High-energy astrophysical neutrinos: probes of new physics

Mauricio Bustamante

Center for Cosmology and AstroParticle Physics (CCAPP) The Ohio State University

GReCO Seminar

Institute d'Astrophysique de Paris, May 09, 2016

The history of neutrinos is a history of fighting against the odds

The history of neutrinos is a history of fighting against the odds

... and winning

The history of neutrinos is a history of fighting against the odds ...and winning

Some reasons why neutrinos are special:

- 1 They are lighter than any other massive particle we know of
- 2 They retain their quantum nature over long distances
- 3 They are notoriously anti-social
- (We believe) they reach higher energies than anything else

Let's talk energy scales...

5 Unlike gamma rays and cosmic rays, neutrinos have flavor

Next *v*-Nobel for high-energy *v*'s?

The era of neutrino astronomy has begun!

IceCube has seen 54 events with 30 TeV - 2 PeV in 4 years

... and 51 more events > 30 TeV

Mauricio Bustamante (CCAPP OSU)

The era of neutrino astronomy has begun!

IceCube has seen 54 events with 30 TeV – 2 PeV in 4 years

Diffuse per-flavor astrophysical flux [ICECUBE 2015]:

$$\Phi_{\nu} = \left(6.7^{+1.1}_{-1.2} \cdot 10^{-18}\right) \left(\frac{E}{100 \text{ TeV}}\right)^{-(2.5 \pm 0.09)} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

The era of neutrino astronomy has begun!

IceCube has seen 54 events with 30 TeV – 2 PeV in 4 years

Diffuse flux compatible with extragalactic origin [WAXMAN & BAHCALL 1997]:

$$E^2 \Phi_{
u} = (0.95 \pm 0.3) imes 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$
 (per flavor)

The era of neutrino astronomy has begun!

IceCube has seen 54 events with 30 TeV - 2 PeV in 4 years

Arrival directions compatible with an isotropic distribution -

Why look for new physics in HE astro. ν 's?

They are the most energetic ones observed

- 10s TeV to few PeV (vs. \leq 350 GeV man-made)
- Probe new physics at scales that cannot be produced at Earth

[[]ICECUBE COLL., ApJ 809, 98 (2015)]

Why look for new physics in HE astro. ν 's?

2 The have the longest baselines observed

- Isotropic arrivals support extragalactic origin: 10 Mpc to few Gpc (vs. few 1000 km man-made and ~ 50 kpc Galactic SN)
- Tiny new physics effects can accumulate and become observable

What we know / don't know

What we know

- compatible with isotropy
- power-law $\propto E^{-2.5}$
- not coincident with transient sources (*e.g.*, GRBs)
- not correlated with known sources
- flavor composition:
 compatible with equal proportion of ν_e, ν_μ, ν_τ
- also: no prompt atmospheric neutrinos

What we don't know

- what are the sources?
- what is the production mechanism?
- is there a cut-off at 2 PeV?
- what is the Galactic contribution, if any?
- what is the precise relation to UHE cosmic rays?
- what is the precise flavor composition of the flux?
- is there new physics?

... but we have good ideas on all

Why did we expect high-energy neutrinos?

Because we see loads of ultra-high-energy cosmic rays -

Cosmic-ray accelerators should also produce neutrinos >

Mauricio Bustamante (CCAPP OSU)

HE particles from astrophysical sources

Relativistically-expanding blobs of plasma containing *e*'s, *p*'s, and γ 's collide with each other, merge, and emit HE particles (*e.g.*, in a GRB)

Joint production of UHECRs, ν 's, and γ 's

neutrino energy \simeq proton energy / 20 \simeq photon energy / 2

[*Actually*, it is more complicated ... This neutron model of CR emission is now strongly disfavored [AHLERS *et al.*, *Astropart. Phys.* **35**, 87 (2011)] [ICECUBE COLL., *Nature* **484**, 351 (2012)] But we can do better by letting the *p*'s escape without interacting [BAERWALD, MB, WINTER, *ApJ* **768**, 186 (2013)] [BAERWALD, MB, WINTER, *Astropart. Phys.* **62**, 66 (2015)] [MB, BAERWALD, MURASE, WINTER, *Nat. Commun.* **6**, 6783 (2015)]]

Mauricio Bustamante (CCAPP OSU)

Where to look for new physics

New physics in the neutrino sector could affect the

- production; and/or
- propagation; and/or
- detection
- Look for modifications in ...
 - The shape of the neutrino spectrum (e.g., via secret neutrino interactions)
 - The flavor composition of the spectrum (e.g., via neutrino decay, Lorentz invariance violation, ...)

[BARENBOIM, QUIGG, *PRD* **67**, 073024 (2003)] [BEACOM, BELL, HOOPER, PAKVASA, WEILER, *PRL* **90**, 181301 (2003)] [MALTONI, WINTER, *JHEP* **07**, 064 (2008)] [BAERWALD, MB, WINTER, *JCAP* **1210**, 020 (2012)] [PAGLIAROLI, PALLADINO, VISSANI, VILLANTE 1506.02624]

New physics: effect on the spectral shape

Secret neutrino interactions between astrophysical neutrinos and the cosmic neutrino background no-interaction Model A 2 $E^{2}J$ [10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ Model C Model E $\mathcal{L}\sim oldsymbol{g}\phi
uar{
u}$ Cross section: $\sigma = \frac{g^4}{4\pi} \frac{s}{\left(s - M^2\right)^2 + M^2 \Gamma^2}$ 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} E [GeV] Resonance at $E_{\rm res} = \frac{M^2}{2m_{\rm e}}$ [NG & BEACOM, PRD 6, 065035 (2014)] [CHERRY, FRIEDLAND, SHOEMAKER, 1411.1071]

Mauricio Bustamante (CCAPP OSU)

[BLUM, HOOK, MURASE, 1408.3799]

New physics: effect on the flavor composition

Mauricio Bustamante (CCAPP OSU)

Flavor mixing in high-energy astrophysical neutrinos

Probability of $\nu_{\alpha} \rightarrow \nu_{\beta}$ transition:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{k>j} \operatorname{Re}\left(U_{\alpha j}U_{\alpha k}^{*}U_{\beta j}U_{\beta k}^{*}\right) \sin^{2}\left(\frac{\Delta m_{k j}^{2}L}{4E}\right) + 2\sum_{k>j} \operatorname{Im}\left(U_{\alpha j}U_{\alpha k}^{*}U_{\beta j}U_{\beta k}^{*}\right) \sin\left(\frac{\Delta m_{k j}^{2}L}{2E}\right)$$

For
$$\begin{cases} E_{\nu} \sim 1 \text{ PeV} \\ \Delta m_{kj}^2 \sim 10^{-4} \text{ eV}^2 \end{cases} \Rightarrow \underbrace{L_{\text{osc}} \sim 10^{-10} \text{ Mpc}}_{\text{high-energy osc. length}} \ll \underbrace{L = 10 \text{ Mpc} - \text{few Gpc}}_{\text{typical astrophysical baseline}}$$

- Therefore, oscillations are very rapid
- They average out after only a few oscillations lengths:

$$\sin^2(\ldots)
ightarrow 1/2 \;,\;\; \sin{(\ldots)}
ightarrow 0$$

Hence, for high-energy astrophysical neutrinos:

 $\langle P_{\alpha\beta} \rangle = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$ \blacktriangleleft incoherent mixture of mass eigenstates

Flavor content of the mass eigenstates (I)

- ► ν_i (*i* = 1, 2, 3) contains a fraction of flavor $\alpha = e, \mu, \tau$ given by $|U_{\alpha i}|^2 = |U_{\alpha i} (\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP})|^2$
- From global fits [GONZÁLEZ-GARCÍA et al. 2014]:

Using the best-fit values:

$$u_{ extsf{1}}:$$
 70% $u_{e},$ 10 $-$ 20% $u_{\mu},$ 10 $-$ 20% $u_{ au}$

 ν_2 : ~ equal proportion of each

$$u_3$$
 : 3% u_e , 40 $-$ 60% u_μ , 40 $-$ 60% $u_ au$

"Flavor triangle" or Dalitz/Mandelstam plot

Assumes underlying unitarity: sum of projections on each axis is 1 How to read it: follow the tilt of the tick marks, *e.g.*,

Flavor content of the mass eigenstates (II)

Flavor content for every allowed combination of mixing parameters:

MB, BEACOM, WINTER, PRL 115, 161302 (2015)

Flavor ratios — at the sources and Earth

Neutrino production at the astrophysical source via pion decay:

$${m
ho}\gamma o \Delta^+$$
(1232) $o \pi^+ {m n} \qquad \pi^+ o \mu^+
u_\mu o {m e}^+
u_e ar
u_\mu
u_\mu$

Flavor ratios at the source: $(f_e : f_\mu : f_\tau)_S \approx (1/3 : 2/3 : 0)$

At Earth, due to flavor mixing:

$$f_{\alpha,\oplus} = \sum_{\beta} \langle \mathcal{P}_{\beta\alpha} \rangle \frac{f_{\beta,\mathsf{S}}}{f_{\beta,\mathsf{S}}} = \sum_{\beta} \left(\sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2 \right) \frac{f_{\beta,\mathsf{S}}}{f_{\beta,\mathsf{S}}}$$

 $(1/3:2/3:0)_{S} \xrightarrow{\text{best-fit mixing params. NH}} (0.36:0.32:0.32)_{\oplus}$

Other compositions at the source:

 $\begin{array}{rcl} (0:1:0)_{S} & \longrightarrow & (0.26:0.36:0.38)_{\oplus} \mbox{ (``muon damped'')} \\ (1:0:0)_{S} & \longrightarrow & (0.55:0.26:0.19)_{\oplus} \mbox{ (``neutron decay'')} \\ (1/2:1/2:0)_{S} & \longrightarrow & (0.40:0.31:0.29)_{\oplus} \mbox{ (``charmed decays'')} \end{array}$

Detecting the neutrinos: IceCube

IceCube: km³ in-ice South Pole Čerenkov detector

- vN interactions (N = n, p) create particle showers
- 86 strings with 5160 digital optical modules (DOMs)
- depths between 1450 m and 2450 m

Detecting the neutrinos: IceCube

IceCube: km³ in-ice South Pole Čerenkov detector

- vN interactions (N = n, p) create particle showers
- 86 strings with 5160 digital optical modules (DOMs)
- depths between 1450 m and 2450 m

Below $E_{\nu} \sim$ 5 PeV, there are two event topologies:

- Showers: generated by CC ν_e or ν_τ ; or by NC ν_x
- Muon tracks: generated by CC ν_μ

(Some muon tracks can be mis-reconstructed as showers)

At \gtrsim 5 PeV (no events so far), all of the above, plus:

- ▶ Glashow resonance: CC $\bar{\nu}_e e \rightarrow W^-$ interactions at 6.3 PeV
- Double bangs: CC $\nu_{\tau} \rightarrow \tau \rightarrow \nu_{\tau}$

Flavor ratios must be inferred from the number of showers and tracks

Mauricio Bustamante (CCAPP OSU)

IceCube analysis of flavor composition

Using contained events + throughgoing muons:

- Best fit: $(f_e: f_\mu: f_\tau)_{\oplus} = (0.49: 0.51: 0)_{\oplus}$
- Compatible with standard source compositions
- Bounds are weak need more data and better flavor-tagging
Flavor combinations at Earth from std. mixing

But first: what flavor region is accessible with standard mixing?

Std. mixing can access only $\sim 10\%$ of the possible combinations

Flavor combinations at Earth from std. mixing

But first: what flavor region is accessible with standard mixing?

Std. mixing can access only $\sim 10\%$ of the possible combinations

Flavor combinations at Earth from std. mixing

But first: what flavor region is accessible with standard mixing?

Std. mixing can access only $\sim 10\%$ of the possible combinations

Side note: improving the flavor measurements

Late-time light ("echoes") from muon decays and neutron captures can separate ν_{e} -initiated showers from ν_{τ} -initiated showers —

LI, MB, BEACOM, IN PREP.

Standard Model decay modes

SM decay modes are negligible:

• One-photon decay (
$$\nu_i \rightarrow \nu_j + \gamma$$
):

$$au \simeq 10^{36} \left(m_i / \mathrm{eV}
ight)^{-5} ~\mathrm{yr}$$

• Two-photon decay ($\nu_i \rightarrow \nu_j + \gamma + \gamma$):

$$au \simeq 10^{57} \, (m_i/{
m eV})^{-9}$$
 yr

• Three-neutrino decay ($\nu_i \rightarrow \nu_j + \nu_k + \bar{\nu}_k$):

$$au \simeq 10^{55} \left(\textit{m}_{i}/\text{eV}
ight)^{-5}$$
 yr

$\label{eq:alpha} \begin{array}{l} \mbox{All lifetimes} \gg \mbox{age of Universe} \\ - \mbox{therefore, it is hopeless to look for effects of SM decay channels} \end{array}$

Models beyond the SM may introduce new decay modes:

 $\nu_i \rightarrow \nu_j + \phi$

- ϕ : Nambu-Goldstone boson of a broken symmetry
- ► *e.g.*, Majoron in lepton number violation via neutrino mass [CHIKASHIGE *et al.* 1980, GELMINI *et al.* 1982]
- ► Bounds from 0νββ decay and supernovae [Tomas et al. 2001], and precision CMB measurements [Hannestad & RAFFELT 2005]
- We work in a model-independent way
 - nature of ϕ unimportant as long as invisible to neutrino detectors

Decay fundamentals

- A neutrino source emits known numbers of ν₁, ν₂, ν₃
- En route, they decay via

$$\underbrace{\nu_2, \nu_3 \to \nu_1}_{\nu_2, \nu_3 \to \nu_1}$$

normal mass hierarchy (NH)

$$\underbrace{\nu_1,\nu_2\to\nu_3}$$

inverted mass hierarchy (IH)

At time t (= baseline L), the fraction of surviving unstable ν_i 's is

$$\frac{N_{i}\left(L\right)}{N_{i,\text{emit}}} = \exp\left[-\left(\frac{m_{i}}{\tau_{i}}\right)\left(\frac{L}{E_{\nu}}\right)\right] \equiv \exp\left[-\frac{L}{L_{\text{dec}}}\right]$$

or

 m_i , τ_i are the mass and (rest-frame) lifetime of ν_i this will have redshift corrections

• Neutrinos with known L and E_{ν} are sensitive to "lifetimes" of

$$\kappa^{-1} \left[rac{\mathbf{s}}{\mathbf{eV}}
ight] \equiv rac{ au \left[\mathbf{s}
ight]}{m \left[\mathbf{eV}
ight]} \lesssim 10^2 \; rac{L \left[\mathsf{Mpc}
ight]}{E_{
u} \left[\mathsf{TeV}
ight]}$$

- ν_1 : $\gtrsim 4 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- \blacktriangleright ν_3 : \gtrsim 7 \cdot 10⁻¹¹ s eV⁻¹ (atmospheric, González-García & Maltoni 2008)

- ν_1 : $\gtrsim 4 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- $\blacktriangleright \nu_3$: $\gtrsim 7 \cdot 10^{-11} \text{ s eV}^{-1}$ (atmospheric, González-García & Maltoni 2008)

- ▶ ν_1 : $\gtrsim 4 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- $\blacktriangleright \nu_3$: $\gtrsim 7 \cdot 10^{-11} \text{ s eV}^{-1}$ (atmospheric, González-García & Maltoni 2008)

- ν_1 : $\gtrsim 4 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ► ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_3 : $\gtrsim 7 \cdot 10^{-11} \text{ s eV}^{-1}$ (atmospheric, González-García & Maltoni 2008)

Decay affects the flavor ratios

$$f_{\alpha,\oplus}\left(E_{0}, z, \kappa_{i}^{-1}\right) = \sum_{\beta=e,\mu,\tau} \left(\sum_{i=1}^{3} |U_{\alpha i}|^{2} |U_{\beta i}|^{2} D\left(E_{0}, z, \kappa_{i}^{-1}\right)\right) f_{\beta,S}$$

$$(\text{Note} - \text{NH: } \kappa_{1}^{-1} \to \infty; \text{IH: } \kappa_{3}^{-1} \to \infty)$$

Complete decay (D = 0): all unstable neutrinos decay en route

$$f_{lpha,\oplus} = \left\{ egin{array}{c} |U_{lpha1}|^2\,, ext{ for NH} \ |U_{lpha3}|^2\,, ext{ for IH} \end{array}
ight.$$

Flavor ratios equal flavor content of the one stable eigenstate

BAERWALD, MB, WINTER, JCAP 1210, 020 (2012)

Seeing decay in the flavor fluxes

► Diffuse v + v̄ flux from population of generic sources, normalized to IceCube flux

• Assuming
$$(f_{e,S}:f_{\mu,S}:f_{\tau,S}) = \left(\frac{1}{3}:\frac{1}{3}:\frac{1}{3}\right)$$

- Fixed lifetime of 10 s eV⁻¹
- Decay NH: $\nu_2, \nu_3 \rightarrow \nu_1$
 - ν_µ, ν_τ depleted
 - ν_e doubled (2 × *e* flavor in ν_1 than in ν_2)
- Decay IH: $\nu_1, \nu_2 \rightarrow \nu_3$
 - ν_{μ}, ν_{τ} enhanced slightly
 - ν_e greatly depleted (little *e* flavor in ν_3)

[MB, BEACOM, MURASE, IN PREP.]

Is complete decay allowed by IceCube?

Overlay the IceCube flavor-ratio contours on the flavor-content regions:

Is complete decay allowed by IceCube?

Overlay the IceCube flavor-ratio contours on the flavor-content regions:

Is complete decay allowed by IceCube?

Overlay the IceCube flavor-ratio contours on the flavor-content regions:

Let us calculate the lifetime bounds in the NH case >

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Mixing + decay No decay θ_{ii}, δ_{CP} : var. 3σ 0.9 NH 0.2 30 0.8 0.3 0.7 0.4 0.6 0.5 *f*_{τ,⊕}_{0.6} 0.5 f_{μ,⊕} 0.4 0.7 0.3 0.8 0.2 ceCube 2015 0.9 0.1 - 0 02 03 0.5 0.6 0.7 0.8 04 0.9 f_{e.⊕}

Assume equal lifetimes of ν_2 , ν_3

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Mixing + decay No decay D = 0.75 θ_{ii}, δ_{CP} : var. 3σ 0.9 NH 0.2 30 0.8 0.3 0.7 0.4 0.6 0.5 *f*_{τ,⊕}_{0.6} 0.5 f_{μ,⊕} 04 0.7 0.3 0.8 0.2 ceCube 2015 0.9 0.1 - 0 02 03 0.5 0.6 0.7 0.8 04 0.9 f_{e.⊕}

Assume equal lifetimes of ν_2 , ν_3

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Assume equal lifetimes of ν_2 , ν_3

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Assume equal lifetimes of ν_2 , ν_3

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Assume equal lifetimes of ν_2 , ν_3

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

- Any value of mixing parameters; and
- Any flavor ratios at the sources

Assume equal lifetimes of ν_2 , ν_3

$D \lesssim 0.01$ implies a bound of $\kappa_{2.3}^{-1} \gtrsim 10$ s eV⁻¹ at $\gtrsim 2\sigma$

Normal hierarchy (active only; v_1 stable)

What will higher-energy events do for us?

Above 5 PeV, IceCube might see flavor-specific signatures:

What will higher-energy events do for us?

Above 5 PeV, IceCube might see flavor-specific signatures:

What will higher-energy events do for us?

Above 5 PeV, IceCube might see flavor-specific signatures:

Decay: complete vs. incomplete

• Complete decay: only ν_1 (ν_3) reach Earth assuming NH (IH)

▶ Incomplete decay: incoherent mixture of ν_1 , ν_2 , ν_3 reaches Earth

Region of flavor ratios accessible with decay

Region of all linear combinations of ν_1 , ν_2 , ν_3 :

Decay can access only $\sim 25\%$ of the possible combinations

Mauricio Bustamante (CCAPP OSU)

New physics with astro ν 's

Region of flavor ratios accessible with decay

Region of all linear combinations of ν_1 , ν_2 , ν_3 :

Decay can access only $\sim 25\%$ of the possible combinations

Mauricio Bustamante (CCAPP OSU)

New physics with astro ν 's

What kind of NP lives outside the blue region?

- > NP that changes the values of the mixing parameters, e.g.,
 - violation of Lorentz and CPT invariance

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)] [MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]

violation of equivalence principle

[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

coupling to a torsion field

[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

renormalization-group running of mixing parameters

[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

- active-sterile mixing [AEIKENS et al., 1410.0408]
- flavor-violating physics
- ▶ $\nu \overline{\nu}$ mixing (if ν , $\overline{\nu}$ flavor ratios are considered separately)

New physics — of the truly exotic kind

What kind of NP lives outside the blue region?

- > NP that changes the values of the mixing parameters, *e.g.*,
 - violation of Lorentz and CPT invariance

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)] [MB, GAGO, PEÑA-GARAY, JHEP 100

violation of equivalence principle

[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

coupling to a torsion field

[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

renormalization-group running of mixing parameters

[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

- active-sterile mixing [AEIKENS et al., 1410.0408]
- flavor-violating physics
- ▶ $\nu \overline{\nu}$ mixing (if ν , $\overline{\nu}$ flavor ratios are considered separately)

New physics — active-sterile mixing

Mixing with a sterile neutrino (3+1) changes the flavor ratios:

- standard parameters: θ_{12} , θ_{23} , θ_{13} , δ_{13}
- sterile parameters: θ_{14} , θ_{24} , θ_{34} , δ_{24} , δ_{34}

New physics — active-sterile mixing

Mixing with a sterile neutrino (3+1) changes the flavor ratios:

- standard parameters: θ_{12} , θ_{23} , θ_{13} , δ_{13}
- sterile parameters: θ_{14} , θ_{24} , θ_{34} , δ_{24} , δ_{34}

SUSY renormalization group running

- The MSSM introduces loop corrections in the v interaction vertices
- ▶ Renormalization scale $\mu = Q = \sqrt{-q^2}$ (transferred momentum)
- Two energy scales:

[MB, GAGO, JONES, JHEP 05, 133 (2011) [1012.2728]]

- At production: $Q = m_{\pi}$
- At detection (via ν -nucleon): $Q \propto \sqrt{E_{\nu}}$
- RG running between the scales changes the mixing probability:

New physics — high-energy effects (I)

Add a new-physics term to the standard oscillation Hamiltonian:

$$H_{\rm tot} = H_{\rm std} + H_{\rm NP}$$

$$H_{\text{std}} = \frac{1}{2E} U_{\text{PMNS}}^{\dagger} \operatorname{diag} \left(0, \Delta m_{21}^{2}, \Delta m_{31}^{2} \right) U_{\text{PMNS}}$$
$$H_{\text{NP}} = \sum_{n} \left(\frac{E}{\Lambda_{n}} \right)^{n} U_{n}^{\dagger} \operatorname{diag} \left(O_{n,1}, O_{n,2}, O_{n,3} \right) U_{n}$$

n=1

n = 0

- coupling to a torsion field
- CPT-odd Lorentz violation

- equivalence principle violation
- CPT-even Lorentz violation

 $\begin{array}{l} \mbox{Experimental upper bounds from atmospheric ν's:} \\ O_0 \lesssim 10^{-23} \mbox{ GeV} \qquad O_1/\Lambda_1 \lesssim 10^{-27} \mbox{ GeV} \end{array}$

[ARGÜELLES, KATORI, SALVADÓ, *PRL* **115**, 161303 (2015)] [MB, GAGO, PENA-GARAY, *JHEP* **1004**, 005 (2010)] [ICECUBE COLL., *PRD* **82**, 112003 (2010)] [SUPER-K COLL., *PRD* **91**, 052003 (2015)]

New physics — high-energy effects (II)

Truly exotic new physics is indeed able to populate the white region:

use current bounds on O_{n,i}

[ARGÜELLES, KATORI, SALVADÓ PRL 115, 161303 (2015)]

sample the unknown NP mixing angles

- Neutrinos continue to be powerful probes of new physics
- High-energy astrophysical neutrinos probe a new regime with
 - The highest energies observed
 - The longest baselines observed
- New physics via changes in spectral shape and flavor composition
- Current data already improves lifetime bounds
- Promise of higher sensitivity as more data is gathered

IceCube is not only an astrophysics instrument, but also an instrument for fundamental particle physics

Conclusions

Backup slides

Astrophysical fluxes

IceCube events are fit by a power law $\sim E^{-\gamma}$:

- Using contained events + through-going muons: $\gamma = 2.5 \pm 0.09$
- Using through-going muons only: $\gamma = 2.2 \pm 0.2$

Selected source compositions

We can look at results for particular choices of ratios at the source:

Selected source compositions

We can look at results for particular choices of ratios at the source:

Selected source compositions

We can look at results for particular choices of ratios at the source:

Perfect knowledge of mixing angles

In a few years, we might know all the mixing parameters except δ_{CP} :

Energy dependence of the composition at the source

Different ν production channels are accessible at different energies

- TP13: pγ model, target photons from co-accelerated electrons [HÜMMER et al., Astropart. Phys. 34, 205 (2010)]
- Equivalent to different sources types contributing to the diffuse flux
- Will be difficult to resolve

[Kashti, Waxman, *PRL* 95, 181101 (2005)] [Lipari, Lusignoli, Meloni, *PRD* 75, 123005 (2007)]

Flavor combinations from std. flavor mixing: NH vs. IH

Selected source compositions: NH vs. IH

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]

Perfect knowledge of mixing angles: NH vs. IH

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]

Decay: seeing the energy dependence?

- The effect of decay shows up at low energies
- ► e.g., for a model of AGN cores [HUMMER et al., Astropart. Phys. 34, 205 (2010)],
- Would require high statistics + exquisite energy resolution

[MB, BEACOM, WINTER, PRL 115, 1611302 (2015)]

The need for km-scale neutrino telescopes

Expected ν flux from cosmological accelerators (Waxman & Bahcall 1997–1998):

$$E^2 \Phi_{
u} \sim 10^{-8} rac{f_{\pi}}{0.2} \left(rac{\dot{arepsilon}^{[10^{10},10^{12}]}}{10^{44} \ ext{erg Mpc}^{-3} \ ext{yr}^{-1}}
ight) \ ext{GeV cm}^{-2} \ ext{s}^{-1} \ ext{sr}^{-1}$$

Integrated flux above 1 PeV:

$$\Phi_{
u} \left(> 1 \text{ PeV}
ight) \sim \int_{1 \text{ PeV}}^{\infty} rac{10^{-8}}{E^2} \ dE \sim 10^{-20} \ ext{cm}^{-2} \ ext{s}^{-1} \ ext{sr}^{-1}$$

Number of events from half of the sky (2π):

$$\mathit{N}_{\!
u} \simeq 2 \pi \cdot \Phi_{\!
u} \left(> 1 \; \text{PeV}
ight) \cdot 1 \; \text{yr} \cdot \mathit{A}_{ ext{eff}} pprox \left(2.4 imes 10^{-10} \; ext{cm}^{-2}
ight) \mathit{A}_{ ext{eff}} \; ,$$

where A_{eff} is the effective area of the detector To detect $N_{\nu} > 1$ events per year, we need an area of

$$A_{
m eff}\gtrsim 0.4~{
m km}^2$$

Therefore, we need km-scale detectors, like IceCube

Mauricio Bustamante (CCAPP OSU)

One-photon radiative decay

- Tree-level suppressed by GIM mechanism (*i.e.*, it has FCNCs)
- One-loop diagrams:

For $\nu_i \neq \nu_j$, the decay rate is

$$\Gamma = \frac{\alpha}{2} \left(\frac{3G_F}{32\pi^2} \right)^2 \left(\frac{m_i^2 - m_j^2}{m_i} \right)^2 \left(m_i^2 + m_j^2 \right) \left| \sum_{l=e,\mu,\tau} U_{li} U_{lj}^* \left(\frac{m_l}{m_W} \right)^2 \right|$$

▶ Taking $U_{\tau i} \sim \mathcal{O}(1)$ and $m_i = 1 \text{ eV} \gg m_j$ yields a lifetime of

 $\tau \sim 10^{36} \mbox{ yr} \gg 13.8 \cdot 10^9 \mbox{ yr}$ (age of the Universe)

- Current IceCube flavor-ratio contours use all recorded data from astrophysical searches:
 - 1 TeV and above
 - all arrival directions
- A more robust lifetime bound should use a curated data set:
 Only events with arrival directions off the Galactic Plane
 Only events > 100 TeV, to avoid atmospheric contamination
- This would result in a truly extragalactic sample of neutrinos
 where decay can act on cosmological scales

Cosmological effects on decay

There are two cosmological effects:

- **1** Distance as a function of redshift z: L = L(z)
- 2 Adiabatic cosmological expansion:

energy at production $(E) = (1 + z) \cdot \text{energy}$ at detection (E_0)

Fraction of remaining ν_i at Earth:

$$D\left(E_0, z, \kappa_i^{-1}
ight) = \left(a + be^{-cz}
ight)^{-rac{\kappa_i L_H}{E_0}}$$

$$a \approx 1.71, b = 1 - a, c \approx 1.27$$

for ACDM with $(\Omega_m, \Omega_\Lambda) = (0.27, 0.73)$

$$\langle P_{\alpha\beta} \rangle \rightarrow \underbrace{D\left(E_0, z, \kappa_i^{-1}\right)}_{0 < D < 1} \langle P_{\alpha\beta} \rangle$$

[BAERWALD, MB, WINTER, JCAP 1210, 020 (2012)]

- ▶ ν_1 : $\gtrsim 4 \cdot 10^{-3} \text{ s eV}^{-1}$ (solar, Berryman *et al.* 2014)
- ▶ ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_3 : $\gtrsim 7 \cdot 10^{-11}$ s eV⁻¹ (atmospheric, González-García & Maltoni 2008)

- ν_1 : $\gtrsim 4 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_3 : $\gtrsim 7 \cdot 10^{-11} \text{ s eV}^{-1}$ (atmospheric, González-García & Maltoni 2008)

- ▶ ν_1 : $\gtrsim 4 \cdot 10^{-3} \text{ s eV}^{-1}$ (solar, Berryman *et al.* 2014)
- ▶ ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_3 : $\gtrsim 7 \cdot 10^{-11} \text{ s eV}^{-1}$ (atmospheric, González-García & Maltoni 2008)

- ▶ ν_1 : $\gtrsim 4 \cdot 10^{-3} \text{ s eV}^{-1}$ (solar, Berryman *et al.* 2014)
- ▶ ν_2 : $\gtrsim 7 \cdot 10^{-3}$ s eV⁻¹ (solar, Berryman *et al.* 2014)
- ▶ ν_3 : $\gtrsim 7 \cdot 10^{-11} \text{ s eV}^{-1}$ (atmospheric, González-García & Maltoni 2008)

