SPIN-PRECESSING GRAVITATIONAL WAVEFORMS: AN ANALYTIC PERSPECTIVE

Antoine Klein
The University of Mississippi
Paris, Jan. 112016

Outline

(1) Gravitational Waves
(2) Precessing Binaries
(3) Radiation reaction
(4) WAVEFORM BUILDING
(5) Conclusion

Gravitational Waves

Gravitational waves direct observations are expected very soon. Unprecedented field strengths will likely bring new theoretical and astrophysical understanding.

Gravitational Waves

Gravitational waves direct observations are expected very soon. Unprecedented field strengths will likely bring new theoretical and astrophysical understanding.

Gravitational wave signals from inspiralling binaries have a rich stucture; the signal accumulates over long a time period: we need accurate templates capable of tracking the phase of the signal.

Gravitational Waves

Gravitational waves direct observations are expected very soon. Unprecedented field strengths will likely bring new theoretical and astrophysical understanding.

Gravitational wave signals from inspiralling binaries have a rich stucture; the signal accumulates over long a time period: we need accurate templates capable of tracking the phase of the signal.

The parameter space has high dimensionality (9-D, 15-D, 17-D): we need fast templates in order to explore it.

Gravitational Waves

Gravitational waves direct observations are expected very soon. Unprecedented field strengths will likely bring new theoretical and astrophysical understanding.

Gravitational wave signals from inspiralling binaries have a rich stucture; the signal accumulates over long a time period: we need accurate templates capable of tracking the phase of the signal.

The parameter space has high dimensionality (9-D, 15-D, 17-D): we need fast templates in order to explore it.

Spin-induced precession breaks degeneracies: greatly improves parameter estimation.

Spin-Orbit Precession

Binaries of spinning objects undergo precession

Equations of motion

PN parameter

$$
\begin{aligned}
& v=(M \omega)^{1 / 3} \\
& \dot{v}=v^{9} \sum_{n \geq 0} a_{n} v^{n} \quad \Longleftrightarrow \quad T_{r r}=\mathcal{O}\left(v^{-8}\right)
\end{aligned}
$$

Equations of motion

PN parameter

$$
\begin{aligned}
& v=(M \omega)^{1 / 3} \\
& \dot{v}=v^{9} \sum_{n \geq 0} a_{n} v^{n} \quad \Longleftrightarrow \quad T_{r r}=\mathcal{O}\left(v^{-8}\right) \\
& \dot{\phi}_{\text {orb }}=v^{3} \quad \Longleftrightarrow \quad T_{\text {orb }}=\mathcal{O}\left(v^{-3}\right)
\end{aligned}
$$

Equations of motion

PN parameter

$$
\begin{aligned}
& v=(M \omega)^{1 / 3} \\
& \dot{v}=v^{9} \sum_{n \geq 0} a_{n} v^{n} \Longleftrightarrow T_{r r}=\mathcal{O}\left(v^{-8}\right) \\
& \begin{array}{l}
\dot{\phi}_{\text {orb }}=v^{3} \quad \Longleftrightarrow \quad T_{\text {orb }}=\mathcal{O}\left(v^{-3}\right) \\
\left.\begin{array}{rl}
\dot{\hat{L}} & =v^{6}\left(A_{1} \boldsymbol{S}_{1}+A_{2} \boldsymbol{S}_{2}\right) \times \hat{\boldsymbol{L}} \\
\dot{\boldsymbol{S}}_{1} & =v^{5} A_{1} \hat{\boldsymbol{L}} \times \boldsymbol{S}_{1}+v^{6} A_{12} \boldsymbol{S}_{2} \times \boldsymbol{S}_{1} \\
\dot{\boldsymbol{S}}_{2} & =v^{5} A_{2} \hat{\boldsymbol{L}} \times \boldsymbol{S}_{2}+v^{6} A_{12} \boldsymbol{S}_{1} \times \boldsymbol{S}_{2}
\end{array}\right\} \quad \Longleftrightarrow \quad T_{\text {prec }}=\mathcal{O}\left(v^{-5}\right)
\end{array}
\end{aligned}
$$

SOLUTION IN THE ABSENCE OF RADIATION REACTION

Equations of precession can be solved analytically, in absence of radiation reaction, in orbit-averaged form, at leading post-Newtonian order [Kesden et al., Phys. Rev. Lett. 114, 081103 (2015)].

SOLUTION IN THE ABSENCE OF RADIATION REACTION

Equations of precession can be solved analytically, in absence of radiation reaction, in orbit-averaged form, at leading post-Newtonian order [Kesden et al., Phys. Rev. Lett. 114, 081103 (2015)].

- $T_{\text {orb }}$ and $T_{r r}$ disappear from system.

SOLUTION IN THE ABSENCE OF RADIATION REACTION

Equations of precession can be solved analytically, in absence of radiation reaction, in orbit-averaged form, at leading post-Newtonian order [Kesden et al., Phys. Rev. Lett. 114, 081103 (2015)].

- $T_{\text {orb }}$ and $T_{r r}$ disappear from system.
- First step: identify constants of motion.

SOLUTION IN THE ABSENCE OF RADIATION REACTION

Equations of precession can be solved analytically, in absence of radiation reaction, in orbit-averaged form, at leading post-Newtonian order [Kesden et al., Phys. Rev. Lett. 114, 081103 (2015)].

- $T_{\text {orb }}$ and $T_{r r}$ disappear from system.
- First step: identify constants of motion.
- Second step: identify suitable parametrization.

Constants of motion

Equations of precession without radiation reaction: 9 parameters $\boldsymbol{L}, \boldsymbol{S}_{1}, \boldsymbol{S}_{2}$.

Constants of motion

Equations of precession without radiation reaction: 9 parameters $\boldsymbol{L}, \boldsymbol{S}_{1}, \boldsymbol{S}_{2}$.

Norms are conserved: 3 conserved quantities.

Constants of motion

Equations of precession without radiation reaction: 9 parameters $\boldsymbol{L}, \boldsymbol{S}_{1}, \boldsymbol{S}_{2}$.

Norms are conserved: 3 conserved quantities.
$\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}_{1}+\boldsymbol{S}_{2}$ is conserved: 3 conserved quantities.

Constants of motion

Equations of precession without radiation reaction: 9 parameters $\boldsymbol{L}, \boldsymbol{S}_{1}, \boldsymbol{S}_{2}$.

Norms are conserved: 3 conserved quantities.
$\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}_{1}+\boldsymbol{S}_{2}$ is conserved: 3 conserved quantities.
$\xi=\boldsymbol{L} \cdot\left(\boldsymbol{S}_{1} / m_{1}+\boldsymbol{S}_{2} / m_{2}\right)$ is conserved.

Constants of motion

Equations of precession without radiation reaction: 9 parameters $\boldsymbol{L}, \boldsymbol{S}_{1}, \boldsymbol{S}_{2}$.

Norms are conserved: 3 conserved quantities.
$\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}_{1}+\boldsymbol{S}_{2}$ is conserved: 3 conserved quantities.
$\xi=\boldsymbol{L} \cdot\left(\boldsymbol{S}_{1} / m_{1}+\boldsymbol{S}_{2} / m_{2}\right)$ is conserved.

Two dynamical quantities.

Choice of frames

Choice of frames: $\hat{\boldsymbol{z}}=\hat{\boldsymbol{J}}, \hat{\mathbf{z}}^{\prime}=\hat{\boldsymbol{S}}$.

Choice of frames

Because of conserved quantities, we can select two parameters to describe the evolution: ϕ_{z} and S.
E.g. $\boldsymbol{S}=\boldsymbol{J}-\boldsymbol{L} \quad \Longrightarrow J^{2}+L^{2}-2 J L \cos \theta_{L}=S^{2}$.

Evolution of S

Equations of motion:

$$
\left(\frac{d S^{2}}{d t}\right)^{2}=-A^{2}\left(S^{2}-S_{+}^{2}\right)\left(S^{2}-S_{-}^{2}\right)\left(S^{2}-S_{3}^{2}\right)
$$

Evolution of S

Equations of motion:

$$
\left(\frac{d S^{2}}{d t}\right)^{2}=-A^{2}\left(S^{2}-S_{+}^{2}\right)\left(S^{2}-S_{-}^{2}\right)\left(S^{2}-S_{3}^{2}\right)
$$

Solution:

$$
\begin{aligned}
S^{2} & =S_{+}^{2}+\left(S_{-}^{2}-S_{+}^{2}\right) \mathrm{sn}^{2}(\psi, \mathrm{~m}) \\
\dot{\psi} & =\frac{A}{2} \sqrt{S_{+}^{2}-S_{3}^{2}} \\
m & =\frac{S_{+}^{2}-S_{-}^{2}}{S_{+}^{2}-S_{3}^{2}}
\end{aligned}
$$

Evolution of S

Evolution of ϕ_{z}

Equations of motion:

$$
\dot{\phi}_{z}=a+\frac{c_{0}+c_{2} S^{2}+c_{4} S^{4}}{d_{0}+d_{2} S^{2}+d_{4} S^{4}} .
$$

Evolution of ϕ_{z}

Equations of motion:

$$
\dot{\phi}_{z}=a+\frac{c_{0}+c_{2} S^{2}+c_{4} S^{4}}{d_{0}+d_{2} S^{2}+d_{4} S^{4}} .
$$

Analytic solution: a complicated combination of elliptic integrals.

Analytic solution

This represents an exact fully analytic solution to the equations of precession.

AnALYTIC SOLUTION

This represents an exact fully analytic solution to the equations of precession.

- Orbit-averaged equations.

Analytic solution

This represents an exact fully analytic solution to the equations of precession.

- Orbit-averaged equations.
- Leading order spin-orbit and spin-spin.

AnALYTIC SOLUTION

This represents an exact fully analytic solution to the equations of precession.

- Orbit-averaged equations.
- Leading order spin-orbit and spin-spin.
- No radiation reaction.

Addition of radiation REACtion

With radiation reaction, another timescale appears in the problem: $T_{r r} \gg T_{\text {prec }}$: multiple scale analysis.

ADDITION OF RADIATION REACTION

With radiation reaction, another timescale appears in the problem: $T_{r r} \gg T_{\text {prec }}$: multiple scale analysis.

- Separation of time variable into two different ones:

$$
f(t) \rightarrow f\left(t_{\text {long }}, t_{\text {short }}\right)
$$

ADDITION OF RADIATION REACTION

With radiation reaction, another timescale appears in the problem: $T_{r r} \gg T_{\text {prec }}$: multiple scale analysis.

- Separation of time variable into two different ones: $f(t) \rightarrow f\left(t_{\text {long }}, t_{\text {short }}\right)$.
- Differential operators become $d / d t \rightarrow \partial / \partial t_{\text {long }}+\partial / \partial t_{\text {short }}$.

ADDITION OF RADIATION REACTION

With radiation reaction, another timescale appears in the problem: $T_{r r} \gg T_{\text {prec }}$: multiple scale analysis.

- Separation of time variable into two different ones: $f(t) \rightarrow f\left(t_{\text {long }}, t_{\text {short }}\right)$.
- Differential operators become $d / d t \rightarrow \partial / \partial t_{\text {long }}+\partial / \partial t_{\text {short }}$.
- Introduce bookkeeping parameter ϵ so that $t_{\text {long }}=\epsilon t_{\text {short }}$.

ADDITION OF RADIATION REACTION

With radiation reaction, another timescale appears in the problem: $T_{r r} \gg T_{\text {prec }}$: multiple scale analysis.

- Separation of time variable into two different ones: $f(t) \rightarrow f\left(t_{\text {long }}, t_{\text {short }}\right)$.
- Differential operators become $d / d t \rightarrow \partial / \partial t_{\text {long }}+\partial / \partial t_{\text {short }}$.
- Introduce bookkeeping parameter ϵ so that $t_{\text {long }}=\epsilon t_{\text {short }}$.
- Expand solutions in powers of ϵ : $f\left(t_{\text {long }}, t_{\text {short }}\right) \rightarrow \sum_{n} \epsilon^{n} f^{(n)}\left(t_{\text {long }}, t_{\text {short }}\right)$.

ADDITION OF RADIATION REACTION

With radiation reaction, another timescale appears in the problem: $T_{r r} \gg T_{\text {prec }}$: multiple scale analysis.

- Separation of time variable into two different ones: $f(t) \rightarrow f\left(t_{\text {long }}, t_{\text {short }}\right)$.
- Differential operators become $d / d t \rightarrow \partial / \partial t_{\text {long }}+\partial / \partial t_{\text {short }}$.
- Introduce bookkeeping parameter ϵ so that $t_{\text {long }}=\epsilon t_{\text {short }}$.
- Expand solutions in powers of ϵ : $f\left(t_{\text {long }}, t_{\text {short }}\right) \rightarrow \sum_{n} \epsilon^{n} f^{(n)}\left(t_{\text {long }}, t_{\text {short }}\right)$.
- Solve equations order by order.

Constants

Some constants stay constant under radiation reaction: S_{1}, S_{2}, and ξ, while others don't: L, J, and \hat{J}.

Constants

Some constants stay constant under radiation reaction: S_{1}, S_{2}, and ξ, while others don't: L, J, and \hat{J}.
L evolves through PN equation and varies on $T_{r r}$ alone, but J and $\hat{\boldsymbol{J}}$ vary on both $T_{r r}$ and $T_{\text {prec }}$.

Constants

Some constants stay constant under radiation reaction: S_{1}, S_{2}, and ξ, while others don't: L, J, and $\hat{\jmath}$.
L evolves through $P N$ equation and varies on $T_{r r}$ alone, but J and $\hat{\jmath}$ vary on both $T_{r r}$ and $T_{\text {prec }}$.

To be able to use the solution previously found, we need to use $\langle\boldsymbol{J}\rangle_{\text {prec }}$ to describe the solution, so that $\boldsymbol{J}\left(t_{r r}\right)$.

Solution for L

Solution for L is very simple: $L=\mu / v$

$$
\dot{v}=v^{9} \sum_{n \geq 0} a_{n} v^{n}
$$

Solution for L

Solution for L is very simple: $L=\mu / v$

$$
\dot{v}=v^{9} \sum_{n \geq 0} a_{n} v^{n}
$$

Catch: a_{3} and higher depend on $t_{\text {prec }}$ through the spin couplings.

Solution for L

Solution for L is very simple: $L=\mu / v$

$$
\dot{v}=v^{9} \sum_{n \geq 0} a_{n} v^{n}
$$

Catch: a_{3} and higher depend on $t_{\text {prec }}$ through the spin couplings.

We can use the precession-averaged spin couplings instead so that L depends on $t_{r r}$ only.

Solution for L

Solution for L is very simple: $L=\mu / v$

$$
\dot{v}=v^{9} \sum_{n \geq 0} a_{n} v^{n}
$$

Catch: a_{3} and higher depend on $t_{\text {prec }}$ through the spin couplings.

We can use the precession-averaged spin couplings instead so that L depends on $t_{r r}$ only.
$v \ll 1 \quad \Longrightarrow \quad$ solve order by order.

Solution for J

Angular momentum is emitted along \boldsymbol{L}. Thus, $\boldsymbol{j}=A \hat{\boldsymbol{L}}$.

Solution for J

Angular momentum is emitted along \boldsymbol{L}. Thus, $\boldsymbol{j}=A \hat{\boldsymbol{L}}$. We can write $d J / d t=\hat{\boldsymbol{J}} \cdot \boldsymbol{j}$ and $d L / d t=\hat{\boldsymbol{L}} \cdot \boldsymbol{j}$.

Solution for J

Angular momentum is emitted along \boldsymbol{L}. Thus, $\boldsymbol{j}=A \hat{\boldsymbol{L}}$. We can write $d J / d t=\hat{\boldsymbol{J}} \cdot \boldsymbol{j}$ and $d L / d t=\hat{\boldsymbol{L}} \cdot \boldsymbol{j}$.

$$
\left\langle\frac{d J}{d L}\right\rangle_{\text {prec }}=\langle\hat{\boldsymbol{J}} \cdot \hat{\boldsymbol{L}}\rangle_{\text {prec }}=\frac{1}{2 J L}\left(J^{2}+L^{2}-\left\langle S^{2}\right\rangle_{\text {prec }}\right) .
$$

Solution for J

Angular momentum is emitted along \boldsymbol{L}. Thus, $\boldsymbol{j}=A \hat{\boldsymbol{L}}$.
We can write $d J / d t=\hat{\boldsymbol{J}} \cdot \boldsymbol{j}$ and $d L / d t=\hat{\boldsymbol{L}} \cdot \boldsymbol{j}$.

$$
\left\langle\frac{d J}{d L}\right\rangle_{\text {prec }}=\langle\hat{\boldsymbol{J}} \cdot \hat{\boldsymbol{L}}\rangle_{\text {prec }}=\frac{1}{2 J L}\left(J^{2}+L^{2}-\left\langle S^{2}\right\rangle_{\text {prec }}\right)
$$

Solution

$$
J^{2}(L)=L^{2}+C L-L \int \frac{\left\langle S^{2}\right\rangle_{\text {prec }}}{L^{2}} d L
$$

Solution for S

S varies on multiple timescales: $S^{2}\left(t_{r r}, t_{\text {prec }}\right)=\sum_{n \geq 0} \epsilon^{n} S_{n}^{2}\left(t_{r r}, t_{\text {prec }}\right)$.

Solution for S

S varies on multiple timescales: $S^{2}\left(t_{r r}, t_{\text {prec }}\right)=\sum_{n \geq 0} \epsilon^{n} S_{n}^{2}\left(t_{r r}, t_{\text {prec }}\right)$.

Evolution equation becomes

$$
\begin{aligned}
& {\left[\sum_{n \geq 0}\left(\epsilon^{n} \frac{\partial S_{n}^{2}}{\partial t_{\text {prec }}}+\epsilon^{n+1} \frac{\partial S_{n}^{2}}{\partial t_{r r}}\right)\right]^{2}=-A^{2}\left(t_{r r}\right)\left[S^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{+}^{2}\left(t_{r r}\right)\right]} \\
& \times\left[S^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{-}^{2}\left(t_{r r}\right)\right]\left[S^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{3}^{2}\left(t_{r r}\right)\right] .
\end{aligned}
$$

Solution for S

S varies on multiple timescales: $S^{2}\left(t_{r r}, t_{\text {prec }}\right)=\sum_{n \geq 0} \epsilon^{n} S_{n}^{2}\left(t_{r r}, t_{\text {prec }}\right)$.

Evolution equation becomes

$$
\begin{aligned}
& {\left[\sum_{n \geq 0}\left(\epsilon^{n} \frac{\partial S_{n}^{2}}{\partial t_{\text {prec }}}+\epsilon^{n+1} \frac{\partial S_{n}^{2}}{\partial t_{r r}}\right)\right]^{2}=-A^{2}\left(t_{r r}\right)\left[S^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{+}^{2}\left(t_{r r}\right)\right]} \\
& \times\left[S^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{-}^{2}\left(t_{r r}\right)\right]\left[S^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{3}^{2}\left(t_{r r}\right)\right] .
\end{aligned}
$$

Solution for S

Leading order equation

$$
\begin{aligned}
\left(\frac{\partial S_{0}^{2}}{\partial t_{\text {prec }}}\right)^{2} & =-A^{2}\left(t_{r r}\right)\left[S_{0}^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{+}^{2}\left(t_{r r}\right)\right] \\
& \times\left[S_{0}^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{-}^{2}\left(t_{r r}\right)\right]\left[S_{0}^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{3}^{2}\left(t_{r r}\right)\right]
\end{aligned}
$$

Solution for S

Leading order equation

$$
\begin{aligned}
\left(\frac{\partial S_{0}^{2}}{\partial t_{\text {prec }}}\right)^{2} & =-A^{2}\left(t_{r r}\right)\left[S_{0}^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{+}^{2}\left(t_{r r}\right)\right] \\
& \times\left[S_{0}^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{-}^{2}\left(t_{r r}\right)\right]\left[S_{0}^{2}\left(t_{r r}, t_{\text {prec }}\right)-S_{3}^{2}\left(t_{r r}\right)\right]
\end{aligned}
$$

We know solution

$$
S_{0}^{2}=S_{+}^{2}\left(t_{r r}\right)+\left[S_{-}^{2}\left(t_{r r}\right)-S_{+}^{2}\left(t_{r r}\right)\right] s n\left[\psi\left(t_{r r}, t_{\text {prec }}\right), m\left(t_{r r}\right)\right]
$$

with

$$
\dot{\psi}=\frac{A(r r)}{2} \sqrt{S_{+}^{2}\left(t_{r r}\right)-S_{3}^{2}\left(t_{r r}\right)}
$$

Solution for ϕ_{z}

ϕ_{z} varies on multiple timescales: $\phi_{z}\left(t_{r r}, t_{\text {prec }}\right)=\sum_{n \geq-1} \epsilon^{n} \phi_{Z}^{(n)}\left(t_{r r}, t_{\text {prec }}\right)$.

Solution for ϕ_{z}

ϕ_{z} varies on multiple timescales: $\phi_{z}\left(t_{r r}, t_{\text {prec }}\right)=\sum_{n \geq-1} \epsilon^{n} \phi_{z}^{(n)}\left(t_{r r}, t_{\text {prec }}\right)$.

Same treatment, except:

$$
\sum_{n \geq-1}\left(\epsilon^{n} \frac{\partial \phi_{z}^{(n)}}{\partial t_{p r e c}}+\epsilon^{n+1} \frac{\partial \phi_{z}^{(n)}}{\partial t_{r r}}\right)=\Omega_{z}\left[S\left(t_{r r}, t_{\text {prec }}\right), L\left(t_{r r}\right), J\left(t_{r r}\right)\right] .
$$

Solution for ϕ_{z}

$$
\mathcal{O}\left(\epsilon^{-1}\right):
$$

$$
\frac{1}{\epsilon} \frac{\partial \phi_{z}^{(-1)}}{\partial t_{\text {prec }}}=0
$$

Solution for ϕ_{z}

$$
\begin{aligned}
& \mathcal{O}\left(\epsilon^{-1}\right): \\
& \quad \frac{1}{\epsilon} \frac{\partial \phi_{z}^{(-1)}}{\partial t_{\text {prec }}}=0 \\
& \phi_{z}^{(-1)}=\phi_{z}^{(-1)}\left(t_{\text {rr }}\right) .
\end{aligned}
$$

Solution for ϕ_{z}

$\mathcal{O}\left(\epsilon^{0}\right):$

$$
\frac{\partial \phi_{z}^{(0)}}{\partial t_{\text {prec }}}+\frac{\partial \phi_{z}^{(-1)}}{\partial t_{r r}}=\Omega_{z}^{(0)}\left(t_{\text {prec }}, t_{r r}\right) .
$$

Solution for ϕ_{z}

$\mathcal{O}\left(\epsilon^{0}\right):$

$$
\frac{\partial \phi_{z}^{(0)}}{\partial t_{\text {prec }}}+\frac{\partial \phi_{z}^{(-1)}}{\partial t_{r r}}=\Omega_{z}^{(0)}\left(t_{\text {prec }}, t_{r r}\right)
$$

Averaging over $T_{\text {prec }}$:

$$
\frac{d \phi_{z}^{(-1)}}{d t_{\text {rr }}}+\left\langle\frac{\partial \phi_{z}^{(0)}}{\partial t_{\text {prec }}}\right\rangle_{\text {prec }}=\left\langle\Omega_{z}^{(0)}\right\rangle_{\text {prec }}
$$

Solution for ϕ_{z}

Common in multiple scale analysis: freedom to choose $\phi_{z}^{(0)}\left(t_{r r}, t_{\text {prec }}\right)$.

Solution for ϕ_{z}

Common in multiple scale analysis: freedom to choose $\phi_{z}^{(0)}\left(t_{r r}, t_{\text {prec }}\right)$.

To cancel secular terms, set $\left\langle\frac{\partial \phi_{z}^{(0)}}{\partial t_{\text {prec }}}\right\rangle_{\text {prec }}=0$.

Solution for ϕ_{z}

Common in multiple scale analysis: freedom to choose $\phi_{z}^{(0)}\left(t_{r r}, t_{\text {prec }}\right)$.

To cancel secular terms, set $\left\langle\frac{\partial \phi_{z}^{(0)}}{\partial t_{\text {prec }}}\right\rangle_{\text {prec }}=0$.

$$
\frac{d \phi_{z}^{(-1)}}{d t_{r r}}=\left\langle\Omega_{z}^{(0)}\right\rangle_{\text {prec }}\left(t_{r r}\right)
$$

Regular post-Newtonian integration.

Solution for ϕ_{z}

$$
\frac{\partial \phi_{z}^{(0)}}{\partial t_{\text {prec }}}=\Omega_{z}^{(0)}\left(t_{\text {prec }}, t_{\text {rr }}\right)-\left\langle\Omega_{z}^{(0)}\right\rangle_{\text {prec }} .
$$

SOLUTION FOR ϕ_{z}

$$
\frac{\partial \phi_{z}^{(0)}}{\partial t_{\text {prec }}}=\Omega_{z}^{(0)}\left(t_{\text {prec }}, t_{\text {rr }}\right)-\left\langle\Omega_{z}^{(0)}\right\rangle_{\text {prec }} .
$$

We can use the previous solution, provided we subtract the precession average.

Analytic solution

This represents an approximate fully analytic solution to the equations of precession.

Analytic solution

This represents an approximate fully analytic solution to the equations of precession.

- Orbit-averaged equations.

AnALYTIC SOLUTION

This represents an approximate fully analytic solution to the equations of precession.

- Orbit-averaged equations.
- Leading order spin-orbit and spin-spin.

AnALYTIC SOLUTION

This represents an approximate fully analytic solution to the equations of precession.

- Orbit-averaged equations.
- Leading order spin-orbit and spin-spin.
- Radiation reaction present.

WAVEFORM

To have an efficient waveform, we need it in the Fourier domain.

WAVEFORM

To have an efficient waveform, we need it in the Fourier domain.

To achieve that, important to separate different timescales.

WAVEFORM

To have an efficient waveform, we need it in the Fourier domain.

To achieve that, important to separate different timescales.

The signal observed by a detector can be expressed by

$$
h(t)=\operatorname{Re}\left[\left(F_{+}+i F_{\times}\right)\left(h_{+}-i h_{\times}\right)\right]
$$

WAVEFORM

To be able to separate timescales, choose antenna pattern functions $F_{+, \times}$ aligned with J.

WAVEFORM

To be able to separate timescales, choose antenna pattern functions $F_{+, \times}$ aligned with J.

Waveform decomposed in spin-weighted spherical harmonic basis

$$
h_{+}-i h_{\times}=\sum_{l \geq 2} \sum_{m=-1}^{l} H^{l m}\left(\iota, \theta_{s}, \phi_{s}\right) e^{-i m \phi_{\text {orb }}} .
$$

WAVEFORM

To be able to separate timescales, choose antenna pattern functions $F_{+, \times}$ aligned with J.

Waveform decomposed in spin-weighted spherical harmonic basis

$$
h_{+}-i h_{\times}=\sum_{l \geq 2} \sum_{m=-1}^{l} H^{l m}\left(\iota, \theta_{s}, \phi_{s}\right) e^{-i m \phi_{\text {orb }}} .
$$

Solution for $\phi_{\text {orb }}$ similar to solution for L.

WAVEFORM

$$
H^{\prime m}=h^{\prime m}(\iota) \sum_{m^{\prime}=-1}^{\prime} D_{m^{\prime}, m}^{\prime}\left(\theta_{L}, \phi_{z}, \zeta\right)_{-2} Y_{l m^{\prime}}\left(\theta_{s}, \phi_{s}\right),
$$

with $\dot{\zeta}=\cos \theta_{L} \dot{\phi}_{z}$.

WAVEFORM

$$
H^{\prime m}=h^{\prime m}(\iota) \sum_{m^{\prime}=-1}^{\prime} D_{m^{\prime}, m}^{\prime}\left(\theta_{L}, \phi_{Z}, \zeta\right)_{-2} Y_{l m^{\prime}}\left(\theta_{s}, \phi_{s}\right),
$$

with $\dot{\zeta}=\cos \theta_{L} \dot{\phi}_{z}$.

Solution for ζ similar to solution for ϕ_{z}.

WAVEFORM

To compute the Fourier transform, use SUA:

$$
\begin{aligned}
\tilde{h}(f) & =\sqrt{2 \pi} \sum_{m \geq 1} T_{m} e^{2 \pi i f t_{m}-m \Phi-\pi / 4} \\
& \times \sum_{l \geq 2} \sum_{k=-k_{\max }}^{k_{\max }} \frac{a_{k, k_{\max }}}{2-\delta_{k, 0}} \mathcal{H}_{l m}\left(t_{m}+k T_{m}\right)
\end{aligned}
$$

Comparisons: Neutron star-neutron star

Comparisons: neutron star-black hole

Comparisons: black hole-black hole

LAST PROBLEM: ϕ_{z} AND ζ

Equation of motion for ϕ_{z} :

$$
\dot{\phi}_{z}=a+\frac{c_{0}+c_{2} S^{2}+c_{4} S^{4}}{d_{0}+d_{2} S^{2}+d_{4} S^{4}} .
$$

LAST PROBLEM: ϕ_{z} AND ζ

Equation of motion for ϕ_{z} :

$$
\dot{\phi}_{z}=a+\frac{c_{0}+c_{2} S^{2}+c_{4} S^{4}}{d_{0}+d_{2} S^{2}+d_{4} S^{4}}
$$

When a root of the denominator polynomial is small, we run into problems.

Solution still to be found.

Conclusion

- With the imminent detection of gravitational waves, important to have fast and accurate waveforms for detection and parameter estimation.

Conclusion

- With the imminent detection of gravitational waves, important to have fast and accurate waveforms for detection and parameter estimation.
- Accurate, fully analytic Fourier-domain waveform almost complete.

Conclusion

- With the imminent detection of gravitational waves, important to have fast and accurate waveforms for detection and parameter estimation.
- Accurate, fully analytic Fourier-domain waveform almost complete.
- More accurate precession: next-to-leading order spin-spin terms? Conserved quantity ξ still present?

Thank you!

