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Some reasons why neutrinos are special:

1 They are lighter than any other massive particle we know of

2 They retain their quantum nature over long distances

3 They are notoriously anti-social

4 (We believe) they reach higher energies than anything else

Let’s talk energy scales...
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5 Unlike gamma rays and cosmic rays, neutrinos have flavor

Mauricio Bustamante (CCAPP OSU) New physics with astro ν ’s 4



solar

atmospheric

supernova
acceleratorreactor

extragalactic

E
10
6

[eV]
10
9

10
12

10
15

10
21

10
18

2013+

Mauricio Bustamante (CCAPP OSU) New physics with astro ν ’s 4



solar

atmospheric

supernova
acceleratorreactor

extragalactic

E
10
6

[eV]
10
9

10
12

10
15

10
21

10
18

2013+

Next ν-Nobel for high-energy ν’s?
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High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

IceCube has seen 54 events with 30 TeV – 2 PeV in 4 years

“Bert”, 1.04 PeV “Ernie”, 1.14 PeV “Big Bird”, 2 PeV

. . . and 51 more events > 30 TeV
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High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

IceCube has seen 54 events with 30 TeV – 2 PeV in 4 years

Diffuse per-flavor astrophysical flux [ICECUBE 2015]:

Φν =
(

6.7+1.1
−1.2 · 10−18

)( E
100 TeV

)−(2.5±0.09)

GeV−1 cm−2 s−1 sr−1

ICECUBE, PRL 111, 021103 (2013)
ICECUBE, Science 342, 1242856 (2013)
ICECUBE, PRL 113, 101101 (2014)
J ICECUBE, ApJ 809, 98 (2015)
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Diffuse flux compatible with extragalactic origin [WAXMAN & BAHCALL 1997]:

E2Φν = (0.95± 0.3)× 10−8 GeV cm−2 s−1 sr−1 (per flavor)

ICECUBE, PRL 111, 021103 (2013)
ICECUBE, Science 342, 1242856 (2013)
ICECUBE, PRL 113, 101101 (2014)
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High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

IceCube has seen 54 events with 30 TeV – 2 PeV in 4 years

Arrival directions compatible with an isotropic distribution –

– no association with sources found yet

+: shower
×: muon track

ICECUBE, PRL 111, 021103 (2013)
ICECUBE, Science 342, 1242856 (2013)
ICECUBE, PRL 113, 101101 (2014)

J O. BOTNER, IPA 2015

Mauricio Bustamante (CCAPP OSU) New physics with astro ν ’s 5



Why look for new physics in HE astro. ν’s?

1 They are the most energetic ones observed
I 10s TeV to few PeV (vs. . 350 GeV man-made)
I Probe new physics at scales that cannot be produced at Earth
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Why look for new physics in HE astro. ν’s?

2 The have the longest baselines observed
I Isotropic arrivals support extragalactic origin: 10 Mpc to few Gpc

(vs. few 1000 km man-made and ∼ 50 kpc Galactic SN)
I Tiny new physics effects can accumulate and become observable

+: shower
×: muon track

J O. BOTNER, IPA 2015
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What we know / don’t know

What we know
I compatible with isotropy

I power-law ∝ E−2.5

I not coincident with transient
sources (e.g., GRBs)

I not correlated with known
sources

I flavor composition:
compatible with equal
proportion of νe, νµ, ντ

I also: no prompt atmospheric
neutrinos

What we don’t know
I what are the sources?

I what is the production
mechanism?

I is there a cut-off at 2 PeV?

I what is the Galactic
contribution, if any?

I what is the precise relation to
UHE cosmic rays?

I what is the precise flavor
composition of the flux?

I is there new physics?

. . . but we have good ideas on all
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Why did we expect high-energy neutrinos?

Because we see loads of ultra-high-energy cosmic rays —

Primary Energy, E [GeV]
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Cosmic-ray accelerators should also produce neutrinos I

GAISSER, STANEV, TILAV,
Front. Phys. China 8, 748 (2013)
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HE particles from astrophysical sources

Relativistically-expanding blobs of plasma containing e’s, p’s, and γ’s
collide with each other, merge, and emit HE particles (e.g., in a GRB)

the shells merge and particles are emitted

two shells collide

plasma shells propagate at different speeds

central
emitter

1

2

3

Mauricio Bustamante (CCAPP OSU) New physics with astro ν ’s 10



Joint production of UHECRs, ν’s, and γ’s

p γ → ∆+ (1232)→
{

nπ+ , BR = 1/3
pπ0 , BR = 2/3

π+ → µ+νµ → ν̄µe+νeνµ

π0 → γγ

n (escapes)→ pe−ν̄e CR

γ

ν

neutrino energy ' proton energy / 20 ' photon energy / 2

[ Actually, it is more complicated . . .
This neutron model of CR emission is now strongly disfavored
[AHLERS et al., Astropart. Phys. 35, 87 (2011)] [ICECUBE COLL., Nature 484, 351 (2012)]

But we can do better by letting the p’s escape without interacting
[BAERWALD, MB, WINTER, ApJ 768, 186 (2013)] [BAERWALD, MB, WINTER, Astropart. Phys. 62, 66 (2015)]
[MB, BAERWALD, MURASE, WINTER, Nat. Commun. 6, 6783 (2015)] ]

power law ∼ E−αp broken power law
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Where to look for new physics

I New physics in the neutrino sector could affect the
I production; and/or
I propagation; and/or
I detection

I Look for modifications in . . .
I The shape of the neutrino spectrum

(e.g., via secret neutrino interactions)
I The flavor composition of the spectrum

(e.g., via neutrino decay, Lorentz invariance violation, . . . )

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)]
[BEACOM, BELL, HOOPER, PAKVASA, WEILER, PRL 90, 181301 (2003)]
[MALTONI, WINTER, JHEP 07, 064 (2008)]
[BAERWALD, MB, WINTER, JCAP 1210, 020 (2012)]
[PAGLIAROLI, PALLADINO, VISSANI, VILLANTE 1506.02624]
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New physics: effect on the spectral shape

Secret neutrino interactions between
astrophysical neutrinos and the
cosmic neutrino background

Cross section:
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g4

4π
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[NG & BEACOM, PRD 6, 065035 (2014)]
[CHERRY, FRIEDLAND, SHOEMAKER, 1411.1071]
[BLUM, HOOK, MURASE, 1408.3799]

L ∼ gφνν̄
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New physics: effect on the flavor composition
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Flavor mixing in high-energy astrophysical neutrinos
Probability of να → νβ transition:

Pαβ = δαβ−4
∑
k>j

Re
(

Uαj U∗
αk Uβj U∗

βk

)
sin2

(
∆m2

kj L

4E

)
+2
∑
k>j

Im
(

Uαj U∗
αk Uβj U∗

βk

)
sin

(
∆m2

kj L

2E

)

For
{

Eν ∼ 1 PeV
∆m2

kj ∼ 10−4 eV2 ⇒ Losc ∼ 10−10 Mpc︸ ︷︷ ︸
high-energy osc. length

� L = 10 Mpc− few Gpc︸ ︷︷ ︸
typical astrophysical baseline

I Therefore, oscillations are very rapid
I They average out after only a few oscillations lengths:

sin2 (. . .)→ 1/2 , sin (. . .)→ 0

Hence, for high-energy astrophysical neutrinos:

〈Pαβ〉 =
3∑

i=1

|Uαi |2|Uβi |2 J incoherent mixture of mass eigenstates
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Flavor content of the mass eigenstates (I)

I νi (i = 1,2,3) contains a fraction of flavor α = e, µ, τ given by

|Uαi |2 = |Uαi (θ12, θ23, θ13, δCP)|2

I From global fits [GONZÁLEZ-GARCÍA et al. 2014]:
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θ ij [°]
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NH
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IH
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θ23

θ13

〈

〈
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2015

Using the best-fit values:

ν1 : 70% νe,10− 20% νµ,10− 20% ντ

ν2 : ∼ equal proportion of each
ν3 : 3%νe,40− 60%νµ,40− 60%ντ
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“Flavor triangle” or Dalitz/Mandelstam plot

Assumes underlying unitarity: sum of projections on each axis is 1

How to read it: follow the tilt of the tick marks, e.g.,
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Flavor content of the mass eigenstates (II)

Flavor content for every allowed combination of mixing parameters:

MB, BEACOM, WINTER, PRL 115, 161302 (2015)
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Flavor ratios — at the sources and Earth

I Neutrino production at the astrophysical source via pion decay:

pγ → ∆+(1232)→ π+n π+ → µ+νµ → e+νeν̄µνµ

I Flavor ratios at the source: (fe : fµ : fτ )S ≈ (1/3 : 2/3 : 0)

I At Earth, due to flavor mixing:

fα,⊕ =
∑
β

〈Pβα〉fβ,S =
∑
β

(
3∑

i=1

|Uαi |2|Uβi |2
)

fβ,S

(1/3 : 2/3 : 0)S
best-fit mixing params. NH−−−−−−−−−−−−−−−→ (0.36 : 0.32 : 0.32)⊕

I Other compositions at the source:

(0 : 1 : 0)S −→ (0.26 : 0.36 : 0.38)⊕ (“muon damped”)
(1 : 0 : 0)S −→ (0.55 : 0.26 : 0.19)⊕ (“neutron decay”)

(1/2 : 1/2 : 0)S −→ (0.40 : 0.31 : 0.29)⊕ (“charmed decays”)
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Detecting the neutrinos: IceCube

IceCube: km3 in-ice South Pole
C̆erenkov detector

I νN interactions (N = n,p)
create particle showers

I 86 strings with 5160 digital
optical modules (DOMs)

I depths between 1450 m and
2450 m
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How does IceCube see flavor?

Below Eν ∼ 5 PeV, there are two event topologies:
I Showers: generated by CC νe or ντ ; or by NC νx

I Muon tracks: generated by CC νµ

(Some muon tracks can be mis-reconstructed as showers)

At & 5 PeV (no events so far), all of the above, plus:
I Glashow resonance: CC ν̄ee→W− interactions at 6.3 PeV
I Double bangs: CC ντ → τ → ντ

Flavor ratios must be inferred from the number of showers and tracks
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IceCube analysis of flavor composition

Using contained events + throughgoing muons:

I Best fit: (fe : fµ : fτ )⊕ = (0.49 : 0.51 : 0)⊕
I Compatible with standard source compositions
I Bounds are weak – need more data and better flavor-tagging

[ICECUBE COLL., ApJ 809, 98 (2015)]
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Flavor combinations at Earth from std. mixing

But first: what flavor region is accessible with standard mixing?

[MB, BEACOM, WINTER,
PRL 115, 161302 (2015)]

Std. mixing can access only ∼ 10% of the possible combinations

theory: maximal µ-τ mixing

experiment: e-τ degeneracy

Mauricio Bustamante (CCAPP OSU) New physics with astro ν ’s 25



Flavor combinations at Earth from std. mixing

But first: what flavor region is accessible with standard mixing?

[MB, BEACOM, WINTER,
PRL 115, 161302 (2015)]

Std. mixing can access only ∼ 10% of the possible combinations

theory: maximal µ-τ mixing

experiment: e-τ degeneracy

Mauricio Bustamante (CCAPP OSU) New physics with astro ν ’s 25
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Side note: improving the flavor measurements

Late-time light (“echoes”) from muon decays and neutron captures can
separate νe-initiated showers from ντ -initiated showers —
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Standard Model decay modes

SM decay modes are negligible:

I One-photon decay (νi → νj + γ):

τ ' 1036 (mi/eV)−5 yr

I Two-photon decay (νi → νj + γ + γ):

τ ' 1057 (mi/eV)−9 yr

I Three-neutrino decay (νi → νj + νk + ν̄k ):

τ ' 1055 (mi/eV)−5 yr

All lifetimes� age of Universe
– therefore, it is hopeless to look for effects of SM decay channels

Mauricio Bustamante (CCAPP OSU) New physics with astro ν ’s 27



New neutrino decay modes

I Models beyond the SM may introduce new decay modes:

νi → νj + φ

I φ: Nambu-Goldstone boson of a broken symmetry

I e.g., Majoron in lepton number violation via neutrino mass
[CHIKASHIGE et al. 1980, GELMINI et al. 1982]

I Bounds from 0νββ decay and supernovae [TOMAS et al. 2001], and
precision CMB measurements [HANNESTAD & RAFFELT 2005]

I We work in a model-independent way
– nature of φ unimportant as long as invisible to neutrino detectors

Mauricio Bustamante (CCAPP OSU) New physics with astro ν ’s 28



Decay fundamentals

I A neutrino source emits known numbers of ν1, ν2, ν3

I En route, they decay via

ν2, ν3 → ν1︸ ︷︷ ︸
normal mass hierarchy (NH)

or ν1, ν2 → ν3︸ ︷︷ ︸
inverted mass hierarchy (IH)

I At time t (= baseline L), the fraction of surviving unstable νi ’s is

Ni (L)

Ni,emit
= exp

[
−
(

mi

τi

)(
L

Eν

)]
≡ exp

[
− L

Ldec

]
mi , τi are the mass and (rest-frame) lifetime of νi

I Neutrinos with known L and Eν are sensitive to “lifetimes” of

κ−1
[ s

eV

]
≡ τ [s]

m [eV]
. 102 L [Mpc]

Eν [TeV]

N For very long L,
this will have redshift corrections
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Current lifetime limits
I ν1: & 4 · 10−3 s eV−1 (solar, BERRYMAN et al. 2014)
I ν2: & 7 · 10−3 s eV−1 (solar, BERRYMAN et al. 2014)
I ν3: & 7 · 10−11 s eV−1 (atmospheric, GONZÁLEZ-GARCÍA & MALTONI 2008)
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Decay affects the flavor ratios

fα,⊕
(

E0, z, κ−1
i

)
=

∑
β=e,µ,τ

(
3∑

i=1

|Uαi |2
∣∣Uβi

∣∣2 D
(

E0, z, κ−1
i

))
fβ,S

(Note — NH: κ−1
1 →∞ ; IH: κ−1

3 →∞)
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H

BAERWALD, MB, WINTER, JCAP 1210, 020 (2012)
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Seeing decay in the flavor fluxes

I Diffuse ν + ν̄ flux from population of generic
sources, normalized to IceCube flux

I Assuming
(
fe,S : fµ,S : fτ,S

)
=

(
1
3

:
1
3

:
1
3

)
I Fixed lifetime of 10 s eV−1

I Decay NH: ν2, ν3 → ν1

I νµ, ντ depleted
I νe doubled (2× e flavor in ν1 than in ν2)

I Decay IH: ν1, ν2 → ν3

I νµ, ντ enhanced slightly
I νe greatly depleted (little e flavor in ν3)
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[MB, BEACOM, MURASE, IN PREP.]

low-E : complete decay H high-E : no decay H
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Is complete decay allowed by IceCube?

Overlay the IceCube flavor-ratio contours on the flavor-content regions:

Complete decay IH I

J Complete decay NH

Disfavored at ≥ 2σ

Let us calculate the lifetime bounds in the NH case I
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NH: lifetime limits with current IceCube data (I)

Find the value of D so that decay is complete, i.e., fα,⊕ = |Uα1|2, for
I Any value of mixing parameters; and
I Any flavor ratios at the sources

[MB, BEACOM, MURASE, IN PREP.]

Assume equal lifetimes of ν2, ν3
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NH: lifetime limits with current IceCube data (I)

Find the value of D so that decay is complete, i.e., fα,⊕ = |Uα1|2, for
I Any value of mixing parameters; and
I Any flavor ratios at the sources

[MB, BEACOM, MURASE, IN PREP.]

Assume equal lifetimes of ν2, ν3

J fα,⊕ = |Uα1|2 when D . 0.01
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NH: lifetime limits with current IceCube data (II)

D . 0.01 implies a bound of κ−1
2,3 & 10 s eV−1 at & 2σ
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[MB, BEACOM, MURASE, IN PREP.]
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What will higher-energy events do for us?

Above 5 PeV, IceCube might see flavor-specific signatures:
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What will higher-energy events do for us?

Above 5 PeV, IceCube might see flavor-specific signatures:

If Glashow resonance events are seen
⇒ small fe,⊕ are discarded
⇒ discards complete decay IH
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What will higher-energy events do for us?

Above 5 PeV, IceCube might see flavor-specific signatures:

If Glashow resonance events are seen
⇒ small fe,⊕ are discarded
⇒ discards complete decay IH

If double bangs are seen
⇒ small fτ,⊕ are discarded
⇒ constrains complete decay NH
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Decay: complete vs. incomplete

I Complete decay: only ν1 (ν3) reach Earth assuming NH (IH)

I Incomplete decay: incoherent mixture of ν1, ν2, ν3 reaches Earth

α( )+β( )+γ( )

or
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Region of flavor ratios accessible with decay

Region of all linear combinations of ν1, ν2, ν3:

What kind of NP lives outside?
Let us see a few examples

Decay can access only ∼ 25% of the possible combinations

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]
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New physics — of the truly exotic kind

What kind of NP lives outside the blue region?

I NP that changes the values of the mixing parameters, e.g.,
I violation of Lorentz and CPT invariance

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)] [MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]

I violation of equivalence principle
[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

I coupling to a torsion field
[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

I renormalization-group running of mixing parameters
[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

I active-sterile mixing [AEIKENS et al., 1410.0408]

I flavor-violating physics
I ν–ν̄ mixing (if ν, ν̄ flavor ratios are considered separately)
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New physics — active-sterile mixing
Mixing with a sterile neutrino (3+1) changes the flavor ratios:

I standard parameters: θ12, θ23, θ13, δ13
I sterile parameters: θ14, θ24, θ34, δ24, δ34

Bounds from
T2K, SK,
Daya Bay

[MB, COLOMA]

Bounds are too
strong for large
deviations
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SUSY renormalization group running
I The MSSM introduces loop corrections in the ν interaction vertices
I Renormalization scale µ = Q =

√
−q2 (transferred momentum)

I Two energy scales:
I At production: Q = mπ

I At detection (via ν-nucleon): Q ∝
√

Eν
I RG running between the scales changes the mixing probability:

〈Pαβ〉 =
3∑

i=1

|(UPMNS)αi |
2
∣∣∣(U ′ (Q))βi

∣∣∣2
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[MB, GAGO, JONES, JHEP 05, 133 (2011) [1012.2728]]
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New physics — high-energy effects (I)

Add a new-physics term to the standard oscillation Hamiltonian:

Htot = Hstd + HNP

Hstd =
1

2E
U†PMNS diag

(
0,∆m2

21,∆m2
31

)
UPMNS

HNP =
∑

n

(
E
Λn

)n

U†n diag
(
On,1,On,2,On,3

)
Un

n = 0
I coupling to a torsion field
I CPT-odd Lorentz violation

O0 . 10−23 GeV

n = 1
I equivalence principle violation
I CPT-even Lorentz violation

O1/Λ1 . 10−27 GeV

[ARGÜELLES, KATORI, SALVADÓ, PRL 115, 161303 (2015)]
[MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]
[ICECUBE COLL., PRD 82, 112003 (2010)]
[SUPER-K COLL., PRD 91, 052003 (2015)]

Experimental upper bounds from atmospheric ν’s:
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New physics — high-energy effects (II)

Truly exotic new physics is indeed able to populate the white region:
I use current bounds on On,i
I sample the unknown NP mixing angles

n = 0
(similar for n = 1)

[ARGÜELLES, KATORI, SALVADÓ
PRL 115, 161303 (2015)]
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Conclusions

I Neutrinos continue to be powerful probes of new physics

I High-energy astrophysical neutrinos probe a new regime with . . .

I The highest energies observed
I The longest baselines observed

I New physics via changes in spectral shape and flavor composition

I Current data already improves lifetime bounds

I Promise of higher sensitivity as more data is gathered

IceCube is not only an astrophysics instrument,
but also an instrument for fundamental particle physics
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Backup slides
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Astrophysical fluxes

IceCube events are fit by a power law ∼ E−γ :
I Using contained events + through-going muons: γ = 2.5± 0.09
I Using through-going muons only: γ = 2.2± 0.2
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Selected source compositions

We can look at results for particular choices of ratios at the source:

challenging to tell them apart

(1:0:0) disfavored at 2σ

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]
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Perfect knowledge of mixing angles

In a few years, we might know all the mixing parameters except δCP:

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]
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Energy dependence of the composition at the source

Different ν production channels are accessible at different energies
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Log10(Eν /GeV)

f α
, ⊕

e

μ

τTP13

I TP13: pγ model, target photons from co-accelerated electrons
[HÜMMER et al., Astropart. Phys. 34, 205 (2010)]

I Equivalent to different sources types contributing to the diffuse flux
I Will be difficult to resolve

[KASHTI, WAXMAN, PRL 95, 181101 (2005)] [LIPARI, LUSIGNOLI, MELONI, PRD 75, 123005 (2007)]

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]
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Flavor combinations from std. flavor mixing: NH vs. IH

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]
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Selected source compositions: NH vs. IH

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]
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Perfect knowledge of mixing angles: NH vs. IH

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]
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New physics: NH vs. IH

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]
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Decay: seeing the energy dependence?

I The effect of decay shows up at low energies
I e.g., for a model of AGN cores [HÜMMER et al., Astropart. Phys. 34, 205 (2010)],
I Would require high statistics + exquisite energy resolution

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]
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Decay in the IH

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]
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The need for km-scale neutrino telescopes
Expected ν flux from cosmological accelerators (Waxman & Bahcall 1997–1998):

E2Φν ∼ 10−8 fπ
0.2

 ε̇
[1010,1012]
CR

1044 erg Mpc−3 yr−1

 GeV cm−2 s−1 sr−1

Integrated flux above 1 PeV:

Φν (> 1 PeV) ∼
∫ ∞

1 PeV

10−8

E2 dE ∼ 10−20 cm−2 s−1 sr−1

Number of events from half of the sky (2π):

Nν ' 2π · Φν (> 1 PeV) · 1 yr · Aeff ≈
(
2.4× 10−10 cm−2)Aeff ,

where Aeff is the effective area of the detector
To detect Nν > 1 events per year, we need an area of

Aeff & 0.4 km2

Therefore, we need km-scale detectors, like IceCube
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One-photon radiative decay

I Tree-level suppressed by GIM mechanism (i.e., it has FCNCs)
I One-loop diagrams:

I For νi 6= νj , the decay rate is

Γ =
α

2

(
3GF

32π2

)2
(

m2
i −m2

j

mi

)2 (
m2

i + m2
j

) ∣∣∣∣∣∣
∑

l=e,µ,τ

UliU∗lj

(
ml

mW

)2
∣∣∣∣∣∣

I Taking Uτ i ∼ O (1) and mi = 1 eV � mj yields a lifetime of

τ ∼ 1036 yr� 13.8 · 109 yr (age of the Universe)

dominated by l = τ (mτ � mµ � me)
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Neutrino decay: caveats and improvements

I Current IceCube flavor-ratio contours use all recorded data from
astrophysical searches:

I 1 TeV and above
I all arrival directions

I A more robust lifetime bound should use a curated data set:
1 Only events with arrival directions off the Galactic Plane
2 Only events > 100 TeV, to avoid atmospheric contamination

I This would result in a truly extragalactic sample of neutrinos
— where decay can act on cosmological scales
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Cosmological effects on decay

There are two cosmological effects:

1 Distance as a function of redshift z: L = L (z)

2 Adiabatic cosmological expansion:

energy at production (E) = (1 + z) · energy at detection (E0)

Fraction of remaining νi at Earth:

D
(

E0, z, κ−1
i

)
=
(
a + be−cz)−κi LH

E0

a ≈ 1.71, b = 1− a, c ≈ 1.27
for ΛCDM with (Ωm,ΩΛ) = (0.27, 0.73)

〈Pαβ〉 → D
(

E0, z, κ−1
i

)
︸ ︷︷ ︸

0<D<1

〈Pαβ〉
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[BAERWALD, MB, WINTER, JCAP 1210, 020 (2012)]
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Current lifetime limits
I ν1: & 4 · 10−3 s eV−1 (solar, BERRYMAN et al. 2014)
I ν2: & 7 · 10−3 s eV−1 (solar, BERRYMAN et al. 2014)
I ν3: & 7 · 10−11 s eV−1 (atmospheric, GONZÁLEZ-GARCÍA & MALTONI 2008)
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