e^{i\left(k_{+} r_{*}-\omega t\right)}
$$

Non-『i-diagonal case

Non-radial perturbations: general perturbations
In general we do not have to assume outgoing behavior at infinity. Then the modes are not quasinormal.

	GR	bi-diagonal	non bi-diagonal	
monopole	pure gauge	dynamical (2nd order PDE)	"free propagating"" mode	
Polar dipole \|=		pure gauge	dynamical	"free propagating"
mode				

ㄷロNㄷடேSIロNS

\uparrow It is possible to construct non-bidiagonal solutions in massive gravity, which are analogues of corresponding GR solutions (Schwarzschild, charged, rotating).

- There are hairy massive gravity black holes
- The non-bidiagonal black holes in massive gravity are stable
\uparrow The bi-diagonal spherically symmetric BHs are unstable due to the helicity-0 mode instability. The rate of instability is extremely small.
- Superradiant instability for rotating BHs in massive gravity.
\downarrow The fate of unstable BHs? The endpoint of gravitational collapse?
- Rotating hairy BHs?
\downarrow dS hairy black holes?
\uparrow Do perturbations around black holes contain ghosts?

