

GreCo Seminar

Post-Newtonian higher-order spin effects in inspiraling compact binaries

Sylvain Marsat

Work in collaboration with :
Luc Blanchet,Alejandro Bohé,Alessandra Buonnano, Guillaume Faye, Ed Porter

Outline

- Introduction: motivation and spin effects in inspiraling compact binaries
- Post-Newtonian MPN approach: near-zone iteration and wave generation formalism
- Lagrangian formalism for multipolar point particles with spin
- Hereditary effects for precessing orbits
- Results for spin effects in the dynamics and phasing

Introduction

Motivation: PN modeling of spin effects in compact binaries

Part I Astrophysical sources of GW

Coalescence of compact objects binaries (black holes/neutron stars)

Part I Modeling the GW signal of coalescences

- Post-Newtonian theory (PN)

Approximate methods

- Perturbation theory and Self-Force approach
- Numerical Relativity (NR)
- Effective-one-body (EOB)

Advanced LIGO-VIRGO band :

- NS-NS binary:~10000 cycles
- BH-NS binary: ~3000 cycles

> | High order PN contributions |
| :---: |
| needed for accurate data analysis |

- BH-BH binary: ~ 600 cycles

Templates ingredients

- Phasing for circular orbits: $E(\omega), \mathcal{F}(\omega) \longrightarrow$

PN approximant
$\longrightarrow \quad$ GW Phase

- GW polarizations (modes): $h_{+}, h_{\times}\left(h_{l m}\right)$
- Precessional dynamics: $\dot{\boldsymbol{S}}_{1}, \dot{\boldsymbol{S}}_{2}, \dot{\ell}$

Part I

Hybrid waveforms

- PN covers inspiral - Attachment in the late inspiral

Hybrid NR-PN waveform, inspiral-merger-ringdown [Baker\&al 07]

Effective-One-Body waveforms

- PN Hamiltonian mapped on a deformed Kerr Hamiltonian and resummed
- PN waveform factorized
- Calibration on NR
- Ringdown attached as a superposition of QNM

EOBNR-NR comparison [Pan\&al II]

Part I

Effects of the spins: phasing and precession

Effects of the spins

- Affect the phasing (aligned)
- Orbital plane precession (misaligned)

Amplitude modulation for h_{+}, h_{\times}

+ precessional phases

$$
\begin{aligned}
\boldsymbol{J} \simeq \mathrm{cte} & =\boldsymbol{L}_{\boldsymbol{N}}+\boldsymbol{S} / c+\ldots \\
\dot{\boldsymbol{S}}_{A} & =\boldsymbol{\Omega}_{A} \times \boldsymbol{S}_{A}
\end{aligned}
$$

Part II
 Different post-Newtonian methods

- DIRE (Direct Integration of Relaxed Einstein equations): near-zone/far-zone split of retarded integrals [Will,Wiseman, ...]
- Surface-integral approach [Futamase, Itoh, ...]
- Effective field theory [Goldberger, Rothstein, ...]: diagrammatic computation of an effective action
- ADM Hamiltonian formalism [Schäfer, Damour, Jaranowski, ...]: field degrees of freedom integrated out, obtaining a reduced Hamiltonian
- Harmonic coordinates, MPM algorithm + matching [Blanchet, Damour, lyer, ...]

Validation of results by different methods welcome!

Part $1 \quad$ Post-Newtonian results : where do we stand?

$1 \mathrm{PN} \sim G m / r c^{2} \sim v^{2} / c^{2}$

Dynamics

	Leading	Known
NS	N	4 PN (ADM)
SO	1.5 PN	3.5 PN (ADM, H)
SS	2 PN	$3 P N ~(S S)-4 P N ~(S I S 2) ~$ (ADM, EFT, H)
SSS	3.5 PN	3.5 PN (ADM/EFT, H)
SSSS	4 PN	$4 P N$ (ADM/EFT)

ADM: reduced Hamiltonian in ADM approach EFT: effective field theory
H: harmonic coordinates-based method

Energy flux

	Leading	Known
NS	N	$3.5 \mathrm{PN}(\mathrm{H})$
SO	I.5PN	$3.5 \mathrm{PN}+4 \mathrm{PN}(\mathrm{H})$
SS	2 PN	$3 P N(S S, S I S 2)$ (partial EFT, H)
SSS	3.5 PN	$3.5 \mathrm{PN}(\mathrm{H})$

Full waveform

	Leading	Known
NS	N	3 PN (H)
SO	IPN	$2 P N(H)$

The harmonic post-Newtonian approach

Near-zone integration and wave generation formalism: overview

Part II

Einstein equations in harmonic coordinates

$$
G_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

$\Lambda^{\mu \nu}\left(h^{2}, h^{3}, \ldots\right)$ encodes all nonlinearities in h

Retardations expansion and near-zone limitation

- PN retardation expansion of $\square_{\mathcal{R}}^{-1}$

\rightarrow| PN near-zone iteration |
| :---: |
| of field equations |

- Iterative multipolar solution in vacuum $r>r_{\text {source }}$ formalism in vacuum

Modeling spins for compact objects

Compact objects as point particles (Dirac deltas)

$\mathcal{M}(h)$: multipolar expansion
\bar{h} : post-Newtonian (near-zone) expansion

Part II

Link between source and radiative moments

Outline

- MPM solution parametrized by linear solution source/gauge moments $I_{L}, J_{L}, \ldots, Z_{L}$
- Matching: source/gauge moments as spatial integrals $\int \mathrm{d}^{3} x(\ldots)$
- Radiative coordinates and radiatives multipoles
U_{L}, V_{L} describing waveform at infinity
- Finite part regularization: $\int d^{3} x \rightarrow F P_{B=0} \int d^{3} x\left(\frac{|x|}{r_{0}}\right)^{B}$

Result of MPM algorithm

Radiative quadrupole: $U_{i j}(u)=I_{i j}^{(2)}+\frac{1}{c^{5}}\left[I_{a i}^{(5)} I_{j a}+\ldots\right]$ Instantaneous

Part II
 Result of the matching equation and waveform

Results of the matching

[Blanchet 98]

- Source and gauge moments expressed as integrals over the source :

$$
I_{L}=\mathrm{FP} \int d^{3} \mathbf{x} \hat{x}_{L}\left(\sigma-\frac{1}{c^{2}} \Delta\left(V^{2}\right)+\frac{1}{c^{4}}\left(V \sigma_{i i}+V_{i} \partial_{t} \partial_{i} V\right)+\ldots\right)
$$

- The near-zone PN metric from matching (4PN tails) [Blanchet\&Poujade 02]

Waveform and energy flux

Wave (Transverse-Traceless):
[Thorne 80]

$$
h_{i j}^{\mathrm{TT}}=\frac{1}{c^{2} R} \Lambda_{i j}^{\mathrm{TT}}(\boldsymbol{N}) \sum_{\ell \geqslant 2} \frac{1}{c^{\ell}}\left[N U_{L}+\frac{1}{c} N \varepsilon V_{L}\right]
$$

Emitted energy flux:

$$
\mathcal{F}=\sum_{\ell \geqslant 2} \frac{1}{c^{2 \ell+1}}\left[\dot{U}_{L} \dot{U}_{L}+\frac{1}{c^{2}} \dot{V}_{L} \dot{V}_{L}\right]
$$

Part III

PN near-zone metric iteration

Matching for the

 near-zone metric$$
\square h^{\mu \nu}=\tau^{\mu \nu}
$$

$$
\bar{h}^{\mu \nu}=\widetilde{\square_{B}^{-1}} \bar{\tau}^{\mu \nu}+h_{\mathrm{tail}}^{\mu \nu}
$$

- $\square_{B}^{-1} \mathrm{PN}$-expanded inverse d'Alembertian with $F P_{B=0}$ reg.
- $h_{\text {tail }}^{\mu \nu} 4 \mathrm{PN}$ hereditary contribution (tails in RR)

Metric potentials $\quad \sigma \leftrightarrow T^{\mu \nu}$

$$
\begin{aligned}
& g_{00} \rightarrow V / c^{2}, \hat{X} / c^{6}, \hat{T} / c^{8}+\mathcal{O}(10) \\
& g_{0 i} \rightarrow V_{i} / c^{3}, \hat{R}_{i} / c^{5}, \hat{Y}_{i} / c^{7}+\mathcal{O}(9) \\
& g_{i j} \rightarrow \delta_{i j} V / c^{2}, \hat{W}_{i j} / c^{4}, \hat{Z}_{i j} / c^{6}+\mathcal{O}(8)
\end{aligned}
$$

Metric parametrized by potentials

Solution for the potentials

$$
\begin{aligned}
V & =\square_{\mathcal{R}}^{-1}[-4 \pi G \sigma] \\
V_{i} & =\square_{\mathcal{R}}^{-1}\left[-4 \pi G \sigma_{i}\right] \\
\hat{W}_{i j} & =\square_{\mathcal{R}}^{-1}\left[-4 \pi G\left(\sigma_{i j}-\delta_{i j} \sigma_{k k}\right)-\partial_{i} V \partial_{j} V\right] \\
\hat{X} & =\square_{\mathcal{R}}^{-1}\left[-4 \pi G V \sigma_{i i}+\hat{W}_{i j} \partial_{i j} V+\ldots\right]
\end{aligned}
$$

Source equations for potentials compact and non-compact support

- Relies on explicit solutions e.g. $\quad \Delta^{-1}\left(1 / r_{1} r_{2}\right)=\ln \left(r_{1}+r_{2}+r_{12}\right)$
- Regularization \& distributional derivatives
- Potentials in all space or regularized

Representing higher-order spin effects

Lagrangian formalism for spin-induced finite-size effects

Part II
 Point particles with spin: earlier approaches

Papapetrou approach [Papapetrou 5I], generalization [Dixon]

Non-covariant approach : $\mathscr{T}^{\mu \nu} \equiv \sqrt{-g} T^{\mu \nu}$, pole-dipole hypothesis :

$$
\int \mathrm{d}^{3} x \mathscr{T}^{\mu \nu} \neq 0, \int \mathrm{~d}^{3} x \delta x^{\rho} \mathscr{T}^{\mu \nu} \neq 0, \delta x=x-\bar{x}
$$

Composite definitions for spin, linear momentum and mass :

$$
S^{\mu \nu} \equiv \int \mathrm{d}^{3} x 2 \delta x^{[\mu} \mathscr{T}^{\nu] 0}, p^{\mu} \equiv m u^{\mu}-u_{\nu} \frac{\mathrm{D} S^{\mu \nu}}{\mathrm{d} \tau}
$$

Evolution equations :

$$
\frac{\mathrm{D} p^{\mu}}{\mathrm{d} \tau}=-\frac{1}{2} R_{\nu \rho \sigma}^{\mu} u^{\nu} S^{\rho \sigma} \quad \frac{\mathrm{D} S^{\mu \nu}}{\mathrm{d} \tau}=2 p^{[\mu} u^{\nu]}
$$

Gravitational skeleton approach [Mathisson 37], [Tulczyjew 59]

Ansatz on the stress-energy tensor $T^{\mu \nu}=\int \mathrm{d} \tau\left[t^{\mu \nu} \delta+\nabla_{\rho}\left(t^{\mu \nu \rho} \delta\right)+\nabla_{\rho} \nabla_{\sigma}\left(t^{\mu \nu \rho \sigma} \delta\right)+\ldots\right]$
Method : unicity of the canonical decomposition $\quad \sum_{k} \int \mathrm{~d} \tau \nabla_{\alpha_{1} \ldots \alpha_{k}}\left(A^{\alpha_{1} \ldots \alpha_{k} \beta_{1} \ldots \beta_{m}} \delta\right)$
(for the α_{i}, symmetry and orthogonality to u^{μ})
$\nabla_{\nu} T^{\mu \nu}=0$ rewritten in canonical form \longrightarrow equations of evolution

Part II
 Point particles with spin : Lagrangian formalism

Geometric definitions [Hanson\&Regge 74], [Bailey\&lsrael 75], [Porto 05]

$e_{a}{ }^{\mu}:$ field tetrad
ϵ_{A}^{μ} : tetrad attached to the body
$\Lambda_{A}{ }^{a}$: Lorentz matrices, 6 internal degrees of freedom

$$
u^{\mu}=\frac{\mathrm{d} z^{\mu}}{\mathrm{d} \tau} \quad: \text { 4-velocity }
$$

$\Omega^{\mu \nu} \equiv \epsilon^{A \mu} \frac{\mathrm{D} \epsilon_{A}{ }^{\nu}}{\mathrm{d} \tau} \quad:$ rotation coefficients (antisymmetric)

Ansatz for the Lagrangian

$$
S=\int \mathrm{d} \tau L\left[u^{\mu}, \Omega^{\mu \nu}, g_{\mu \nu}, R_{\mu \nu \rho \sigma}, \nabla_{\lambda} R_{\mu \nu \rho \sigma}, \ldots\right]
$$

Finite size effects

Part II

Lagrangian formalism: multipoles and identities

Conjugate Moments

Linear momentum: $p_{\mu} \equiv \frac{\partial L}{\partial u^{\mu}} \quad$ Spin tensor: $S_{\mu \nu} \equiv 2 \frac{\partial L}{\partial \Omega^{\mu \nu}}$
Multipolar Moments
Quadrupolar moment: $\quad J^{\mu \nu \rho \sigma} \equiv-6 \frac{\partial L}{\partial R_{\mu \nu \rho \sigma}}$ Octupolar moment: $\quad J^{\lambda \mu \nu \rho \sigma} \equiv-12 \frac{\partial L}{\partial \nabla_{\lambda} R_{\mu \nu \rho \sigma}}$... and higher orders

Homogeneity condition invariance by reparametrization of the world line

$$
L=p_{\mu} u^{\mu}+\frac{1}{2} S_{\mu \nu} \Omega^{\mu \nu} \quad \text { (regardless of couplings to the Riemann) }
$$

Scalar condition the Lagrangian must be a scalar - eliminates $\partial L / \partial g_{\mu \nu}$

$$
2 \frac{\partial L}{\partial g_{\mu \nu}}=p^{\mu} u^{\nu}+S^{\mu \rho} \Omega_{\rho}^{\nu}+\frac{2}{3} R_{\lambda \rho \sigma}^{\mu} J^{\nu \lambda \rho \sigma}+\frac{1}{3} J^{\lambda \nu \tau \rho \sigma} \nabla_{\lambda} R_{\tau \rho \sigma}^{\mu}+\frac{1}{12} J^{\nu \lambda \tau \rho \sigma} \nabla^{\mu} R_{\lambda \tau \rho \sigma}
$$

Part II
 Lagrangian formalism: equations of motion/precession

Equation of motion

covariantization of the
variation of the worldline: $\quad \delta z^{\rho} \partial_{\rho} L=\delta z^{\rho} \nabla_{\rho} L$

$$
\frac{\mathrm{D} p_{\mu}}{\mathrm{d} \tau}=-\frac{1}{2} R_{\mu \nu \rho \sigma} u^{\nu} S^{\rho \sigma}-\frac{1}{6} J^{\lambda \nu \rho \sigma} \nabla_{\mu} R_{\lambda \nu \rho \sigma}-\frac{1}{12} J^{\tau \lambda \nu \rho \sigma} \nabla_{\mu} \nabla_{\tau} R_{\lambda \nu \rho \sigma}
$$

Immediate generalization to higher orders

Equation of precession variation of rotational

$$
\text { degrees of freedom: } \quad \delta \theta^{a b} \equiv \Lambda^{A a} \delta \Lambda_{A}{ }^{b}
$$

$$
\frac{\mathrm{D} S^{\mu \nu}}{\mathrm{d} \tau}=\Omega^{\mu}{ }_{\rho} S^{\nu \rho}-\Omega^{\nu}{ }_{\rho} S^{\mu \rho}
$$

- Valid at any multipolar order
- Conserved spin norm, independently of the SSC: $s^{2} \equiv S_{\mu \nu} S^{\mu \nu} / 2=$ const

With the scalar condition:

$$
\frac{\mathrm{D} S^{\mu \nu}}{\mathrm{d} \tau}=2 p^{[\mu} u^{\nu]}+\frac{4}{3} R_{\lambda \rho \sigma}^{[\mu} J^{\nu] \lambda \rho \sigma}+\frac{2}{3} \nabla^{\lambda} R_{\tau \rho \sigma}^{[\mu} J_{\lambda}{ }^{\nu] \tau \rho \sigma}+\frac{1}{6} \nabla^{[\mu} R_{\lambda \tau \rho \sigma} J^{\nu] \lambda \tau \rho \sigma}
$$

Part II
 Lagrangian formalism: stress-energy tensor

Variation $\delta g_{\mu \nu}$

Defining the world line density: $w=\int \mathrm{d} \tau \delta^{4}(x-z) / \sqrt{-g}$

Pole-dipole terms:

$$
T_{\text {pole-dipole }}^{\mu \nu}=p^{(\mu} u^{\nu)} w-\nabla_{\rho}\left[S^{\rho(\mu} u^{\nu)} w\right]
$$

Quadrupole terms:

$$
T_{\text {quad }}^{\mu \nu}=\frac{1}{3} R_{\lambda \rho \sigma}^{(\mu} J^{\nu) \lambda \rho \sigma} w-\nabla_{\rho} \nabla_{\sigma}\left[\frac{2}{3} J^{\rho(\mu \nu) \sigma} w\right]
$$

Octupole terms:

$$
T_{\mathrm{oct}}^{\mu \nu}=\left[\frac{1}{6} \nabla^{\lambda} R_{\xi \rho \sigma}^{(\mu} J_{\lambda}^{\nu) \xi \rho \sigma}+\frac{1}{12} \nabla^{(\mu} R_{\xi \tau \rho \sigma} J^{\nu) \xi \tau \rho \sigma}\right] w
$$

No direct
generalization

$$
\begin{aligned}
& +\nabla_{\rho}\left\{\left[-\frac{1}{6} R_{\xi \lambda \sigma}^{(\mu} J^{|\rho| \nu) \xi \lambda \sigma}-\frac{1}{3} R_{\xi \lambda \sigma}^{(\mu} J^{\nu) \rho \xi \lambda \sigma}+\frac{1}{3} R_{\xi \lambda \sigma}^{\rho} J^{(\mu \nu) \xi \lambda \sigma}\right] w\right\} \\
& +\nabla_{\lambda} \nabla_{\rho} \nabla_{\sigma}\left[\frac{1}{3} J^{\sigma \rho(\mu \nu) \lambda} w\right]
\end{aligned}
$$

Part II

Lagrangian formalism: SSC and definition of the mass

Spin supplementary condition

$S^{\mu \nu}$ six degrees of freedom \longrightarrow impose 3 conditions $V_{\mu} S^{\mu \nu}=0$
Covariant SSC: $p_{\mu} S^{\mu \nu}=0$
Impose conservation of the SSC: relation $p^{\mu} \leftrightarrow u^{\mu}$

Definition of the mass

$m^{2}=-p_{\mu} p^{\mu} \quad$ is not conserved at order SS 3PN

Alternative definition (not general at all PN orders):

$$
\tilde{m} \equiv-p_{\mu} u^{\mu}-\frac{1}{6} J^{\lambda \nu \rho \sigma} R_{\lambda \nu \rho \sigma}, \quad \frac{\mathrm{d} \tilde{m}}{\mathrm{~d} \tau}=\mathcal{O}\left(S^{3} / c^{9}\right)
$$

Part II

The spin covector

Using the SSC to define a spin covector :

$$
S_{\mu} \equiv \frac{1}{2} \epsilon_{\mu \nu \rho \sigma} \frac{p^{\nu}}{m} S^{\rho \sigma} \quad S_{\mu} p^{\mu}=0
$$

Defining Euclidean norm spin vector

Defining a tetrad: $\left(e_{0}^{\mu}, e_{I}{ }^{\mu}\right)$ with $e_{0}{ }^{\mu} \equiv u^{\mu}$
Conserved norm vector: $s^{2}=\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right) S_{\mu} S_{\nu}=\delta^{I J} S_{I} S_{J}$

$$
S_{I}=e_{I}^{\mu} S_{\mu}
$$

Fixing the convention for the spatial part of the tetrad:

$$
\left.\gamma_{i j}=g_{i j}+u_{i} u_{j}=\delta^{I J} e_{I i} e_{J j} \longrightarrow \left\lvert\, \begin{array}{c}
e_{I j} \text { chosen as the } \\
\text { unique symmetric } \\
\text { positive-definite } \\
\text { square root of } \gamma_{i j}
\end{array}\right.\right]
$$

Precession equation

$$
\frac{\mathrm{d} \boldsymbol{S}}{\mathrm{~d} t}=\boldsymbol{\Omega} \times \boldsymbol{S}
$$

- Leading SO terms IPN, leading SS terms I.5PN
- Simplify the structure of equations (hereditary integrals)
- Important when applying the balance equation

Part II

Lagrangian formalism: spin-induced moments

Representing spin-induced structure

- Elimination of $R_{\mu \nu}$ in the Lagrangian: $C_{\mu \nu \rho \sigma}$ write all possible couplings with the Weyl tensor
- Write the couplings directly with the spin tensor and using the SSC

Spin-induced moments

- Quadrupole:

$$
J^{\mu \nu \rho \sigma}=-\frac{3 \kappa}{m} u^{[\mu} \Theta^{\nu][\rho} u^{\sigma]} \quad \Theta^{\mu \nu} \equiv S^{\mu \lambda} S_{\lambda}^{\nu}
$$

unique solutions

- Octupole:

$$
\begin{aligned}
J^{\lambda \mu \nu \rho \sigma}=\frac{\lambda}{4 m^{2}} & {\left[\Theta^{\lambda[\mu} u^{\nu]} S^{\rho \sigma}+\Theta^{\lambda[\rho} u^{\sigma]} S^{\mu \nu}\right.} \\
& -\Theta^{\lambda[\mu} S^{\nu][\rho} u^{\sigma]}-\Theta^{\lambda[\rho} S^{\sigma][\mu} u^{\nu]} \\
& \left.-S^{\lambda[\mu} \Theta^{\nu][\rho} u^{\sigma]}-S^{\lambda[\rho} \Theta^{\sigma][\mu} u^{\nu]}\right]
\end{aligned}
$$

Polarizability constants
 κ, λ

to be determined - By matching to a Kerr black hole

- Numerically for neutron stars

Generalization at all orders in spin (leading order in the Weyl tensor) [Levi\&Steinhoff I5]

Computation of the SO tail integrals

Hereditary effects at linear order in spin for a precessional dynamics

Structure of tail contributions

example of the quadrupole

Hereditary integral : requires controlling precessional dynamics in the past

- Restriction to quasi-circular orbits

- Conservative dynamics only, neglecting $\mathcal{O}\left(\ln c / c^{5}\right)$ corrections

Spin-orbit tail contributions to the energy flux

- At 3PN and 4PN, for dimensional reasons only tail contributions
- At linear order in spin, the contribution of the precession of the orbital plane cancels out
- Not true for contributions to the waveform $h_{i j}^{\mathrm{TT}}$

Part IV

Geometry of the problem

- J constant total angular momentum
- Normal to the orbital plane ℓ
- Center-of-mass frame - moving $\operatorname{triad}(\boldsymbol{n}, \boldsymbol{\lambda}, \boldsymbol{\ell})$
- Euler angles α, ι, Φ
- Orbital phase $\phi=\int \mathrm{d} t \omega$

Angular velocities

$$
\begin{aligned}
\dot{\boldsymbol{n}} & =\omega \boldsymbol{\lambda} \\
\dot{\boldsymbol{\lambda}} & =-\omega \boldsymbol{n}+\varpi \boldsymbol{\ell} \\
\dot{\boldsymbol{\ell}} & =-\varpi \boldsymbol{\lambda}
\end{aligned}
$$

Equations of motion

$$
\begin{aligned}
& \boldsymbol{x}=r \boldsymbol{n} \\
& \boldsymbol{v}=\dot{r} \boldsymbol{n}+r \omega \boldsymbol{\lambda} \\
& \boldsymbol{a}=-r \omega^{2} \boldsymbol{n}+(r \dot{\omega}+2 \dot{r} \omega) \boldsymbol{\lambda}+r \omega \varpi \boldsymbol{\ell}
\end{aligned}
$$

Radiation reaction terms $\mathcal{O}(5)$
Precession due to spins $\mathcal{O}(3)$

Precession equations	$\dot{S}=\boldsymbol{\Omega} \times \boldsymbol{S}$ $\boldsymbol{\Omega}=\Omega \ell$ Angular momentum $\boldsymbol{J}_{N S}=J_{N S} \ell$ Scalars (energy, flux)
$\boldsymbol{n}, \boldsymbol{v}, \boldsymbol{S}) \propto S_{\ell}$ $\dot{S}_{\ell}=\mathcal{O}\left(S^{2}\right)$	

Part IV

Tail spin-orbit contributions : calculation

Result for conservative orbital evolution

Extending [Blanchet, Buonanno, Faye II]

Formally, at linear order in spin, evolution of the moving $\operatorname{triad}(n, \boldsymbol{\lambda}, \ell)$ entirely expressed with :
$m \equiv \frac{1}{\sqrt{2}}(n+\mathrm{i} \boldsymbol{\lambda})$
$\boldsymbol{m}=e^{-\mathrm{i}\left(\phi-\phi_{0}\right)} \boldsymbol{m}_{0}+\frac{\mathrm{i}}{\sqrt{2}}\left(\sin \iota e^{\mathrm{i} \alpha}-\sin \iota_{0} e^{\mathrm{i} \alpha \alpha_{0}}\right) e^{-\mathrm{i} \phi} \ell_{0}+\mathcal{O}\left(S^{2}\right)$,
$\boldsymbol{\ell}=\boldsymbol{\ell}_{0}+\left[\frac{\mathrm{i}}{\sqrt{2}}\left(\sin \iota e^{-\mathrm{i} \alpha}-\sin \iota_{0} e^{-\mathrm{i} \alpha_{0}}\right) e^{\mathrm{i} \phi_{0}} \boldsymbol{m}_{0}+\right.$ c.c. $]+\mathcal{O}\left(S^{2}\right)$

$$
\sin \iota e^{\mathrm{i} \alpha}=-\mathrm{i} \frac{J_{S}^{n}+\mathrm{i} J_{S}^{\lambda}}{\left|J_{\mathrm{NS}}\right|} e^{\mathrm{i} \phi}+\mathcal{O}\left(S^{2}\right)
$$

Resulting time dependence

Straightforward computation of tail integrals in Fourier domain

Overview of the results

New PN contributions for spin effects

\section*{| Part III | Results and checks |
| :--- | :--- |}

Summary

- Symbolic computation : Mathematica®, xAct [Martin-Garcia], PNComBin [Faye]
- 3.5PN spin-orbit dynamics and flux-phasing (NNLO)
- 4PN spin-orbit tail terms in the flux and phasing (NLO for the tails)
- 3PN spin-spin dynamics and flux-phasing (NLO)
- 3.5PN spin-spin-spin dynamics and flux-phasing (LO)

Tests of the results: dynamics

- Lorentz invariance of the EOM (must hold in harmonic gauge)
- Existence of a set of conserved quantities : energy, angular momentum, linear momentum, center-of-mass integral
- Test-mass limit in agreement with a spinning test particle in a Kerr background
- Equivalence of results with the ADM ones: existence of a contact transformation and spin transformation matching the dynamics

Tests of the results: flux

- Test-mass limit in agreement with the flux emitted by a test particle in a Kerr background
- Source moments for boosted Kerr black holes
- Equivalence with EFT ?

Part IV
 Example of results

The energy flux for quasi-circular spin-aligned orbits

$$
\begin{aligned}
\mathcal{F}=\frac{32 \nu^{2}}{5 G} c^{5} x^{5} & \left(1+\left(-\frac{1247}{336}-\frac{35}{12} \nu\right) x+\ldots\right. \\
& +\left(\left(-\frac{3839}{252}-43 \nu\right) S_{\ell}^{2}+\left(-\frac{1375}{56}-43 \nu\right) \delta S_{\ell} \Sigma_{\ell}+\left(-\frac{227}{28}+\frac{3481 \nu}{168}+43 \nu^{2}\right) \Sigma_{\ell}^{2}\right) x^{6} \\
& +\left(\left(\frac{476645}{6804}+\frac{6172}{189} \nu-\frac{2810}{27} \nu^{2}\right) S_{\ell}+\left(\frac{9535}{336}+\frac{1849}{126} \nu-\frac{1501}{36} \nu^{2}\right) \frac{\delta m}{m} \Sigma_{\ell}\right) x^{\frac{7}{2}} \\
& +\left(-\frac{16}{3} S_{\ell}^{3}+\frac{2}{3} \delta S_{\ell}^{2} \Sigma_{\ell}+\left(\frac{9}{2}-\frac{56 \nu}{3}\right) S_{\ell} \Sigma_{\ell}^{2}+\left(\frac{35}{24}-6 \nu\right) \delta \Sigma_{\ell}^{3}\right) x^{7 / 2} \\
& \left.+\left(\left(-\frac{3485 \pi}{96}+\frac{13879 \pi}{72} \nu\right) S_{\ell}+\left(-\frac{7163 \pi}{672}+\frac{130583 \pi}{2016} \nu\right) \frac{\delta m}{m} \Sigma_{\ell}\right) x^{4}\right)
\end{aligned}
$$

PN parameter: $\quad x \equiv\left(G m \omega / c^{3}\right)^{2 / 3}$ IPN
Masses: $\quad \nu=m_{1} m_{2} / m^{2} \quad \delta=\left(m_{1}-m_{2}\right) / m$
Spins: $\quad S \sim S_{1}+S_{2} \quad \Sigma \sim S_{2}-S_{1}$

Part IV

Result for the number of cycles

Phasing for circular orbits

PN approximant
$\longrightarrow \quad$ GW Phase

Taylor T2 Number of cycles between $\mathrm{f} \sim 10 \mathrm{~Hz}$ and $\omega=\omega_{\text {ISCO }}\left(x_{\text {ISCO }}=1 / 6\right)$

- Question of the convergence of the PN series
- Rough estimate of the importance of the new terms
- Approximant-dependent

LIGO/Virgo	$10 M_{\odot}+1.4 M_{\odot}$	$10 M_{\odot}+10 M_{\odot}$
Newtonian	3558.9	598.8
1 PN	212.4	59.1
1.5 PN	$-180.9+114.0 \chi_{1}+11.7 \chi_{2}$	$-51.2+16.0 \chi_{1}+16.0 \chi_{2}$
2 PN	$9.8-10.5 \chi_{1}^{2}-2.9 \chi_{1} \chi_{2}$	$4.0-1.1 \chi_{1}^{2}-2.2 \chi_{1} \chi_{2}-1.1 \chi_{2}^{2}$
2.5 PN	$-20.0+33.8 \chi_{1}+2.9 \chi_{2}$	$-7.1+5.7 \chi_{1}+5.7 \chi_{2}$
3 PN	$2.3-13.2 \chi_{1}-1.3 \chi_{2}$	$2.2-2.6 \chi_{1}-2.6 \chi_{2}$
	$-1.2 \chi_{1}^{2}-0.2 \chi_{1} \chi_{2}$	$-0.1 \chi_{1}^{2}-0.2 \chi_{1} \chi_{2}-0.1 \chi_{2}^{2}$
5 PN	$-1.8+11.1 \chi_{1}+0.8 \chi_{2}+(\mathrm{SS})$	$-0.8+1.7 \chi_{1}+1.7 \chi_{2}+(\mathrm{SS})$
	$-0.7 \chi_{1}^{3}-0.3 \chi_{1}^{2} \chi_{2}$	$-0.05 \chi_{1}^{3}-0.2 \chi_{1}^{2} \chi_{2}-0.2 \chi_{1} \chi_{2}^{2}-0.05 \chi_{2}^{3}$
4 PN	$(\mathrm{NS})-8.0 \chi_{1}-0.7 \chi_{2}+(\mathrm{SS})$	$(\mathrm{NS})-1.5 \chi_{1}-1.5 \chi_{2}+(\mathrm{SS})$

Part IV

Illustration: phasing for the spin-aligned case

[Nitz\&al I3]: matches between templates computed for aligned spins with fixed physical parameters

Agreement between approximants, at a given PN order :

Agreement between successive PN orders for each approximant :

More complete study needed to quantify this in terms of parameter estimation bias.

Part IV Illustration: comparison of PN/NR precession

[Ossokine\&al I5]: comparison of PN (harmonic) and NR (Spec) precession

Part IV

Illustration: comparison of PN/NR precession

[Ossokine\&al 15]: comparison of PN (harmonic) and NR (Spec) precession

Angles $\left(\ell_{\mathrm{PN}}, \ell_{\mathrm{NR}}\right)$ and $\left(\boldsymbol{S}_{\mathrm{PN}}, \boldsymbol{S}_{\mathrm{NR}}\right)$ varying PN order

Angles at a specific time varying PN order

Part IV Illustration: comparison of PN/NR phasing

[Ossokine\&al I5]: comparison of PN (SpinTaylorT4) and NR (Spec) phasing

Comparison

- Satisfying agreement for the precession (even if gauge-dependent quantities)
- Convergence less clear for the orbital phase...

Part IV Summary and Conclusion

Results

- 3.5PN spin-orbit dynamics, 4PN spin-orbit flux/phasing
- 3PN spin-spin dynamics and flux/phasing
- Lagrangian formalism for higher-order spin effects
- 3.5PN spin-cube dynamics and flux/phasing

Comparisons

- PN/PN: still important differences at 3.5PN
- PN/NR: convergence for precession, less clear for orbital phase

Work in progress

- 3.5PN spin-orbit and 3PN spin-spin polarizations (or spherical modes)
- 3.5PN spin-spin tail effects
- 4PN non-spinning dynamics (and flux/phasing later)
- Spin effects at higher order: 4PN spin-spin, 4PN spin^4, 4.5PN spin-orbit ?

Part I

The Kerr black hole

Most general stationary, axisymmetric vacuum solution to Einstein equations : the rotating Kerr black hole

Dimensionless Kerr parameter : (I for maximally rotating black hole)

$$
a \equiv \frac{c J}{G m^{2}}
$$

X-Ray spectroscopy of accretion disks

Example for stellar mass black holes : [Gou\&al II] a>0.95 for Cygnus X-I

Summary for SMBH [Reynolds I3]

The spin of a merger remnant
Numerical relativity results :

Spin of the remnant for nonspinning black holes [e.g. Gonzalez\&al 07] :

Effective formulas for spinning BH binaries [e.g. Rezzolla\&al 08]

Link with astrophysics

Inverse problem : what will the measured distribution of spins tell us about their environment, and about the growth history (accretion or merger) of SMBH ?

Part II

PN conventions

- Slowly-varying, weakly-gravitating regime : $1 \mathrm{PN} \sim G m / r c^{2} \sim v^{2} / c^{2}$
- Convention : $S=c J=G m^{2} a$, of Newtonian order for an extrema BH.

Spin corrections to the equations of motion

$$
\begin{aligned}
\frac{d \mathbf{v}}{d t}= & \mathbf{A}_{N}+\frac{1}{c^{2}} \mathbf{A}_{1 P N}+\frac{1}{c^{4}} \mathbf{A}_{2 P N}+\frac{1}{c^{5}} \mathbf{A}_{2.5 P N}^{R R}+\frac{1}{c^{6}} \mathbf{A}_{3 P N}+\frac{1}{c^{7}} \mathbf{A}_{3.5 P N}^{R R} \\
& +\frac{1}{c^{3}} \mathbf{A}_{1.5 P N}^{S O}+\frac{1}{c^{5}} \mathbf{A}_{2.5 P N}^{S O}+\frac{1}{c^{7}} \mathbf{A}_{3.5 P N}^{S O}+\mathcal{O}\left(\frac{1}{c^{8}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{F}= & F_{N}+\frac{1}{c^{2}} F_{1 \mathrm{PN}}+\frac{1}{c^{3}} F_{1.5 \mathrm{PN}}^{\text {tails }}+\frac{1}{c^{4}} F_{2 \mathrm{PN}}+\frac{1}{c^{5}} F_{2.5 \mathrm{PN}}^{\text {tails }}+\frac{1}{c^{6}} F_{3 \mathrm{PN}}+\frac{1}{c^{7}} F_{3.5 \mathrm{PN}}^{\text {tails }} \\
& +\frac{1}{c^{3}} F_{1.5 \mathrm{PN}}^{\mathrm{SO}}+\frac{1}{c^{5}} F_{2.5 \mathrm{PN}}^{\mathrm{SO}}+\frac{1}{c^{6}} F_{3 \mathrm{PN}}^{\mathrm{SO}-\text { tails }}+\frac{1}{c^{7}} F_{3.5 \mathrm{PN}}^{\mathrm{SO}}+\frac{1}{c^{8}} F_{4 \mathrm{PN}}^{\mathrm{SO}-\text { tails }}+\mathcal{O}\left(\frac{1}{c^{9}}\right)
\end{aligned}
$$

Part II

ADM Hamiltonian results :

- Next-to-leading order Hamiltonian, S-O [Damour, Jaranowski, Schäfer 07]
- Next-to-leading order Hamiltonian, SI-S2 [Steinhoff, Hergt, Schäfer 07]
- Next-to-leading order Hamiltonian, S^2 [Hergt, Steinhoff, Schäfer I0]
- Next-to-next-to-leading order Hamiltonian, S-O and SI-S2 [Hartung\&Steinhoff II]

EFT results :

- Next-to-leading order, S-O [Porto IO]
- Next-to-leading order, SI-S2 and S^2 [Porto\&Rothstein IO, Levi 08, Levi I0]
- Next-to-next-to-leading order SI-S2 [Porto\&Rothstein II, Levi II]
(And so far incomplete results for the waveform and flux)

Harmonic coordinates results :

- Next-to-leading order, S-O (EOM and flux) [Faye, Blanchet, Buonanno 06]
- Next-to-leading order, S-O (full waveform) [Arun\&al 08]
- Leading order, SI-S2 and S^2 (full waveform) [Buonanno, Faye, Hinderer I2]
- Next-to-next-to-leading order S-O (EOM and flux) [this work]

Part II

Source and gauge moments Canonical moments

$$
I_{L}, J_{L}, W_{L}, \ldots, Z_{L} \leftrightarrow M_{L}, S_{L}
$$

Outline

- Iteration of $h=\square^{-1} \Lambda(h)$ outside the source starting with a linear solution parametrized by source and gauge moments $I_{L}, J_{L}, \ldots, Z_{L}$
- Existence of a matching region for a PN source matching of asymptotic expansions
$\rightarrow I_{L}, \ldots, Z_{L}$ as integrals over the source
\rightarrow consistent PN iteration in the near zone
- Radiative coordinates and radiatives multipoles U_{L}, V_{L} describing waveform at infinity
- Alternative parametrization in terms of only two sets of canonical moments M_{L}, S_{L}
\rightarrow relation found by a gauge transformation

Finite part regularization

$$
\int d^{3} x \rightarrow F P_{B=0} \int d^{3} x\left(\frac{|x|}{r_{0}}\right)^{B}
$$

Part II
 UV regularization

Hadamard regularization

- Regularized value of singular functions:

$$
F(\mathbf{x})=\sum_{p_{0} \leqslant p \leqslant N} r_{1}^{p} f_{p}\left(\mathbf{n}_{1}\right)+o\left(r_{1}^{N}\right),(F)_{1}=\left\langle f_{0}\left(\mathbf{n}_{1}\right)\right\rangle
$$

- Non-distributive : $F \delta_{1} \neq(F)_{1} \delta_{1},(F G)_{1} \neq(F)_{1}(G)_{1}$
- Prescription for distributional derivatives (not unique, no Leibniz rule)
- Regularization of integrals : removal of the diverging part $\operatorname{Pf}_{s_{1}, s_{2}} \int \mathrm{~d}^{3} x F(x)$
- Apparition of ambiguities at the 3PN NS order

Dimensional regularization

- $d \rightarrow 3+\varepsilon$ and analytical continuation in ε

- Distributive, well-defined distributional prescription, regular integrals
- In practice :'pure Hadamard-Schwartz' supplemented by dimreg

Determined the 3PN ambiguities

Part III Results for the metric and applications

Metric in the whole near-zone

$$
\begin{aligned}
\left(g_{00}\right)_{S} & \rightarrow \mathcal{O}(7) \\
\left(g_{0 i}\right)_{S} & \rightarrow \mathcal{O}(6) \\
\left(g_{i j}\right)_{S} & \rightarrow \mathcal{O}(7)
\end{aligned}
$$

Can be used for :

- Building approximate solutions by asymptotic matching to a perturbed black hole [Gallouin\&al I2]
- Simulating a circumbinary MHD disk in a PN-approximated spacetime [Noble\&al 09]
- Building realistic initial conditions for NR using PN information [Kelly\&al 09]

$$
\begin{aligned}
\left(g_{00}^{S}\right)_{1} & \rightarrow \mathcal{O}(9) \\
\left(g_{0 i}^{S}\right)_{1} & \rightarrow \mathcal{O}(8) \\
\left(g_{i j}^{S}\right)_{1} & \rightarrow \mathcal{O}(7)
\end{aligned}
$$

- Used for the first law of binary black holes [Blanchet\&al I2]

With EOM : Allows computation of the emitted waveform and energy flux

Part III

Computation of the potentials I

Compact-support terms

Dirac-delta terms (stress-energy tensor or distributional contributions), treated with pHS :

$$
\int \mathrm{d}^{3} \mathbf{x} F(\mathbf{x}) \delta_{1}=(F)_{1}
$$

'Easy' non-compact-support terms
Particular solution : $\Delta g=\frac{1}{r_{1} r_{2}}$,

$$
g \equiv \ln \left(r_{1}+r_{2}+r_{12}\right)
$$

Quadratic terms with lowest-order potentials V, V_{i} can be readily integrated :

$$
\Delta^{-1}\left[\partial_{i}\left(\frac{1}{r_{1}}\right) \partial_{j k}\left(\frac{1}{r_{2}}\right)\right]=-\partial_{i}^{1} \partial_{j k}^{2} g
$$

'Difficult' non-compact-support terms

Only the regularized potential is evaluated, using generic formulas :

$$
\begin{aligned}
P(\mathbf{x}) & =-\frac{1}{4 \pi} \mathrm{Pf}_{s_{1}, s_{2}} \int \frac{\mathrm{~d}^{3} \mathbf{x}^{\prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} F\left(\mathbf{x}^{\prime}\right) \\
(P)_{1} & =-\frac{1}{4 \pi} \mathrm{Pf}_{s_{1}, s_{2}} \int \frac{\mathrm{~d}^{3} \mathbf{x}}{r_{1}} F(\mathbf{x})+\left[\ln \left(\frac{r_{1}^{\prime}}{s_{1}}\right)-1\right]\left(r_{1}^{2} F\right)_{1}
\end{aligned}
$$

$$
s_{1}, s_{2}, r_{1}^{\prime}, r_{2}^{\prime}
$$

Regularization constants

Part III
 Computation of the potentials II

'Difficult' non-compact-support terms

Dimreg contributions

$$
\mathcal{D}\left(\partial_{i j} P\right)(1) \equiv\left(\partial_{i j} P^{(d)}\right)\left(\mathbf{y}_{1}\right)-\left(\partial_{i j} P\right)_{1}
$$

Result for the pole : $\quad \mathcal{D}\left(\partial_{j k} \hat{Y}_{i}\right)(1)=\frac{1}{\varepsilon} \frac{G^{3} m_{1}^{2} m_{2}}{252} v_{12}^{l} \partial_{i j k l}^{1}\left(\frac{1}{r_{12}}\right)+\mathcal{O}\left(\varepsilon^{0}\right)$

$$
\left(\partial_{j[k} \hat{Y}_{i]}^{N S}\right)_{1} \rightarrow \begin{gathered}
\text { Cancellation of all } \\
\text { dimreg contributions }
\end{gathered}
$$

Part IV

Overview for the waveform and flux and 3.5PN order

- At 3.5PN order, only leading order instantaneous contributions intervene (with leading tail terms at 3 PN) : $U_{L}=I_{L}^{(l)}, V_{L}=J_{L}^{(l)}$
- Computation of the source moments and their derivatives using EOM and metric

Part III
 Results for quasi-circular orbits

Equations of motion

Corrections in Kepler's law :

$$
x \equiv\left(G m \omega / c^{3}\right)^{2 / 3} \quad \text { IPN }
$$

$$
\begin{aligned}
\frac{G m}{r c^{2}}=x\{ & 1+x\left(1-\frac{1}{3} \nu\right)+\ldots \\
& \left.+\frac{x^{7 / 2}}{G m^{2}}\left[\left(5-\frac{127}{12} \nu-6 \nu^{2}\right) S_{\ell}+\frac{\delta m}{m}\left(3-\frac{61}{6} \nu-\frac{8}{3} \nu^{2}\right) \Sigma_{\ell}\right]+\mathcal{O}(8)\right\} .
\end{aligned}
$$

Conserved quantities

Corrections in the orbital energy :

$$
\begin{aligned}
E=-\frac{m \nu c^{2} x}{2}\{ & 1+x\left(-\frac{3}{4}-\frac{1}{12} \nu\right)+\ldots \\
& \left.+\frac{x^{7 / 2}}{G m^{2}}\left[\left(\frac{135}{4}-\frac{367}{4} \nu+\frac{29}{12} \nu^{2}\right) S_{\ell}+\frac{\delta m}{m}\left(\frac{27}{4}-39 \nu+\frac{5}{4} \nu^{2}\right) \Sigma_{\ell}\right]+\mathcal{O}(8)\right\}
\end{aligned}
$$

Part IV

From the energy and flux to the phase

Spin contributions in

 the balance equation$$
\mathcal{F}=-\frac{\mathrm{d} E}{\mathrm{~d} t} \longrightarrow \dot{x} \frac{\mathrm{~d} E}{\mathrm{~d} x}+\dot{S} \frac{\mathrm{~d} E}{\mathrm{~d} S}=-\mathcal{F}
$$

Post-Newtonian orders : control of the evolution of the spins ?

$$
\mathcal{O}(5)(\mathcal{O}(0)+\cdots+\mathcal{O}(7))+\dot{S}_{\ell}(\mathcal{O}(3)+\cdots+\mathcal{O}(7))=\mathcal{O}(5)(\mathcal{O}(0)+\cdots+\mathcal{O}(7))
$$

Secular spin variables at linear order in spin : $\dot{S}_{\ell}=\mathcal{O}\left(S^{2}\right)$ since $\dot{\boldsymbol{S}}=\boldsymbol{\Omega} \times \boldsymbol{S}, \boldsymbol{\Omega} \propto \boldsymbol{\ell}$

Illustration of the computation of the phase

- Taylor T2 : solve analytically after PNexpanding the system

$$
\begin{aligned}
\frac{\mathrm{d} \phi}{\mathrm{~d} x} & =-\frac{c^{3}}{G m} x^{3 / 2} \frac{\mathrm{~d} E / \mathrm{d} x}{\mathcal{F}(x)} \\
\frac{\mathrm{d} t}{\mathrm{~d} x} & =-\frac{\mathrm{d} E / \mathrm{d} x}{\mathcal{F}(x)}
\end{aligned}
$$

- Taylor TI : solve numerically without re-expanding the system

$$
\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} t} & =-\frac{\mathcal{F}}{\mathrm{d} E / \mathrm{d} x} \\
\frac{\mathrm{~d} \phi}{\mathrm{~d} t} & =\frac{c^{3}}{G m} x^{3 / 2}
\end{aligned}
$$

Part IV

Result for the number of cycles

Taylor T2 Number of cycles between $\mathrm{f} \sim \mathrm{IOHz}$ and $\omega=\omega_{\text {ISCO }}\left(x_{\mathrm{ISCO}}=1 / 6\right)$

	$1.4 M_{\odot}+1.4 M_{\odot}$	$10 M_{\odot}+1.4 M_{\odot}$	$10 M_{\odot}+10 M_{\odot}$
N	15952.6	3558.9	598.8
1 PN	439.5	212.4	59.1
1.5 PN	$-210.3+65.6 \kappa_{1} \chi_{1}+65.6 \kappa_{2} \chi_{2}$	$-180.9+114.0 \kappa_{1} \chi_{1}+11.7 \kappa_{2} \chi_{2}$	$-51.2+16.0 \kappa_{1} \chi_{1}+16.0 \kappa_{2} \chi_{2}$
2 PN	9.9	9.8	4.0
2.5 PN	$-11.7+9.3 \kappa_{1} \chi_{1}+9.3 \kappa_{2} \chi_{2}$	$-20.0+33.8 \kappa_{1} \chi_{1}+2.9 \kappa_{2} \chi_{2}$	$-7.1+5.7 \kappa_{1} \chi_{1}+5.7 \kappa_{2} \chi_{2}$
3 PN	$2.6-3.2 \kappa_{1} \chi_{1}-3.2 \kappa_{2} \chi_{2}$	$2.3-13.2 \kappa_{1} \chi_{1}-1.3 \kappa_{2} \chi_{2}$	$2.2-2.6 \kappa_{1} \chi_{1}-2.6 \kappa_{2} \chi_{2}$
3.5 PN	$-0.9+1.9 \kappa_{1} \chi_{1}+1.9 \kappa_{2} \chi_{2}$	$-1.8+11.1 \kappa_{1} \chi_{1}+0.8 \kappa_{2} \chi_{2}$	$-0.8+1.7 \kappa_{1} \chi_{1}+1.7 \kappa_{2} \chi_{2}$
4 PN	$(\mathrm{NS})-1.5 \kappa_{1} \chi_{1}-1.5 \kappa_{2} \chi_{2}$	$(\mathrm{NS})-8.0 \kappa_{1} \chi_{1}-0.7 \kappa_{2} \chi_{2}$	$(\mathrm{NS})-1.5 \kappa_{1} \chi_{1}-1.5 \kappa_{2} \chi_{2}$

κ_{i}, χ_{i} parameters for the orientation and magnitude of the spins

Taylor TI

Aligned spins, 0.1 for neutron stars and I for black holes

	$1.4 M_{\odot}+1.4 M_{\odot}$	$10 M_{\odot}+1.4 M_{\odot}$	$10 M_{\odot}+10 M_{\odot}$
N	16028.2	3575.8	601.6
1 PN	474.4	248.7	75.8
1.5 PN	$-237.1+(+13.7)_{S}$	$-214.9+(122.5)_{S}$	$-67.2+(35.0)_{S}$
2 PN	-18.5	-182.	-8.0
2.5 PN	$20.8+(0.6)_{S}$	$33.6+(16.2)_{S}$	$16.6+(3.9)_{S}$
3 PN	$-10+(0.2)_{S}$	$-30.3+(4.6)_{S}$	$-11.6+(1.8)_{S}$
3.5PN	$-0.1+(-0.01)_{S}$	$2.7+(1.3)_{S}$	$-0.2+(-0.3)_{S}$
4PN	$(\mathrm{NS})+(-0.005)_{S}$	$(\mathrm{NS})+(0.4)_{S}$	$(\mathrm{NS})+(-0.1)_{S}$

Part I
 The spin of neutron stars

Observations of rotation of neutron stars :

Two main pulsar populations :

- Young, normal pulsars
- Recycled pulsars : P ~ few milliseconds

Dimensionless Kerr parameter :

Fastest known pulsar : JI748-2446, 716 Hz Order-of-magnitude estimate (I not known) :

$$
a \sim 0.4
$$

Typical value in binaries :

$$
a \sim 0.1
$$

Part I
 Comparison NR/PN for the 22 mode

Part I

Spin effects : transitional precession and recoil

```
Transitional precession
```


Transitional precession (20+5)M [BCV 02]: regime where S and L almost cancel, and direction of J changes rapidly

Recoil of the remnant

Maximal kick :"Hangup" configurations [Lousto\&Zlochower I2]

