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Outline

• Post-Newtonian MPN approach: near-zone iteration and 
wave generation formalism

• Introduction: motivation and spin effects in inspiraling 
compact binaries

• Results for spin effects in the dynamics and phasing 

• Lagrangian formalism for multipolar point particles with 
spin

• Hereditary effects for precessing orbits
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Motivation: PN modeling of spin effects in 
compact binaries

Introduction
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Part I Astrophysical sources of GW

Coalescence of compact 
objects binaries (black 
holes/neutron stars)                        
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Part I Modeling the GW signal of coalescences 

• Post-Newtonian theory (PN)	


• Perturbation theory and Self-Force approach	


• Numerical Relativity (NR)	


• Effective-one-body (EOB)

Approximate methods 
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Part I Motivation for accurate PN templates

Matched filtering px|yq “ 4Re

ª 8

0
df

x̃pfqỹ˚pfq
S̃npfq

Advanced LIGO-VIRGO band :	


• NS-NS binary: ~10000 cycles	


• BH-NS binary: ~3000 cycles	


• BH-BH binary: ~600 cycles 

Templates ingredients

• Phasing for circular orbits:          ,Ep!q Fp!q Balance equation
F “ ´dE{dt GW Phase 

PN approximant

High order PN contributions 
needed for accurate data analysis

• GW polarizations (modes):

• Precessional dynamics:

h`, hˆ phlmq
9S1, 9S2, 9̀
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Part I Modeling Inspiral-Merger-Ringdown GW signals

Hybrid waveforms
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FIG. 12: Numerical simulation results for gravitational wave strain compared with post-Newtonian estimates. The waveform
shown is from the high resolution numerical simulation presented in Sec. II overlaid here with a PN waveform with 3.5PN order
phasing and 2.5PN order amplitude accuracy. The combined waveform, joined at t = −328M (circle) is applied in Sec. IV to
calculate signal-to-noise ratios for iLIGO, adLIGO, and LISA.

predicted frequency at a time in the simulation where
the accuracy of the numerical data first surpasses the
accuracy of the PN approximation, as estimated in [23].
Specifically, [23] predicts this point of equivalent accuracy
to occur at Mω ∼ 0.08, which corresponds to t = −328M
(shown by the circle in Fig. 12). It is worth noting that
there was no need to adjust the PN amplitude for con-
tinuity. The amplitude agreement with the numerical
simulation is so good, and hence the resulting amplitude
is so nearly continuous, that the small discontinuity fails
to produce any discernible artifacts in the Fourier trans-
form h̃(f) of the resulting waveform.

Having generated a waveform, it is informative to esti-
mate the waveform’s phasing accuracy over the course of
the BBH evolution. Note in Fig. 11 that for the portion
of our M/32 simulation that is used in the waveform,
we estimate ∼ 0.5 radians of phase error. If we take
the difference between 3 and 3.5 PN terms to be an es-
timate of the phase error as in [23], we can assess the
error for the PN portion of the waveform. It was shown
in [42] that the analytic PN phase expression accumu-
lates very little error, on the order of 0.1 radians, until
Mω ∼ 1× 10−4. Beginning our numerical phase integra-
tion at this point and evaluating up to Mω = 0.08 yields
a gravitational wave phase error of ∼ 3.6 radians, such
that the total accumulated phase error over the entire
waveform is ∼ 4 radians. As stated previously, an ac-
cumulated waveform phasing error of less than π radians
is the threshold below which wave-matching comparisons
may be used for matched-filtering applications. We es-
timate that our combined waveform meets this criterion
after a frequency of about Mω ∼ 0.01 up to the ringdown
frequency, Mω ∼ 0.5. We therefore have a waveform with
sufficient accuracy to be useful as a template for gravi-
tational wave detection. While templates will ultimately
be needed for cases of greater astrophysical interest, and

still greater accuracy will be required for the template
to be useful for the purpose of parameter estimation, the
construction of this waveform illustrates that the field of
numerical relativity has matured to the point of being
capable of producing results that are useful for gravita-
tional wave data analysis.

The calculated waveform that we have just described
is actually the total strain on the equatorial plane, where
h× vanishes and therefore h+ provides the only contri-
bution. To get the optimally-oriented strain amplitude
(which is the total strain passing an observer on the equa-
torial axis), we multiply this result by 2

√
2, which is the

ratio of peak total gravitational wave amplitude to the
amplitude of h+ alone in the quadrupole approximation.
We then simply divide by

√
5 in order to convert to an

orientation-averaged waveform for our subsequent anal-
yses. This factor can be understood by observing that
orientation-averaging is fully equivalent to averaging over
all sky positions of the detector from the perspective of
the BBH, and such sky-averaging results in a factor 1/

√
5

in sensitivity [1].
The SNR is calculated assuming matched-filtering is

performed on the data, and that the waveforms are per-
fect copies of the embedded signal. In this case, the sky-
and waveform-polarization-averaged SNR is given by

< (SNR)2 >=

∫

d(ln f)

(

hchar(f)

hn(f)

)2

, (3)

where hchar(f) ≡ 2f
∣

∣

∣
h̃(f)

∣

∣

∣
is the characteristic signal

strain and hn(f) ≡
√

5hrms(f) =
√

5fSn(f) is the rms
of the detector noise fluctuations multiplied by

√
5 for

sky-averaging, with h̃(f) and Sn(f) being the Fourier
transform of the signal strain and the power spectral den-
sity of the detector noise, respectively [1].

Hybrid NR-PN waveform, inspiral-merger-ringdown [Baker&al 07]

!
• PN covers inspiral	


• Attachment in the	

   late inspiral

Effective-One-Body waveforms

• PN Hamiltonian mapped on a                       	

   deformed Kerr Hamiltonian	

   and resummed	


• PN waveform factorized	


• Calibration on NR	


• Ringdown attached as a	

    superposition of QNM
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FIG. 6: For the equal-mass case, we compare the numerical-
relativity and calibrated EOB (2, 2) mode. The top panels
show the real part of numerical and EOB h22, the bottom
panels show amplitude and phase differences between them.
The horizontal axis is the retarded time in the numerical-
relativity simulation. The left panels show retarded times
t − r∗ = 0 to 3850M , and the right panels show retarded
times t − r∗ = 3850M to t − r∗ = 4070M on a different
vertical scale. The dotted curves are the numerical-relativity
errors.

∆t33match = 12M , ∆t44match = 9M , (37b)

∆t21match = 8M , ∆t55match = 8M . (37c)

Calibrating the amplitude and phase of the EOB wave-
form for the higher-order modes we find

ρ(6)21 = −5 , ρ(6)33 = −20 , (38a)

ρ(6)44 = −15 , ρ(6)55 = 4 , (38b)

and

δ(7)21 = 30 , δ(7)33 = −10 , (39a)

δ(5)44 = −70 , δ(5)55 = 40 . (39b)

As explained in Sec. II B, since the iterative procedure
that determines the NQC coefficients ah22

i usually takes
4 to 5 steps to converge, we give fitting formulas of ah22

i
as quadratic functions of the mass ratio to save compu-
tational cost

ah22

1 (ν) = −4.559 + 18.76 ν − 24.23 ν2 , (40a)

ah22

2 (ν) = 37.68− 201.5 ν + 324.6 ν2 , (40b)

ah22

3 (ν) = −39.6 + 228.9 ν − 387.2 ν2 . (40c)

Finally, as discussed in Sec. II C, to improve the agree-
ment of the (4, 4) and (5, 5) modes around merger, we
introduce pseudo QNMs having

M ωpQNM
44 = 0.72 , M/τpQNM

44 = 0.28 , (41a)

M ωpQNM
55 = 0.9 , M/τpQNM

55 = 0.28 , (41b)

for all mass ratios considered in this paper. The fre-
quency of these pseudo QNMs are about the frequency
of the inspiral-plunge waveforms at the matching time
tℓmmatch and the decay time of these modes are about the
same as that of the first overtone of the physical QNMs.

D. Comparing numerical and EOB (2, 2) mode

In Figs. 6, 7 we compare the numerical-relativity and
EOB (2, 2) modes for mass ratios q = 1, 2, 3, 4 and 6.
We find that throughout the evolution the phase differ-
ence is below ∼ 0.1 rad. During the inspiral, the relative
amplitude difference is within 2%, while during merger
and ringdown it increases to within 12%. The numerical
errors are also showed in the figures with dotted lines.
We observe that during the inspiral the phase and am-
plitude differences can be a factor of a few larger than
the numerical-relativity error, but during the merger and
ringdown they can be comparable or even smaller. As we
shall see in Sec. IV, the mismatch between the numerical
and EOB modes are consistently very small for detection
purposes for Advanced LIGO, and the EOB modes are
reasonably accurate for parameter-estimation purposes.

E. Comparing numerical and EOB (l,m) ̸= (2, 2)
modes

In Figs. 8, 9 and 10, we compare the numerical and
EOB subdominant modes h33, h21 and h44 for the cases
q = 1, 3, 6. [For mass ratios q = 2, 4 the plots look similar,
so we do not show them.] During the inspiral, the numer-
ical and EOB subdominant modes agree very well, simi-
larly to the agreement we found for the h22. This happens
because the numerical frequencies ωℓm are well modeled
by a simple multiple of the orbital frequency mΩ. Dur-
ing merger and ringdown, the agreement is very good for
the h33 and h21 modes, i.e., comparable to the agreement
of the h22 mode. Analogous performances hold for the
other cases q = 2 and q = 4. The numerical and EOB h44

mode, however, show larger differences during ringdown.
For instance, the phase difference increases to ∼ 0.6 rad.
There are two reasons for this less satisfactory result: (i)
the larger errors in the numerical mode (4, 4) and (ii)
the EOB QNM matching procedure that generates the
ringdown part. Issue (i) spoils the numerical predictions
of the fitting formulas for the (4, 4) mode (see Table III)
which are essential to model the merger. Issue (ii) pre-
vents modeling the ringdown phase of the h44 with high
accuracy (see Fig. 3 and discussions therein). Neverthe-
less, since as seen in Figs. 1, the h44 amplitude is a few
percent of the h22 amplitude, the absolute error in h44 is
generally smaller than the error with which we currently
model the h22 EOB mode. Therefore, the large difference
between the numerical and EOB h44 is not the dominant
source of systematic error in the gravitational polariza-
tions. Since the h55 mode comparison is very similar to

EOBNR-NR	

comparison	

[Pan&al 11]
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Part I Effects of the spins: phasing and precession

Amplitude modulation for h`, hˆ

` “ L̂N

Ŝ1

Ŝ2

line of sight

J » cte “ LN ` S{c ` . . .
9SA “ ⌦A ˆ SA

+ precessional phases 

Effects of the spins • Affect the phasing (aligned)	


• Orbital plane precession (misaligned)
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Part II Different post-Newtonian methods

• DIRE (Direct Integration of Relaxed Einstein equations): near-zone/far-zone split of retarded 
integrals [Will, Wiseman, …]	

!

• Surface-integral approach [Futamase, Itoh, ...]	

!

• Effective field theory [Goldberger, Rothstein, ...]: diagrammatic computation of an effective 
action	

!

• ADM Hamiltonian formalism [Schäfer, Damour, Jaranowski, …]: field degrees of freedom 
integrated out, obtaining a reduced Hamiltonian	

!

• Harmonic coordinates, MPM algorithm + matching  [Blanchet, Damour, Iyer, ...]

Validation of results by 
different methods welcome !
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Part I Post-Newtonian results :  where do we stand ?

Dynamics

Leading Known

NS N 4PN (ADM)

SO 1.5PN 3.5PN (ADM, H)

SS 2PN
3PN (SS) - 4PN (S1S2)	


(ADM, EFT, H)	


SSS 3.5PN 3.5PN (ADM/EFT, H)

SSSS 4PN 4PN (ADM/EFT)

ADM: reduced Hamiltonian in ADM approach	

EFT: effective field theory	

H: harmonic coordinates-based method

1PN „ Gm{rc2 „ v2{c2

Energy flux

Leading Known

NS N 3.5PN (H)

SO 1.5PN 3.5PN+4PN (H)

SS 2PN
3PN (SS, S1S2)	

(partial EFT, H)	


SSS 3.5PN 3.5PN (H)

Full waveform

Leading Known

NS N 3PN (H)

SO 1PN 2PN (H)
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Near-zone integration and wave generation 
formalism: overview

The harmonic post-Newtonian approach
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Part II Harmonic coordinates and basics of the method

Einstein equations in harmonic coordinates

hµ⌫ ” ?´ggµ⌫ ´ ⌘µ⌫

B⌫hµ⌫ “ 0
encodes all non-
linearities in h

Harmonic gauge Einstein equations - can be iterated
⇤µ⌫ph2, h3, . . . q

lhµ⌫ “ 16⇡G

c4
p´gqTµ⌫ ` ⇤µ⌫

gravitational fieldmatter

Modeling spins for compact objects

Compact objects as point 
particles (Dirac deltas) UV regularization 

scheme              
• Hadamard regularization	


• Dimensional regularization

Model of point particles 
with spin              

Gµ⌫ “ 8⇡G

c4
Tµ⌫

Retardations expansion and near-zone limitation

PN near-zone iteration 
of field equationsr ! �

l´1
R• PN retardation expansion of 	


    in the near-zone
MPM wave generation 
formalism in vacuum

• Iterative multipolar solution in    	

    vacuum r ° r

source

Higher orders in spin
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Part II Multipolar post-Newtonian wave generation formalism

r

h r
source �

h Mphq
h

Radiation zone

r
source

! r ! �

r ! � � ! r

Near-zone

Mphq “ Mphq

: multipolar expansion	

: post-Newtonian (near-zone) expansion

Mphq
h
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Part II Link between source and radiative moments

Memory

Tails of tails

M

c3

ª `8

0
d⌧ Ip4q

ij pu ´ ⌧q ln
ˆ

⌧

2⌧0

˙

1

c5

ª
d⌧ Ip3q

ia Ip3q
aj ` . . .

M2

c6

ª
d⌧ Ip5q

ij

„
ln2 ` ln`cte

⇢

`

`

Ip2q
ij ` 1

c5

”
Ip5q
ai Ija ` . . .

ı

`

Instantaneous

Tails

Result of MPM algorithm

Hereditary 
contributions

Uijpuq “Radiative quadrupole:

Outline
IL, JL, . . . , ZL

• MPM solution parametrized by linear solution   	

    source/gauge moments 

• Matching: source/gauge moments as spatial integrals
ª
d3xp. . . q

UL, VL

• Radiative coordinates and radiatives multipoles	

               describing waveform at infinity                                             

• Finite part regularization: 
ª
d

3
x Ñ FPB“0

ª
d

3
x

ˆ |x|
r0

˙B
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Part II Result of the matching equation and waveform

Results of the matching [Blanchet 98]

... 

• Source and gauge moments expressed as integrals over the source :

IL “ FP

ª
d

3
x x̂L

ˆ
� ´ 1

c

2
�pV 2q ` 1

c

4
pV �ii ` ViBtBiV q ` . . .

˙

• The near-zone PN metric from matching (4PN tails) [Blanchet&Poujade 02]

F “
ÿ

`•2

1

c2``1

„
9UL

9UL ` 1

c2
9VL

9VL

⇢

hTT
ij “ 1

c2R
⇤TT
ij pNq

ÿ

`•2

1

c`

„
NUL ` 1

c
N"VL

⇢
Wave (Transverse-Traceless):

Emitted energy flux:

Waveform and energy flux [Thorne 80]
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Part III PN near-zone metric iteration

Metric potentials

g00 Ñ V {c2, X̂{c6 , T̂ {c8 ` Op10q
g0i Ñ Vi{c3 , R̂i{c5 , Ŷi{c7 ` Op9q
gij Ñ �ijV {c2 , Ŵij{c4 , Ẑij{c6 ` Op8q

V “ l´1
R r´4⇡G�s

Vi “ l´1
R r´4⇡G�is

Ŵij “ l´1
R r´4⇡G p�ij ´ �ij�kkq ´ BiV BjV s

X̂ “ l´1
R

”
´4⇡GV �ii ` ŴijBijV ` . . .

ı
Metric parametrized by potentials

Source equations for potentials
compact and non-compact supportSolution for the potentials

!
• Regularization & distributional derivatives	


• Potentials in all space or regularized

Matching for the 
near-zone metric lhµ⌫ “ ⌧µ⌫ h

µ⌫ “ Ål´1
B ⌧µ⌫ ` hµ⌫

tail

•         PN-expanded inverse d’Alembertian with              reg.             	


•         4PN hereditary contribution (tails in RR)

Ål´1
B

hµ⌫
tail

FPB“0

!
• Relies on explicit solutions	

    e.g. �´1p1{r1r2q “ lnpr1 ` r2 ` r12q

� Ø Tµ⌫
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Lagrangian formalism for spin-induced 
finite-size effects 

Representing higher-order spin effects
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Part II Point particles with spin: earlier approaches

Papapetrou approach [Papapetrou 51], generalization [Dixon] 

Non-covariant approach :                              ,  pole-dipole hypothesis :                                T µ⌫ ” ?´gTµ⌫
ª
d3x T µ⌫ ‰ 0,

ª
d3x �x

⇢T µ⌫ ‰ 0, �x “ x ´ x̄

Dpµ

d⌧
“ ´1

2
Rµ

⌫⇢�u
⌫S⇢� DSµ⌫

d⌧
“ 2prµu⌫s

ÿ

k

ª
d⌧r↵1...↵k

`
A↵1...↵k�1...�m�

˘

uµ↵i

S

µ⌫ ”
ª
d3x 2�xrµT ⌫s0

, p

µ ” mu

µ ´ u⌫
DS

µ⌫

d⌧

Composite definitions for spin, linear momentum and mass :                                

Evolution equations :                               

Gravitational skeleton approach

Method : unicity of the canonical decomposition                              

Tµ⌫ “
ª
d⌧ rtµ⌫� ` r⇢ ptµ⌫⇢�q ` r⇢r� ptµ⌫⇢��q ` . . . sAnsatz on the stress-energy tensor                               

(for the    , symmetry and orthogonality to      )                              

          rewritten in canonical form                             equations of evolution                             r⌫T
µ⌫ “ 0

[Mathisson 37], [Tulczyjew 59]                           



Sylvain Marsat            -           UMD/GSFC 2015-03-1619

Part II Point particles with spin : Lagrangian formalism

Geometric definitions

uµ “ dzµ

d⌧

⌦µ⌫ ” ✏AµD✏ ⌫
A

d⌧

e µ
a

✏ µ
A

⇤ a
A

:  field tetrad                                

:  tetrad attached to the body                                

:  Lorentz matrices, 6 internal 
degrees of freedom                                

✏ µ
A

uµ

z⇢p⌧q
e µ
a

✏A “ ⇤ a
A ea

:  4-velocity 

:  rotation coefficients (antisymmetric) 

Ansatz for the Lagrangian

[Hanson&Regge 74], [Bailey&Israel 75], [Porto 05]                             

S “
ª
d⌧ L ruµ,⌦µ⌫ , gµ⌫ , Rµ⌫⇢�,r�Rµ⌫⇢�, . . . s

Finite size effects
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Part II Lagrangian formalism: multipoles and identities

Conjugate Moments

Homogeneity condition

Scalar condition

pµ ” BL
BuµLinear momentum: Sµ⌫ ” 2

BL
B⌦µ⌫

Spin tensor:

Multipolar Moments Quadrupolar moment: Jµ⌫⇢� ” ´6
BL

BRµ⌫⇢�

Octupolar moment:

… and higher orders

J�µ⌫⇢� ” ´12
BL

Br�Rµ⌫⇢�

invariance by reparametrization of the world line

the Lagrangian must be a scalar - eliminates

2
BL

Bgµ⌫
“ pµu⌫ ` Sµ⇢⌦⌫

⇢ ` 2

3
Rµ

�⇢�J
⌫�⇢� ` 1

3
J�⌫⌧⇢�r�R

µ
⌧⇢� ` 1

12
J⌫�⌧⇢�rµR�⌧⇢�

BL{Bgµ⌫

L “ pµu
µ ` 1

2
Sµ⌫⌦

µ⌫ (regardless of couplings to the Riemann)
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Part II Lagrangian formalism: equations of motion/precession

Equation of motion covariantization of the 
variation of the worldline: �z⇢B⇢L “ �z⇢r⇢L

Dpµ
d⌧

“ ´1

2
Rµ⌫⇢�u

⌫S⇢� ´ 1

6
J�⌫⇢�rµR�⌫⇢� ´ 1

12
J⌧�⌫⇢�rµr⌧R�⌫⇢�

Immediate generalization to higher orders

Equation of precession variation of rotational	

 degrees of freedom: �✓ab ” ⇤Aa�⇤ b

A

DSµ⌫

d⌧
“ ⌦µ

⇢S
⌫⇢ ´ ⌦⌫

⇢S
µ⇢

•  Valid at any multipolar order           	


•  Conserved spin norm, independently of the SSC:
With the scalar condition:

s2 ” Sµ⌫S
µ⌫{2 “ const

DSµ⌫

d⌧
“ 2prµu⌫s ` 4

3
Rrµ

�⇢�J
⌫s�⇢� ` 2

3
r�Rrµ

⌧⇢�J
⌫s⌧⇢�

� ` 1

6
rrµR�⌧⇢�J

⌫s�⌧⇢�
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Part II Lagrangian formalism: stress-energy tensor

Pole-dipole terms:

Defining the world line density:

Variation �gµ⌫

w “
ª
d⌧�4px ´ zq{?´g

Tµ⌫
pole´dipole

“ ppµu⌫qw ´ r⇢

”
S⇢pµu⌫qw

ı

Quadrupole terms:

Tµ⌫
quad “ 1

3
Rpµ

�⇢�J
⌫q�⇢�w ´ r⇢r�

„
2

3
J⇢pµ⌫q�w

⇢

Octupole terms:

Tµ⌫
oct

“
„
1

6
r�Rpµ

⇠⇢�J
⌫q⇠⇢�

� ` 1

12
rpµR⇠⌧⇢�J

⌫q⇠⌧⇢�
⇢
w

` r⇢

"„
´1

6
Rpµ

⇠��J
|⇢|⌫q⇠�� ´ 1

3
Rpµ

⇠��J
⌫q⇢⇠�� ` 1

3
R⇢

⇠��J
pµ⌫q⇠��

⇢
w

*

` r�r⇢r�

„
1

3
J�⇢pµ⌫q�w

⇢

No direct 
generalization
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Part II Lagrangian formalism: SSC and definition of the mass

Spin supplementary condition

Definition of the mass

Sµ⌫ six degrees of freedom impose 3 conditions VµS
µ⌫ “ 0

Covariant SSC: pµS
µ⌫ “ 0

Impose conservation of the SSC: relation pµ Ø uµ

m2 “ ´pµp
µ is not conserved at order SS 3PN

m̃ ” ´pµu
µ ´ 1

6
J�⌫⇢�R�⌫⇢� ,

dm̃

d⌧
“ OpS3{c9q

Alternative definition (not general at all PN orders):
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Part II Lagrangian formalism: conserved norm spin

The spin covector

Using the SSC to define a spin covector :

SI “ eµISµ

dS

dt
“ ⌦ ˆ S

Defining Euclidean norm spin vector

Defining a tetrad : pe µ
0 , e µ

I q

Precession equation

e µ
0 ” uµwith

s2 “ pgµ⌫ ` uµu⌫qSµS⌫ “ �IJSISJConserved norm vector :

eIj chosen as the 
unique symmetric 
positive-definite 
square root of   �ij

Fixing the convention for the spatial part of the tetrad :

• Leading SO terms1PN, leading SS terms 1.5PN	


• Simplify the structure of equations (hereditary integrals)	


• Important when applying the balance equation                           

Sµ ” 1

2
✏µ⌫⇢�

p⌫

m
S⇢�

�ij “ gij ` uiuj “ �IJeIieJj

Sµp
µ “ 0
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Part II Lagrangian formalism: spin-induced moments

Representing spin-induced structure

Spin-induced moments

unique solutions

Polarizability constants

Rµ⌫ Cµ⌫⇢�

• Write the couplings directly with the spin     
tensor and using the SSC

• Elimination of         in the Lagrangian:	

write all possible couplings with the Weyl tensor

• Quadrupole:

• Octupole:

Jµ⌫⇢� “ ´3

m
urµ⇥⌫sr⇢u�s

J�µ⌫⇢� “ �

4m2

”
⇥�rµu⌫sS⇢� ` ⇥�r⇢u�sSµ⌫

´ ⇥�rµS⌫sr⇢u�s ´ ⇥�r⇢S�srµu⌫s

´S�rµ⇥⌫sr⇢u�s ´ S�r⇢⇥�srµu⌫s
ı

⇥µ⌫ ” Sµ�S⌫
�

to be determined • By matching to a Kerr black hole	


• Numerically for neutron stars

Generalization at all orders in spin	

(leading order in the Weyl tensor)	


 [Levi&Steinhoff 15] 

 ,�
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Hereditary effects at linear order in spin	

for a precessional dynamics

Computation of the SO tail integrals
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Tail spin-orbit 4PN contributions

U tail
ij pTRq “ M

c3

ª `8

0
d⌧ Ip4q

ij pTR ´ ⌧q
„
ln

ˆ
⌧

2⌧0

˙
` 2

⇢
example of the quadrupole                                   

Structure of tail contributions

Hereditary integral : requires controlling 
precessional dynamics in the past                                  

` “ L̂N

Ŝ1

Ŝ2

line of sight

Spin-orbit tail contributions to the energy flux

Opln c{c5q
• Restriction to quasi-circular orbits	


• Conservative dynamics only, neglecting                 corrections                           

• At 3PN and 4PN, for dimensional reasons only tail contributions	


• At linear order in spin, the contribution of the precession of the orbital plane cancels out 

• Not true for contributions to the waveform                            hTT
ij

Part IV
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Conservative precessing dynamics : structure

6

B. Multipole moments with spin-orbit effects

The matter-source densities (2.9) depend on the com-
ponents of the stress-energy tensor. At the leading PN
order, the spin contribution therein (indicated by the
subscript S) reduce to

σ
S
= −

2

c3
εijk v

i
1 S

j
1 ∂kδ1 + 1 ↔ 2 +O

( 1

c5

)
, (3.10a)

σ
S
i = −

1

2c
εijk S

j
1 ∂kδ1 + 1 ↔ 2 +O

( 1

c3

)
, (3.10b)

σ
S
ij = −

1

c
εkl(i v

j)
1 Sk

1 ∂lδ1 + 1 ↔ 2 +O
( 1

c3

)
, (3.10c)

where δ1(x, t) = δ[x−y1(t)] means the three-dimensional
Dirac delta-function evaluated on the particle 1, and
1 ↔ 2 means the same quantity but corresponding to
the particle 2.
In Ref. [20] the SO terms have been computed in the

source mass quadrupole moment Iij up to next-to-leading
2.5PN order and the source current quadrupole moment
Jij up to next-to-leading 1.5PN order. All the other
source moments were computed at the leading SO order.
Those results are sufficient for our purpose. Actually, to
compute the specific contributions of tails we need only
the moments at leading SO order, given for general ℓ by

I
S
L =

2ℓ

c3(ℓ+ 1)

[
ℓvi1S

j
1εij⟨iℓ y

L−1⟩
1 (3.11a)

− (ℓ− 1)yi1S
j
1εij⟨iℓv

iℓ−1

1 yL−2⟩
1

]
+ 1 ↔ 2 +O

( 1

c5

)
,

J
S
L =

ℓ+ 1

2c
y⟨L−1
1 Siℓ⟩

1 + 1 ↔ 2 +O
( 1

c3

)
. (3.11b)

Because the leading SO terms scale as O(1/c3) in the
mass source moments, and as O(1/c) in the current
source moments, the number of non-linear terms needed
in the radiative moments [Eqs. (5.1) below] is small. We
refer to Sec. V of [20] for higher-order expressions of SO
contributions of the source quadrupole moments.

C. Equations of motion with spin-orbit effects

Here we investigate the case where the binary’s orbit is
nearly circular, i.e., whose radius is constant apart from
small perturbations induced by the spins (as usual we
neglect the gravitational radiation damping at 2.5PN or-
der). We denote by x = y1 − y2 the relative position of
the particles (and v = dx/dt). Following Ref. [42] we in-
troduce an orthonormal moving triad {n,λ, ℓ} defined by
n = x/r as before, ℓ = LN/|LN| where LN ≡ mν x× v
with ν = X1X2 denotes the Newtonian orbital angu-
lar momentum and ν the symmetric mass ratio, and
λ = ℓ×n. Those vectors are represented on Fig. 1, which
shows the geometry of the system. The orbital frequency
ω is defined for general, not necessarily circular orbits, by
v = ṙn+ rωλ where ṙ represents the derivative of r with

FIG. 1: We show (i) the source frame defined by the orthonor-
mal basis (x,y,z), (ii) the instantaneous orbital plane which
is described by the orthonormal basis (xℓ,yℓ, ℓ), (iii) the mov-
ing triad (n,λ, ℓ), and (iv) the direction of the total angular
momentum J (agreeing by definition with the z–direction).
Dashed lines show projections into the x–y plane.

respect to the coordinate time t. It is also equal to the
scalar product of n and v which we denote as (nv) = ṙ.
The components of the acceleration a = dv/dt along the
basis {n,λ, ℓ} are then given by

n · a = r̈ − rω2 , (3.12a)

λ · a = rω̇ + 2ṙω , (3.12b)

ℓ · a = −rω
(
λ ·

dℓ

dt

)
. (3.12c)

We project out the spins on this orthonormal basis, defin-
ing S = Snn + Sλλ + Sℓℓ and similarly for Σ. Next
we impose the restriction to quasi-circular precessing or-
bits which is defined by the conditions r̈ = 0 = ṙ so
that v2 = r2ω2 (neglecting radiation reaction damping
terms). In this way we find [19] that the equations of the
relative motion in the frame of the center-of-mass are

dv

dt
= −ω r

[
ωn+ ωprec ℓ

]
+O

( 1

c6

)
. (3.13)

There is no component of the acceleration along λ. Com-
paring with Eqs. (3.12) in the case of circular orbits, we
see that ω is indeed the orbital frequency, while what
we call the “precessional frequency” ωprec = λ · dℓ/dt is
proportional to the variation of ℓ in the direction of the
velocity v = rωλ. We know that ω2 is given by

ω2 =
Gm

r3

{
1 + γ (−3 + ν) + γ3/2 (−5sℓ − 3δσℓ)

}

+O
( 1

c4

)
, (3.14)

where we denote δ ≡ X1 − X2 and sℓ ≡ (sℓ) = s · ℓ,
where the spin variables are defined by Eq. (3.9). The PN

Geometry of the problem

Equations of motion

•    constant total angular momentum 	


• Normal to the orbital plane	


• Center-of-mass frame - moving triad 	


• Euler angles              	


• Orbital phase          

`
pn,�, `q

J

Radiation reaction terms Op5q
Precession due to spins Op3q

x “ rn

v “ 9rn ` r!�

a “ ´r!2
n ` pr 9! ` 2 9r!q� ` r!$`

� “
ª
dt!

↵, ◆,�

Angular velocities 9n “ !�

9� “ ´!n ` $`

9̀ “ ´$�

Precession equations
⌦ “ ⌦ `

9S “ ⌦ ˆ S

JNS “ JNS `Angular momentum

Scalars (energy, flux)
pn,v,Sq 9S`

9S` “ OpS2q

Part IV
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Tail spin-orbit contributions : calculation

6

B. Multipole moments with spin-orbit effects

The matter-source densities (2.9) depend on the com-
ponents of the stress-energy tensor. At the leading PN
order, the spin contribution therein (indicated by the
subscript S) reduce to

σ
S
= −

2

c3
εijk v

i
1 S

j
1 ∂kδ1 + 1 ↔ 2 +O

( 1

c5

)
, (3.10a)

σ
S
i = −

1

2c
εijk S

j
1 ∂kδ1 + 1 ↔ 2 +O

( 1

c3

)
, (3.10b)

σ
S
ij = −

1

c
εkl(i v

j)
1 Sk

1 ∂lδ1 + 1 ↔ 2 +O
( 1

c3

)
, (3.10c)

where δ1(x, t) = δ[x−y1(t)] means the three-dimensional
Dirac delta-function evaluated on the particle 1, and
1 ↔ 2 means the same quantity but corresponding to
the particle 2.
In Ref. [20] the SO terms have been computed in the

source mass quadrupole moment Iij up to next-to-leading
2.5PN order and the source current quadrupole moment
Jij up to next-to-leading 1.5PN order. All the other
source moments were computed at the leading SO order.
Those results are sufficient for our purpose. Actually, to
compute the specific contributions of tails we need only
the moments at leading SO order, given for general ℓ by

I
S
L =

2ℓ

c3(ℓ+ 1)

[
ℓvi1S

j
1εij⟨iℓ y

L−1⟩
1 (3.11a)

− (ℓ− 1)yi1S
j
1εij⟨iℓv

iℓ−1

1 yL−2⟩
1

]
+ 1 ↔ 2 +O

( 1

c5

)
,

J
S
L =

ℓ+ 1

2c
y⟨L−1
1 Siℓ⟩

1 + 1 ↔ 2 +O
( 1

c3

)
. (3.11b)

Because the leading SO terms scale as O(1/c3) in the
mass source moments, and as O(1/c) in the current
source moments, the number of non-linear terms needed
in the radiative moments [Eqs. (5.1) below] is small. We
refer to Sec. V of [20] for higher-order expressions of SO
contributions of the source quadrupole moments.

C. Equations of motion with spin-orbit effects

Here we investigate the case where the binary’s orbit is
nearly circular, i.e., whose radius is constant apart from
small perturbations induced by the spins (as usual we
neglect the gravitational radiation damping at 2.5PN or-
der). We denote by x = y1 − y2 the relative position of
the particles (and v = dx/dt). Following Ref. [42] we in-
troduce an orthonormal moving triad {n,λ, ℓ} defined by
n = x/r as before, ℓ = LN/|LN| where LN ≡ mν x× v
with ν = X1X2 denotes the Newtonian orbital angu-
lar momentum and ν the symmetric mass ratio, and
λ = ℓ×n. Those vectors are represented on Fig. 1, which
shows the geometry of the system. The orbital frequency
ω is defined for general, not necessarily circular orbits, by
v = ṙn+ rωλ where ṙ represents the derivative of r with

FIG. 1: We show (i) the source frame defined by the orthonor-
mal basis (x,y,z), (ii) the instantaneous orbital plane which
is described by the orthonormal basis (xℓ,yℓ, ℓ), (iii) the mov-
ing triad (n,λ, ℓ), and (iv) the direction of the total angular
momentum J (agreeing by definition with the z–direction).
Dashed lines show projections into the x–y plane.

respect to the coordinate time t. It is also equal to the
scalar product of n and v which we denote as (nv) = ṙ.
The components of the acceleration a = dv/dt along the
basis {n,λ, ℓ} are then given by

n · a = r̈ − rω2 , (3.12a)

λ · a = rω̇ + 2ṙω , (3.12b)

ℓ · a = −rω
(
λ ·

dℓ

dt

)
. (3.12c)

We project out the spins on this orthonormal basis, defin-
ing S = Snn + Sλλ + Sℓℓ and similarly for Σ. Next
we impose the restriction to quasi-circular precessing or-
bits which is defined by the conditions r̈ = 0 = ṙ so
that v2 = r2ω2 (neglecting radiation reaction damping
terms). In this way we find [19] that the equations of the
relative motion in the frame of the center-of-mass are

dv

dt
= −ω r

[
ωn+ ωprec ℓ

]
+O

( 1

c6

)
. (3.13)

There is no component of the acceleration along λ. Com-
paring with Eqs. (3.12) in the case of circular orbits, we
see that ω is indeed the orbital frequency, while what
we call the “precessional frequency” ωprec = λ · dℓ/dt is
proportional to the variation of ℓ in the direction of the
velocity v = rωλ. We know that ω2 is given by

ω2 =
Gm

r3

{
1 + γ (−3 + ν) + γ3/2 (−5sℓ − 3δσℓ)

}

+O
( 1

c4

)
, (3.14)

where we denote δ ≡ X1 − X2 and sℓ ≡ (sℓ) = s · ℓ,
where the spin variables are defined by Eq. (3.9). The PN

Result for conservative 
orbital evolution

Formally, at linear order in spin, evolution of the 
moving triad              entirely expressed with :                                  pn,�, `q

Resulting time dependence

eipm!`p⌦1`q⌦2qt

m P Z , pp, qq P t´1, 0, 1u
     orbital frequency	

     spin precession frequency                                
!
⌦A

Straightforward 
computation of tail 
integrals in Fourier 

domain

Extending [Blanchet, 
Buonanno, Faye 11]                                

sin ◆ ei↵ “ ´i
Jn
S ` iJ�

S

|JNS| ei� ` OpS2q

m ” 1?
2

pn ` i�q

m “ e´ip�´�0qm0 ` i?
2

`
sin ◆ ei↵ ´ sin ◆0 e

i↵0
˘
e´i�`0 ` OpS2q ,

` “ `0 `
„

i?
2

`
sin ◆ e´i↵ ´ sin ◆0 e

´i↵0
˘
ei�0m0 ` c.c.

⇢
` OpS2q

Part IV
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New PN contributions for spin effects

Overview of the results
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Part III Results and checks

Tests of the results: dynamics

Summary

• Symbolic computation : Mathematica®, xAct [Martin-Garcia], PNComBin [Faye]	


• 3.5PN spin-orbit dynamics and flux-phasing (NNLO)	


• 4PN spin-orbit tail terms in the flux and phasing (NLO for the tails)	


• 3PN spin-spin dynamics and flux-phasing (NLO)	


• 3.5PN spin-spin-spin dynamics and flux-phasing (LO)

• Lorentz invariance of the EOM (must hold in harmonic gauge)	


• Existence of a set of conserved quantities : energy, angular momentum, linear momentum, 
center-of-mass integral 	


• Test-mass limit in agreement with a spinning test particle in a Kerr background	


• Equivalence of results with the ADM ones: existence of a contact transformation and spin 
transformation matching the dynamics

• Test-mass limit in agreement with the flux emitted by a test particle in a Kerr background	


• Source moments for boosted Kerr black holes	


• Equivalence with EFT ?

Tests of the results: flux
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Example of results

The energy flux for quasi-circular spin-aligned orbits

Part IV

F “ 32⌫2

5G
c

5
x

5

ˆ
1 `

ˆ
´1247

336
´ 35

12
⌫

˙
x ` . . .

`
ˆˆ

´3839

252
´ 43⌫

˙
S

2
` `

ˆ
´1375

56
´ 43⌫

˙
�S`⌃` `

ˆ
´227

28
` 3481⌫

168
` 43⌫2

˙
⌃2

`

˙
x

6

`
ˆˆ

476645

6804
` 6172

189
⌫ ´ 2810

27
⌫

2

˙
S` `

ˆ
9535

336
` 1849

126
⌫ ´ 1501

36
⌫

2

˙
�m

m

⌃`

˙
x

7
2

`
ˆ

´16

3
S

3
` ` 2

3
�S

2
`⌃` `

ˆ
9

2
´ 56⌫

3

˙
S`⌃

2
` `

ˆ
35

24
´ 6⌫

˙
�⌃3

`

˙
x

7{2

`
ˆˆ

´3485⇡

96
` 13879⇡

72
⌫

˙
S` `

ˆ
´7163⇡

672
` 130583⇡

2016
⌫

˙
�m

m

⌃`

˙
x

4

˙

Masses:

Spins:

PN parameter:
x ”

`
Gm!{c3

˘2{3
1PN

⌫ “ m1m2{m2 � “ pm1 ´ m2q{m

S „ S1 ` S2 ⌃ „ S2 ´ S1
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Result for the number of cycles

Taylor T2 ! “ !ISCO pxISCO “ 1{6qNumber of cycles between f~10Hz and 

Part IV

LIGO/Virgo 10Md ` 1.4Md 10Md ` 10Md
Newtonian 3558.9 598.8

1PN 212.4 59.1
1.5PN ´180.9 ` 114.0�1 ` 11.7�2 ´51.2 ` 16.0�1 ` 16.0�2

2PN 9.8 ´ 10.5�2
1 ´ 2.9�1�2 4.0 ´ 1.1�2

1 ´ 2.2�1�2 ´ 1.1�2
2

2.5PN ´20.0 ` 33.8�1 ` 2.9�2 ´7.1 ` 5.7�1 ` 5.7�2

3PN
2.3 ´ 13.2�1 ´ 1.3�2

´1.2�2
1 ´ 0.2�1�2

2.2 ´ 2.6�1 ´ 2.6�2

´0.1�2
1 ´ 0.2�1�2 ´ 0.1�2

2

3.5PN
´1.8 ` 11.1�1 ` 0.8�2 ` pSSq

´0.7�3
1 ´ 0.3�2

1�2

´0.8 ` 1.7�1 ` 1.7�2 ` pSSq
´0.05�3

1 ´ 0.2�2
1�2 ´ 0.2�1�2

2 ´ 0.05�3
2

4PN pNSq´8.0�1 ´ 0.7�2 ` pSSq pNSq´1.5�1 ´ 1.5�2 ` pSSq

• Question of the convergence of the PN series 	


• Rough estimate of the importance of the new terms	


• Approximant-dependent

Ep!q Fp!q Balance equation
F “ ´dE{dt GW Phase 

PN approximant
Phasing for circular orbits
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6

FIG. 4. The match between TaylorF2 with 2.5PN spin correc-
tions and TaylorF2 including the next-to-next-to-leading spin-orbit
(3.5PN) and spin-orbit tail terms (3.0PN), as a function of the spin of
the black hole and the mass ratio of the system. Matches are calcu-
lated using the the aLIGO zero-detuned, high-power sensitivity curve
and a 15Hz lower frequency cutoff. Although there is agreement
where the spins are low � < 0.2, the match quickly drops as the spin
of the black hole increases, so that the match is already ⇠ 0.7 for
� ⇠ 0.5.

lorT4 PN approximants. The TaylorT4 approximant was used
to simulate NSBH binaries in LIGO’s previous gravitational-
wave searches, and the TaylorF2 family is used as the tem-
plates for detection [56]. In order to focus on the mismatches
primarily due to phase differences between the models, the
frequency cutoff of the TaylorF2 waveform is made to agree
with the ending frequency of the TaylorT4 waveform. We see
that the agreement between the two models is primarily influ-
enced by the magnitude of the black hole’s spin, and secon-
darily by the mass ratio. There is a noticeable drop in match
at higher mass ratios, even when the spin of the black hole
is zero. As expected, the best agreement is seen when the
black hole’s spin is small and the black hole and neutron star
have comparable masses. However, this plot shows that there
is a substantial disagreement between these approximants for
even moderately low black hole spins (� ⇠ 0.3), which in-
creases as the spin of the black hole increases. We note that
the effect on the match due to the spin of the neutron star is
negligible in all areas. In Fig. 3 we compare the TaylorF2
and TaylorT4 models, with the inclusion of the spin-orbit tail
(3.0PN) and next-to-next-to-leading spin-orbit (3.5PN) cor-
rections recently computed in Refs. [32, 63]. In comparison
to Fig. 2, the agreement is improved for aligned spins with
moderate magnitudes. However, these approximants maintain
a poor level of overall agreement, with matches of only ⇠ 0.8
at � ⇠ 0.5 for all mass ratios, and even lower matches for
anti-aligned systems. Figs. 4 and 5 compare the TaylorT2 and
TaylorT4 approximants with and without these additional spin
terms. We see that TaylorT4 is especially sensitive to the ad-
ditional corrections. In both cases, however, we note that the
additional terms have caused a significant change in the wave-
forms, as indicated by the low matches, demonstrating that the
expansion has not yet sufficiently converged.

In Fig. 6 we compare the SEOBNRv1 model to the PN

FIG. 5. The match between TaylorT4 with 2.5PN spin correc-
tions and TaylorT4 including the next-to-next-to-leading spin-orbit
(3.5PN) and spin-orbit tail terms (3.0PN), as a function of the spin of
the black hole and the mass ratio of the system. Matches are calcu-
lated using the the aLIGO zero-detuned, high-power sensitivity curve
and a 15Hz lower frequency cutoff. In comparison to Fig. 4, the ap-
proximant is more noticeably changed by the additional terms. For a
mass ratio of 8, the match has already fallen to ⇠ 0.7 for � ⇠ 0.15.

models TaylorF2 and TaylorT4. Since the SEOBNRv1 model
is not valid for large values of � [44] we restrict � < 0.6
and only report matches below this limit. We see that, simi-
lar to the comparison between TaylorF2 and TaylorT4, these
models also have large mismatches when the spin of the black
hole is nonzero. The large discrepancy between the waveform
families indicates that higher order PN correction terms are re-
quired. This may also pose significant problems for parameter
estimation of NSBH sources.

V. THE TAYLORR2F4 APPROXIMANT

In the previous section, we found a surprisingly large dis-
agreement between the TaylorF2 and TaylorT4 PN approxi-
mants when compared with waveform parameters appropriate
for NSBH systems. We would like to distinguish how much of
this is due to differences between time domain and frequency
domain approximants, and how much of this is due to differ-
ences between the formulation of the two PN families. This
can easily be performed for the TaylorF2 and TaylorT2 ap-
proximants, however we need to construct an equivalent fre-
quency domain version of TaylorT4 to complete the compari-
son.

By analogy with TaylorF1 and TaylorF2 [13, 64], TaylorF4
is obtained by numerically integrating the reciprocal of Eq. (9)
in the frequency domain,

dt/dv = 1/Ak(v). (21)

However, this does not elucidate the differences between the
TaylorT4 and TaylorF2 approximants. Instead, we construct
an analytical approximation to the TaylorF4 approximant,
which we call TaylorR2F4, by expanding Eq. (21) in pow-
ers of v. In order to make this series finite, we truncate these

5

III. COMPUTING FAITHFULNESS

Searches for gravitational waves from compact binary coa-
lescences utilize matched-filtering [60, 61], in which the sig-
nal model is correlated with the detector output to construct a
signal-to-noise ratio. If the signal model does not accurately
capture the true gravitational waveform, then the signal-to-
noise ratio, and hence the distance to which the detector can
see signals at a given false alarm rate, will decrease. Matched-
filtering therefore relies on the accuracy of the models. We
quantify the agreement between waveform families by com-
puting the match, or faithfulness of the waveforms, defined as
follows. We define the noise-weighted inner product between
two gravitational waveforms, h

1

and h
2

, to be

(h
1

|h
2

) = 4<
Z 1

0

˜h
1

(f)˜h⇤
2

(f)

Sn(f)
df, (16)

where

˜h
1

(f) =

Z 1

0

h
1

(t)e�2⇡ift dt (17)

is the Fourier transform of h
1

(t), and Sn(f) denotes the one-
sided power spectral density of the gravitational-wave detec-
tor’s noise. In practice, the signals are discretely sampled so
the upper frequency limit is the Nyquist frequency of the data,
and the lower frequency limit of the integral is set by the de-
tector’s low-frequency sensitivity [61]. We define the normal-
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where the shifted waveform can be constructed as

˜h(�c, tc) = ˜hei(�c�2⇡ftc). (20)

The faithfulness of representing a waveform from a given PN
family with that of another is described by the match between
the two waveforms when the same physical parameters are
used as input to the models. As both models describe the same
physical source, the match should be unity. Any deviation is
due to the variation between models and the match gives the
fractional loss in signal-to-noise ratio that will result.

IV. POST-NEWTONIAN APPROXIMANT FAITHFULNESS
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In this section we compare the faithfulness between wave-
forms from different PN approximants where we choose the
physical parameters to be consistent with NSBH sources. We

FIG. 2. The match between the TaylorF2 and TaylorT4 approximants
as a function of the spin of the black hole and the mass ratio of the
system. Only the completely known spin-related corrections up to
2.5PN are included. Matches are calculated using the the aLIGO
zero-detuned, high-power sensitivity curve and a 15Hz lower fre-
quency cutoff. A significant reduction in match is seen for even
moderate spins � ⇠ 0.3 and low mass ratios mbh/mns ⇠ 4. The
approximants also begin to disagree for non-spinning systems as the
mass ratio increases.

FIG. 3. The match between the TaylorF2 and TaylorT4 approximants
as a function of black hole spin and mass ratio. Both models in-
clude the next-to-next-to-leading spin-orbit (3.5PN) and spin-orbit
tail terms (3.0PN). In comparison to Fig. 2, the additional terms
have improved the agreement for moderately spinning aligned spin
systems, however, the match is still ⇠ 0.8 for � ⇠ 0.5 at all mass
ratios.

also consider how the waveforms from the PN approximants
compare to the waveforms from the SEOBNRv1 effective-
one-body model [44]. Lastly, we consider the effect of includ-
ing the spin-related terms at only partially derived orders. We
model the sensitivity of second generation gravitational-wave
detectors with the aLIGO zero-detuned, high-power sensitiv-
ity curve [62]. For this study we use a lower frequency cutoff
of 15Hz since it is not expected that detectors will have sig-
nificant sensitivity below this frequency. We consider the ef-
fect of increasing this low-frequency cutoff to simulate early
aLIGO sensitivities in Sec. IX.

In Fig. 2, we examine the faithfulness of NSBH wave-
forms by computing the match between the TaylorF2 and Tay-

5

III. COMPUTING FAITHFULNESS

Searches for gravitational waves from compact binary coa-
lescences utilize matched-filtering [60, 61], in which the sig-
nal model is correlated with the detector output to construct a
signal-to-noise ratio. If the signal model does not accurately
capture the true gravitational waveform, then the signal-to-
noise ratio, and hence the distance to which the detector can
see signals at a given false alarm rate, will decrease. Matched-
filtering therefore relies on the accuracy of the models. We
quantify the agreement between waveform families by com-
puting the match, or faithfulness of the waveforms, defined as
follows. We define the noise-weighted inner product between
two gravitational waveforms, h

1

and h
2

, to be

(h
1

|h
2

) = 4<
Z 1

0

˜h
1

(f)˜h⇤
2

(f)

Sn(f)
df, (16)

where

˜h
1

(f) =

Z 1

0

h
1

(t)e�2⇡ift dt (17)

is the Fourier transform of h
1

(t), and Sn(f) denotes the one-
sided power spectral density of the gravitational-wave detec-
tor’s noise. In practice, the signals are discretely sampled so
the upper frequency limit is the Nyquist frequency of the data,
and the lower frequency limit of the integral is set by the de-
tector’s low-frequency sensitivity [61]. We define the normal-
ized overlap between two waveforms h

1

and h
2

as

(h
1

|h
2

) =

(h
1

|h
2

)p
(h

1

|h
1

)(h
2

|h
2

)

. (18)

The match between two waveforms is obtained by maximiz-
ing the overlap over the phase of the waveform and �c and any
time shifts tc between h

1

and h
2

M(h
1

, h
2

) = max

�c,tc
(h

1

|h
2

(�c, tc)), (19)

where the shifted waveform can be constructed as

˜h(�c, tc) = ˜hei(�c�2⇡ftc). (20)

The faithfulness of representing a waveform from a given PN
family with that of another is described by the match between
the two waveforms when the same physical parameters are
used as input to the models. As both models describe the same
physical source, the match should be unity. Any deviation is
due to the variation between models and the match gives the
fractional loss in signal-to-noise ratio that will result.

IV. POST-NEWTONIAN APPROXIMANT FAITHFULNESS
COMPARISON

In this section we compare the faithfulness between wave-
forms from different PN approximants where we choose the
physical parameters to be consistent with NSBH sources. We

FIG. 2. The match between the TaylorF2 and TaylorT4 approximants
as a function of the spin of the black hole and the mass ratio of the
system. Only the completely known spin-related corrections up to
2.5PN are included. Matches are calculated using the the aLIGO
zero-detuned, high-power sensitivity curve and a 15Hz lower fre-
quency cutoff. A significant reduction in match is seen for even
moderate spins � ⇠ 0.3 and low mass ratios mbh/mns ⇠ 4. The
approximants also begin to disagree for non-spinning systems as the
mass ratio increases.

FIG. 3. The match between the TaylorF2 and TaylorT4 approximants
as a function of black hole spin and mass ratio. Both models in-
clude the next-to-next-to-leading spin-orbit (3.5PN) and spin-orbit
tail terms (3.0PN). In comparison to Fig. 2, the additional terms
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compare to the waveforms from the SEOBNRv1 effective-
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ing the spin-related terms at only partially derived orders. We
model the sensitivity of second generation gravitational-wave
detectors with the aLIGO zero-detuned, high-power sensitiv-
ity curve [62]. For this study we use a lower frequency cutoff
of 15Hz since it is not expected that detectors will have sig-
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forms by computing the match between the TaylorF2 and Tay-

6

FIG. 4. The match between TaylorF2 with 2.5PN spin correc-
tions and TaylorF2 including the next-to-next-to-leading spin-orbit
(3.5PN) and spin-orbit tail terms (3.0PN), as a function of the spin of
the black hole and the mass ratio of the system. Matches are calcu-
lated using the the aLIGO zero-detuned, high-power sensitivity curve
and a 15Hz lower frequency cutoff. Although there is agreement
where the spins are low � < 0.2, the match quickly drops as the spin
of the black hole increases, so that the match is already ⇠ 0.7 for
� ⇠ 0.5.

lorT4 PN approximants. The TaylorT4 approximant was used
to simulate NSBH binaries in LIGO’s previous gravitational-
wave searches, and the TaylorF2 family is used as the tem-
plates for detection [56]. In order to focus on the mismatches
primarily due to phase differences between the models, the
frequency cutoff of the TaylorF2 waveform is made to agree
with the ending frequency of the TaylorT4 waveform. We see
that the agreement between the two models is primarily influ-
enced by the magnitude of the black hole’s spin, and secon-
darily by the mass ratio. There is a noticeable drop in match
at higher mass ratios, even when the spin of the black hole
is zero. As expected, the best agreement is seen when the
black hole’s spin is small and the black hole and neutron star
have comparable masses. However, this plot shows that there
is a substantial disagreement between these approximants for
even moderately low black hole spins (� ⇠ 0.3), which in-
creases as the spin of the black hole increases. We note that
the effect on the match due to the spin of the neutron star is
negligible in all areas. In Fig. 3 we compare the TaylorF2
and TaylorT4 models, with the inclusion of the spin-orbit tail
(3.0PN) and next-to-next-to-leading spin-orbit (3.5PN) cor-
rections recently computed in Refs. [32, 63]. In comparison
to Fig. 2, the agreement is improved for aligned spins with
moderate magnitudes. However, these approximants maintain
a poor level of overall agreement, with matches of only ⇠ 0.8
at � ⇠ 0.5 for all mass ratios, and even lower matches for
anti-aligned systems. Figs. 4 and 5 compare the TaylorT2 and
TaylorT4 approximants with and without these additional spin
terms. We see that TaylorT4 is especially sensitive to the ad-
ditional corrections. In both cases, however, we note that the
additional terms have caused a significant change in the wave-
forms, as indicated by the low matches, demonstrating that the
expansion has not yet sufficiently converged.

In Fig. 6 we compare the SEOBNRv1 model to the PN

FIG. 5. The match between TaylorT4 with 2.5PN spin correc-
tions and TaylorT4 including the next-to-next-to-leading spin-orbit
(3.5PN) and spin-orbit tail terms (3.0PN), as a function of the spin of
the black hole and the mass ratio of the system. Matches are calcu-
lated using the the aLIGO zero-detuned, high-power sensitivity curve
and a 15Hz lower frequency cutoff. In comparison to Fig. 4, the ap-
proximant is more noticeably changed by the additional terms. For a
mass ratio of 8, the match has already fallen to ⇠ 0.7 for � ⇠ 0.15.

models TaylorF2 and TaylorT4. Since the SEOBNRv1 model
is not valid for large values of � [44] we restrict � < 0.6
and only report matches below this limit. We see that, simi-
lar to the comparison between TaylorF2 and TaylorT4, these
models also have large mismatches when the spin of the black
hole is nonzero. The large discrepancy between the waveform
families indicates that higher order PN correction terms are re-
quired. This may also pose significant problems for parameter
estimation of NSBH sources.

V. THE TAYLORR2F4 APPROXIMANT

In the previous section, we found a surprisingly large dis-
agreement between the TaylorF2 and TaylorT4 PN approxi-
mants when compared with waveform parameters appropriate
for NSBH systems. We would like to distinguish how much of
this is due to differences between time domain and frequency
domain approximants, and how much of this is due to differ-
ences between the formulation of the two PN families. This
can easily be performed for the TaylorF2 and TaylorT2 ap-
proximants, however we need to construct an equivalent fre-
quency domain version of TaylorT4 to complete the compari-
son.

By analogy with TaylorF1 and TaylorF2 [13, 64], TaylorF4
is obtained by numerically integrating the reciprocal of Eq. (9)
in the frequency domain,

dt/dv = 1/Ak(v). (21)

However, this does not elucidate the differences between the
TaylorT4 and TaylorF2 approximants. Instead, we construct
an analytical approximation to the TaylorF4 approximant,
which we call TaylorR2F4, by expanding Eq. (21) in pow-
ers of v. In order to make this series finite, we truncate these

TF2 - T4 S-O 2.5PN                                             TF2 - T4 S-O 3.5PN                                             

TF2 S-O 2.5PN -  TF2 S-O 3.5PN                                           T4 S-O 2.5PN -  T4 S-O 3.5PN                                           

Agreement between 
approximants, at a 
given PN order :                                            

Agreement between 
successive PN orders 
for each approximant :                                            

Illustration: phasing for the spin-aligned case
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More complete study needed to quantify this in terms of parameter estimation bias.
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FIG. 1. Precession cones of the six primary precessing simulations considered here, as computed by NR and PN. Shown are
the paths traced on the unit sphere by the normal to the orbital plane ˆ̀ and the spin-directions �̂1,2. The thick lines represent
the NR data, with the filled circles indicating the start of the NR simulations. The lines connecting the NR data to the origin
are drawn to help visualize the precession-cones. The PN data, plotted with thin lines, lie on the scale of this figure almost
precisely on top of the NR data. (The PN data was constructed using the Taylor T4 approximant matched at frequency
m⌦m = 0.021067, with a matching interval width �⌦ = 0.1⌦m.)

PN parameters for a comparison with a given NR sim-
ulation. Section III presents our results, starting with
a comparison of the precession dynamics in Sec. IIIA,
and continuing with an investigation in the accuracy of
the orbital phasing in Sec. III B. The following two sec-
tions study the convergence of the PN precession equa-
tions and the impact of ambiguous choices when dealing
with incompletely known spin-terms in the PN orbital
phasing. Section III E, finally, is devoted to some tech-
nical numerical aspects, including an investigation into
the importance of the gauge conditions used for the NR
runs. We close with a discussion in Sec. IV. The appen-
dices collect the precise post-Newtonian expressions we
use and additional useful formulae about quaternions.

II. METHODOLOGY

A. Post-Newtonian Theory

Post-Newtonian (PN) theory is an approximation to
General Relativity in the weak-field, slow-motion regime,
characterized by the small parameter ✏ ⇠ (v/c)2 ⇠ Gm

rc2 ,

where m, v, and r denote the characteristic mass, veloc-
ity, and size of the source, c is the speed of light, and G
is Newton’s gravitational constant. For the rest of this
paper, the source is always a binary black-hole system
with total mass m, relative velocity v and separation r,
and we use units where G = c = 1.

Restricting attention to quasi-circular binaries in the
adiabatic limit, the local dynamics of the source can be
split into two parts: the evolution of the orbital fre-
quency, and the precession of the orbital plane and the
spins. The leading-order precessional e↵ects [19] and
spin contributions to the evolution of the orbital fre-
quency [20, 21] enter post-Newtonian dynamics at the 1.5
PN order (i.e., ✏3/2) for spin-orbit e↵ects, and 2 PN order
for spin-spin e↵ects. The non-spin terms are known to
3.5 PN order [7],the spin-orbit terms to 4 PN order [22],
spin-spin terms to 2PN order [21]. The best currently
available description of precession equations is known as
next-to-next-to-leading order, corresponding to 3.5 PN
[23].

Illustration: comparison of PN/NR precession
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FIG. 11. �� as a function of mass ratio for BBH systems
with �1 = 0.5, and spin direction aligned (top), orthogonal
(middle), and anti-aligned (bottom) with the orbital angular
momentum. For clarity, the aligned/anti-aligned data are o↵-
set by +0.5 and �0.5, respectively, with the thin horizontal
black lines indicating zero for each set of curves. Plotted is
�� averaged over the 12 matching intervals, cf. Fig. 3, and
for three di↵erent Taylor approximants.

C. Convergence with PN order

So far all comparisons were performed using all avail-
able post-Newtonian information. It is also instructive to
consider behavior at di↵erent PN order, as this reveals
the convergence properties of the PN series, and allows
estimates of how accurate higher order PN expressions
might be.

The precession frequency $, given in Eq. (A31), is
a product of series in the frequency parameter x. We
multiply out this product, and truncate it at various
PN orders from leading order (corresponding to 1.5PN)
through next-to-next-to-leading order (corresponding to
3.5PN). Similarly, the spin precession frequencies ~⌦1,2 in
Eqs. (2) and (A32) are power series in x. We truncate the
power series for ~⌦1,2 in the same fashion as the power se-
ries for $, but keep the orbital phase evolution at 3.5PN
order, where we use the TaylorT4 prescription to imple-
ment the energy flux balance. For di↵erent precession-
truncation orders, we match the PN dynamics to the NR
simulations with the same techniques and at the same
matching frequencies as in the preceding sections.

When applied to the NR simulation q3 0.5x, we obtain
the results shown in Fig. 12. This figure shows clearly
that with increasing PN order in the precession equa-
tions, PN precession dynamics tracks the NR simulation
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FIG. 12. Comparison of PN-NR precession dynamics when
the expansion order of the PN precession equations is varied.
Shown is the case q3 0.5x. The top panel shows the precession
of the orbital plane, and the bottom panel of the spin �̂1

(without and with averaging). All data shown are averages
over 12 matching intervals, cf. Fig. 3.

more and more accurately. When only the leading order
terms of the precession equations are included (1.5PN
order), \L and \�1 are ⇡ 0.1rad; at 3.5PN order this
di↵erence drops by nearly two orders of magnitude.

We repeat this comparison for our six main precessing
cases from Table I. The results are shown in Fig. 13. It
is evident that for all cases \L decreases with increasing
order in the precession equations with almost 2 orders of
magnitude improvement between leading order and next-
to-next leading order truncations. A similar trend is seen
in the convergence of the spin angle \�1 shown in bot-
tom panel of Fig. 13. The angle decreases with PN order
almost monotonically for all cases except q1.0 twospins.
However, this is an artificial consequence of picking a
particular matching point at m⌦ = 0.03: as can be seen
from the bottom panel of Fig. 12 \�1 shows large oscil-
lations and it is a coincidence that the matching point
happens to be in a “trough” of �1.

So far we have varied the PN order of the precession
equations, while keeping the orbital frequency evolution
at 3.5PN order. Let us now investigate the opposite case:
varying the PN order of the orbital frequency and moni-
toring its impact on the orbital phase evolution. We keep
the PN order of the precession equations at 3.5PN, and
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FIG. 13. Convergence of the PN precession equations for all
cases in Table I. The evolution was done with the Taylor T4
approximant at 3.5 PN order. The leading order spin-orbit
correction is at 1.5 PN order and the spin-squared corrections
appear at 2 PN order. Each data point is the average \L over
PN-NR comparisons performed using 12 matching intervals,
cf. Fig. 3, with error bars showing the maximal and minimal
\L and \�1 of the 12 fits.

match PN with di↵erent orders of the orbital frequency
evolution (and TaylorT4 energy-balance prescription) to
the NR simulations. We then evaluate �� (a quantity
that reduces to the orbital phase di↵erence in cases where
the latter is unambiguously defined) at the time at which
the NR simulation reaches the frequency m⌦ = 0.03. We
examine our six primary precessing runs, and also the
aligned-spin and anti-aligned spin binaries listed in Ta-
ble I.

When the spin is initially in the orbital plane, as seen
in the top panel of Fig. 14, the overall trend is a non-
monotonic error decrease with PN order, with spikes at
1 and 2.5 PN orders as has been seen previously with
non-spinning binaries [26]. All of the aligned cases show
a large improvement at 1.5 PN order, associated with the
leading order spin-orbit contribution. The phase di↵er-
ences then spike at 2 and 2.5 PN orders and then decrease
at 3 PN order. Finally, di↵erent cases show di↵erent re-
sults at 3.5 PN with some showing decreases di↵erences
while for others the di↵erences increase.

For the anti-aligned cases the picture is similar to pre-
cessing cases with a spike at 1 and 2.5 PN orders and

FIG. 14. Convergence of the Taylor T4 approximant with PN
order. Shown are all cases from Table I. Top: all precessing
cases. Middle: aligned spin cases. Bottom: anti-aligned
spin cases. Each data point shown is averaged over PN-NR
comparison with 12 matching intervals, cf. Fig. 3. Error bars
are omitted for clarity, but would be of similar size to those
in Fig. 15.

monotonic improvement thereafter. The main di↵erence
from precessing cases is the magnitude of the phase dif-
ferences, which is larger by a factor of ⇠ 5 at 3.5 PN order
for the anti-aligned cases (see for example q1.5 s0.5x 0).

These results suggest that convergence of the orbital
phase evolution depends sensitively on the exact param-
eters of the system under study. Further investigation of
the parameter space is warranted.

Angles at a specific time 
varying PN order

p`PN, `NRqAngles                  and pSPN,SNRq
varying PN order
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FIG. 13. Convergence of the PN precession equations for all
cases in Table I. The evolution was done with the Taylor T4
approximant at 3.5 PN order. The leading order spin-orbit
correction is at 1.5 PN order and the spin-squared corrections
appear at 2 PN order. Each data point is the average \L over
PN-NR comparisons performed using 12 matching intervals,
cf. Fig. 3, with error bars showing the maximal and minimal
\L and \�1 of the 12 fits.

match PN with di↵erent orders of the orbital frequency
evolution (and TaylorT4 energy-balance prescription) to
the NR simulations. We then evaluate �� (a quantity
that reduces to the orbital phase di↵erence in cases where
the latter is unambiguously defined) at the time at which
the NR simulation reaches the frequency m⌦ = 0.03. We
examine our six primary precessing runs, and also the
aligned-spin and anti-aligned spin binaries listed in Ta-
ble I.

When the spin is initially in the orbital plane, as seen
in the top panel of Fig. 14, the overall trend is a non-
monotonic error decrease with PN order, with spikes at
1 and 2.5 PN orders as has been seen previously with
non-spinning binaries [26]. All of the aligned cases show
a large improvement at 1.5 PN order, associated with the
leading order spin-orbit contribution. The phase di↵er-
ences then spike at 2 and 2.5 PN orders and then decrease
at 3 PN order. Finally, di↵erent cases show di↵erent re-
sults at 3.5 PN with some showing decreases di↵erences
while for others the di↵erences increase.

For the anti-aligned cases the picture is similar to pre-
cessing cases with a spike at 1 and 2.5 PN orders and
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FIG. 14. Convergence of the Taylor T4 approximant with PN
order. Shown are all cases from Table I. Top: all precessing
cases. Middle: aligned spin cases. Bottom: anti-aligned
spin cases. Each data point shown is averaged over PN-NR
comparison with 12 matching intervals, cf. Fig. 3. Error bars
are omitted for clarity, but would be of similar size to those
in Fig. 15.

monotonic improvement thereafter. The main di↵erence
from precessing cases is the magnitude of the phase dif-
ferences, which is larger by a factor of ⇠ 5 at 3.5 PN order
for the anti-aligned cases (see for example q1.5 s0.5x 0).

These results suggest that convergence of the orbital
phase evolution depends sensitively on the exact param-
eters of the system under study. Further investigation of
the parameter space is warranted.
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• Satisfying agreement for the precession (even if gauge-dependent quantities)	

!
• Convergence less clear for the orbital phase…

Comparison
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Part IV Summary and Conclusion

Results

• 3.5PN spin-orbit dynamics, 4PN spin-orbit flux/phasing	


• 3PN spin-spin dynamics and flux/phasing	


• Lagrangian formalism for higher-order spin effects	


• 3.5PN spin-cube dynamics and flux/phasing

Comparisons

• PN/PN: still important differences at 3.5PN 	


• PN/NR: convergence for precession, less clear for orbital phase

Work in progress

• 3.5PN spin-orbit and 3PN spin-spin polarizations (or spherical modes)	


• 3.5PN spin-spin tail effects	


• 4PN non-spinning dynamics (and flux/phasing later)	


• Spin effects at higher order: 4PN spin-spin, 4PN spin^4, 4.5PN spin-orbit ?
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Part I The spin of black holes : observations

Dimensionless Kerr parameter :	

(1 for maximally rotating black hole)                          

The Kerr black hole

Most general stationary, axisymmetric 
vacuum solution to Einstein equations : 

the rotating Kerr black hole                         

Example for stellar mass black holes :	

[Gou&al 11] a>0.95 for Cygnus X-1

 Summary for SMBH [Reynolds 13]

a ” cJ

Gm2

X-Ray spectroscopy 
of accretion disks
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Part I The spin of black holes : theoretical insight

The spin of a merger remnant
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FIG. 1: Components vx and vy of the kick velocity as function
of time, for η = 0.19, for resolutions h1 = 1/45, h2 = 1/51
and h3 = 1/58. Top panels: kick components vx and vy .
Lower panels: demonstration of second-order convergence.

with the estimate of 114 ± 65 km s−1 of [14], and also
the close-limit analyses in [15, 16]. The higher estimate
of 250 ± 50 km/s reported in Ref. [13] does not include
a possible “breaking” effect in the ringdown phase, and
their values agree well with the local maximum in Fig. 3.
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FIG. 2: The kick velocity as a function of mass ratio, with an
error of ±6% indicated by the dotted lines. We also indicate
previous numerical results from Baker, et al [30], Campanelli
[29], and Herrmann, et al [24], and the analytic estimates of
Damour and Gopakumar [14] and Sopuerta, et al [15].

Finally, we address the spin of the merged black hole.
An understanding of the demographics of black holes,
in particular the expected values of spins, is of essential
importance for astrophysics, and also for developing ap-
proaches to explore the astrophysically relevant binary
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described in the text. Lower panel: for runs with three initial
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FIG. 4: Left panel: Radiated energy and angular momentum
as function of the mass ratio. Right panel: Spin of the final
black hole (a/Mf ) as function of the mass ratio. The spin
curves can be fit by a/Mf = 0.089(±0.003) + 2.4(±0.025)η.

black hole inspiral parameter space. We have computed
the initial angular momentum from surface integrals at
the wave extraction sphere as described in [28], and the
final angular momentum from computing the wave ring-
down frequency from an amplitude-phase decomposition
of the radiation signal, and comparing with the depen-
dence of angular momentum of a Kerr black hole on the
ringdown frequency as quoted in [39]. An error estimate
is obtained from evaluating the angular momentum sur-
face integrals at the extraction sphere at the end of the
simulation. We thus find our results to be accurate to
within about 2 %. Our results for the unequal-mass se-
quence considered here are displayed in Fig. 4. In the
regime we consider, the dependence of the final spin on
the mass ratio is approximately linear when expressed as
a function of η: a/Mf = 0.089(±0.003) + 2.4(±0.025)η
(the correct result for η = 0 corresponds to a = 0).

Link with astrophysics

Inverse problem : what will the measured distribution of spins tell us about their 
environment, and about the growth history (accretion or merger) of SMBH ?

Spin of the remnant for nonspinning 
black holes [e.g. Gonzalez&al 07] :

Numerical relativity results : 

Effective formulas for spinning BH 
binaries [e.g. Rezzolla&al 08]
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Part II Post-Newtonian expansion

PN conventions

1PN „ Gm{rc2 „ v2{c2

dv

dt
“ AN ` 1

c2
A1PN ` 1

c4
A2PN ` 1

c5
ARR

2.5PN ` 1

c6
A3PN ` 1

c7
ARR

3.5PN

` 1

c3
ASO

1.5PN ` 1

c5
ASO

2.5PN ` 1

c7
ASO

3.5PN ` O
ˆ

1

c8

˙

Spin corrections to the equations of motion

Spin corrections to the energy flux

F “ FN ` 1

c2
F1PN ` 1

c3
F tails
1.5PN ` 1

c4
F2PN ` 1

c5
F tails
2.5PN ` 1

c6
F3PN ` 1

c7
F tails
3.5PN

` 1

c3
F SO
1.5PN ` 1

c5
F SO
2.5PN ` 1

c6
F SO´tails
3PN ` 1

c7
F SO
3.5PN ` 1

c8
F SO´tails
4PN ` O

ˆ
1

c9

˙

(spin-spin terms not shown) 

ADM Hamiltonian derived by 
[Hartung-Steinhoff 11]

Addressed in this work

• Slowly-varying, weakly-gravitating regime : 

S “ cJ “ Gm2a• Convention :                           , of Newtonian order for an extremal BH. 
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Part II Latest post-Newtonian results for spin effects

EFT results :

ADM Hamiltonian results :

- Next-to-leading order Hamiltonian, S-O [Damour, Jaranowski, Schäfer 07]	

- Next-to-leading order Hamiltonian, S1-S2 [Steinhoff, Hergt, Schäfer 07]	

- Next-to-leading order Hamiltonian, S^2 [Hergt, Steinhoff, Schäfer 10]	

- Next-to-next-to-leading order Hamiltonian, S-O and S1-S2 [Hartung&Steinhoff 11]

- Next-to-leading order, S-O [Porto 10]	

- Next-to-leading order, S1-S2 and S^2 [Porto&Rothstein 10, Levi 08, Levi 10]	

- Next-to-next-to-leading order S1-S2 [Porto&Rothstein 11, Levi 11]

Harmonic coordinates results :

- Next-to-leading order, S-O (EOM and flux) [Faye, Blanchet, Buonanno 06]	

- Next-to-leading order, S-O (full waveform) [Arun&al 08]	

- Leading order, S1-S2 and S^2 (full waveform) [Buonanno, Faye, Hinderer 12]	

- Next-to-next-to-leading order S-O (EOM and flux) [this work]

(And so far incomplete results for the waveform and flux)
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Part II Multipolar post-newtonian wave generation formalism

Outline

• Iteration of                        outside the source	

   starting with a linear solution parametrized by	

   source and gauge moments

h “ l´1⇤phq

IL, JL, . . . , ZL

• Existence of a matching region for a PN source	

   matching of asymptotic expansions	

                           as integrals over the source                                               IL, . . . , ZL

consistent PN iteration in the near zone 

UL, VL

• Radiative coordinates and radiatives multipoles	

               describing waveform at infinity                                             

ª
d

3
x Ñ FPB“0

ª
d

3
x

ˆ |x|
r0

˙B

Finite part regularization

• Alternative parametrization in terms of only 
two sets of canonical moments 	

         relation found by a gauge transformation                                         

ML, SL
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Part II UV regularization

Hadamard regularization

F pxq “
ÿ

p0§p§N

r

p
1 f

1
ppn1q ` oprN1 q , pF q1 “ ⌦

f

1
0pn1q↵

• Regularized value of singular functions : 

• Non-distributive : 

• Prescription for distributional derivatives (not unique, no Leibniz rule)

F �1 ‰ pF q1�1, pFGq1 ‰ pF q1pGq1

• Regularization of integrals : removal of the diverging part 

• Apparition of ambiguities at the 3PN NS order

Dimensional regularization

•                   and analytical continuation in  d Ñ 3 ` " "

• Structure : 
F

pdqpxq “
ÿ

p0§p§N
q0§q§q1

r

p`q"
1 f

1

p"q
p,qpn1q ` oprN1 q , f

1
ppn1q “

ÿ

q0§q§q1

f

1

p0q
p,qpn1q

• Distributive, well-defined distributional prescription, regular integrals

• In practice : ‘pure Hadamard-Schwartz’ supplemented by dimreg
Determined the 
3PN ambiguities

Pfs1,s2

ª
d3xF pxq
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Part III Results for the metric and applications

Regularized metric

• Used for the first law of binary black holes [Blanchet&al 12] 

Metric in the whole near-zone

Can be used for :	


• Building approximate solutions by asymptotic matching to a perturbed black hole	

[Gallouin&al 12]	


• Simulating a circumbinary MHD disk in a PN-approximated spacetime [Noble&al 09]	


• Building realistic initial conditions for NR using PN information [Kelly&al 09]

Allows computation of the emitted 
waveform and energy flux

pg00qS Ñ Op7q
pg0iqS Ñ Op6q
pgijqS Ñ Op7q

With EOM :

pgS00q1 Ñ Op9q
pgS0iq1 Ñ Op8q
pgSijq1 Ñ Op7q
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Part III Computation of the potentials I

Compact-support terms

Dirac-delta terms (stress-energy tensor or distributional contributions), treated with pHS :ª
d3xF pxq�1 “ pF q1

‘Easy’ non-compact-support terms �g “ 1

r1r2
,

g ” lnpr1 ` r2 ` r12q

�´1

„
Bi

ˆ
1

r1

˙
Bjk

ˆ
1

r2

˙⇢
“ ´B1

i B2
jkg

Particular solution :

Quadratic terms with lowest-order potentials          can be readily integrated :V, Vi

‘Difficult’ non-compact-support terms

Only the regularized potential is evaluated, using generic formulas :

P pxq “ ´ 1

4⇡
Pfs1,s2

ª
d3x1

|x ´ x

1|F px1q

pP q1 “ ´ 1

4⇡
Pfs1,s2

ª
d3x

r1
F pxq `

„
ln

ˆ
r1
1

s1

˙
´ 1

⇢
pr21F q1

s1, s2, r
1
1, r

1
2

Regularization constants
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Part III Computation of the potentials II

‘Difficult’ non-compact-support terms

No apparition of reg. constants in 
the spin part of potentials

Apparition of gauge constants in one 
no-spin potential : dimreg computation

Cancellation of all 
dimreg contributions

Dimreg contributions

`
BjkŶ NS

i

˘
1

DpBijP qp1q ” pBijP pdqqpy1q ´ pBijP q1

DpBjkŶiqp1q “ 1

"

G3m2
1m2

252
vl12B1

ijkl

ˆ
1

r12

˙
` Op"0qResult for the pole :

`
BjrkŶ

NS
is

˘
1
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Overview for the waveform and flux and 3.5PN order

IL “ FP

ª
d

3
x x̂L

`
� ´ �pV 2q{c2 ` . . .

˘

... 

Matching : expressed as integrals 
over the source

Equations of motion 
and precession

Metric potentials 
computed in all space

IL, JL,WL, . . . , ZL

Source and gauge moments

F “
ÿ

`•2

1

c2``1

„
9UL

9UL ` 1

c2
9VL

9VL

⇢ UL, VL

Radiative moments

hTT
ij “ 1

c2R
⇤TT
ij pNq

ÿ

`•2

1

c`

„
NUL ` 1

c
N"VL

⇢
Wave (Transverse-Traceless)

Emitted energy flux

Instantaneous and 
hereditary terms

• At 3.5PN order, only leading order instantaneous contributions intervene (with leading tail 
terms at 3PN) : UL “ Iplq

L , VL “ J plq
L

• Computation of the source moments and their derivatives using EOM and metric 

Part IV
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Part III Results for quasi-circular orbits

Equations of motion

Gm

rc

2
“ x

#
1 ` x

ˆ
1 ´ 1

3
⌫

˙
` . . .

` x

7{2

Gm

2

„ˆ
5 ´ 127

12
⌫ ´ 6⌫2

˙
S` ` �m

m

ˆ
3 ´ 61

6
⌫ ´ 8

3
⌫

2

˙
⌃`

⇢
` O p8q

+
.

Corrections in Kepler’s law : x ”
`
Gm!{c3

˘2{3
1PN

Corrections in the orbital energy :

E “ ´m⌫c

2
x

2

#
1 ` x

ˆ
´3

4
´ 1

12
⌫

˙
` . . .

` x

7{2

Gm

2

„ˆ
135

4
´ 367

4
⌫ ` 29

12
⌫

2

˙
S` ` �m

m

ˆ
27

4
´ 39⌫ ` 5

4
⌫

2

˙
⌃`

⇢
` O p8q

+

Conserved quantities
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From the energy and flux to the phase

Spin contributions in 
the balance equation

F “ ´dE

dt
9xdE
dx

` 9
S

dE

dS
“ ´F

Post-Newtonian orders : control of the evolution of the spins ?

Secular spin variables at linear order in spin :                      since                    ,   9S` “ OpS2q
Op5qpOp0q ` ¨ ¨ ¨ ` Op7qq ` 9S`pOp3q ` ¨ ¨ ¨ ` Op7qq “ Op5qpOp0q ` ¨ ¨ ¨ ` Op7qq

9S “ ⌦ ˆ S ⌦ 9 `

d�

dx
“ ´ c

3

Gm

x

3{2 dE{dx
Fpxq

dt

dx
“ ´dE{dx

Fpxq

Illustration of the 
computation of the phase

• Taylor T1 : solve numerically without 
re-expanding the system

dx

dt
“ ´ F

dE{dx
d�

dt
“ c

3

Gm

x

3{2

• Taylor T2 : solve analytically after PN-
expanding the system

Part IV
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i, �i

1.4Md ` 1.4Md 10Md ` 1.4Md 10Md ` 10Md
N 15952.6 3558.9 598.8

1PN 439.5 212.4 59.1
1.5PN ´210.3 ` 65.61�1 ` 65.62�2 ´180.9 ` 114.01�1 ` 11.72�2 ´51.2 ` 16.01�1 ` 16.02�2

2PN 9.9 9.8 4.0
2.5PN ´11.7 ` 9.31�1 ` 9.32�2 ´20.0 ` 33.81�1 ` 2.92�2 ´7.1 ` 5.71�1 ` 5.72�2

3PN 2.6 ´ 3.21�1 ´ 3.22�2 2.3 ´ 13.21�1 ´ 1.32�2 2.2 ´ 2.61�1 ´ 2.62�2

3.5PN ´0.9`1.91�1 ` 1.92�2 ´1.8`11.11�1 ` 0.82�2 ´0.8`1.71�1 ` 1.72�2

4PN pNSq´1.51�1 ´ 1.52�2 pNSq´8.01�1 ´ 0.72�2 pNSq´1.51�1 ´ 1.52�2

Result for the number of cycles

Taylor T2 ! “ !ISCO pxISCO “ 1{6qNumber of cycles between f~10Hz and 

parameters for the orientation and magnitude of the spins

Taylor T1 1.4Md ` 1.4Md 10Md ` 1.4Md 10Md ` 10Md
N 16028.2 3575.8 601.6

1PN 474.4 248.7 75.8
1.5PN ´237.1 ` p`13.7qS ´214.9 ` p122.5qS ´67.2 ` p35.0qS
2PN ´18.5 ´182. ´8.0

2.5PN 20.8 ` p0.6qS 33.6 ` p16.2qS 16.6 ` p3.9qS
3PN ´10 ` p0.2qS ´30.3 ` p4.6qS ´11.6 ` p1.8qS

3.5PN ´0.1 ` p´0.01qS 2.7 ` p1.3qS ´0.2 ` p´0.3qS
4PN pNSq ` p´0.005qS pNSq ` p0.4qS pNSq ` p´0.1qS

Aligned spins, 0.1 for 
neutron stars and 1 
for black holes

Part IV
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Part I The spin of neutron stars

Observations of rotation of 
neutron stars :

Two main pulsar populations :	

- Young, normal pulsars	

- Recycled pulsars : P ~ few milliseconds

Binary and Millisecond Pulsars 7

Figure 3: The P–Ṗ diagram showing the current sample of radio pulsars. Binary pulsars are highlighted
by open circles. Lines of constant magnetic field (dashed), characteristic age (dash-dotted) and spin-down
energy loss rate (dotted) are also shown.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2008-8

diagram for NS [Lorimer 08]P ´ 9P

Dimensionless Kerr parameter :

Fastest known pulsar : J1748-2446 , 716 Hz	

Order-of-magnitude estimate (I not known) :

a „ 0.4
Typical value in binaries :

a „ 0.1

binaries
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Part I Comparison NR/PN for the 22 mode
27
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FIG. 21: TaylorT4 amplitude comparison for different PN
orders. Shown is the relative difference in gravitational wave
amplitude between TaylorT4 and numerical Y22 waveforms as
a function of time. Matching is performed at mωm = 0.04.
All curves use 3.5PN order in phase but different PN orders
(as labeled) in the amplitude expansion.

Ylm modes, is not known.7

B. Comparing different post-Newtonian
approximants

The previous section presented detailed comparisons
of our numerical waveforms with four different post-
Newtonian approximants. We now turn our attention to
some comparisons between these approximants. In this
section we also explore further how the post-Newtonian
order influences agreement between numerical and post-
Newtonian waveforms.

Figure 22 presents phase differences as a function of
time for all four PN approximants we consider here and
for different PN orders. The post-Newtonian and nu-
merical waveforms are matched at mωm = 0.04, about
9 cycles after the beginning of the numerical waveform,
and about 21 cycles before its end. We find that some
PN approximants at some particular orders agree exceed-
ingly well with the numerical results. The best match
is easily TaylorT4 at 3.5PN order, and the next best

7 To get the complete waveform to 3PN order, only the (2, 2) mode
must be known to 3PN order; other modes must be known to
smaller PN orders. For an equal mass, non-spinning binary, all
modes except the (3, 2) mode are currently known to sufficient
order to get a complete 3PN waveform [62].
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FIG. 22: Phase comparison for different PN approximants
at different PN orders, matched at mωm = 0.04. Shown is
the difference in gravitational wave phase between each post-
Newtonian approximant and the numerical Y22 waveforms as
a function of time. The two vertical brown lines indicate
when the numerical simulation reaches mω = 0.063 and 0.1,
respectively; the labels along the top horizontal axes give the
number of gravitational-wave cycles before mω = 0.1.
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FIG. 23: Same as Fig. 22, but showing only the last stage of
the inspiral. The horizontal axis ends at the estimated time
of merger, (t − r∗)CAH = 3950m, cf. Sec IIG. The top and
bottom panels use different vertical scales.

[Boyle&al 07]
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Part I Spin effects : transitional precession and recoil

15

FIG. 8: Transitional precession. Evolution of the direction of total angular momentum (left panel) and of Newtonian orbital
angular momentum (right panel) in the transitionally precessing (20+5)M⊙ BBH with initial angles θS1

= 175.4◦, θS2
= 105.4◦,

and φS1
− φS2

= 92.0◦ (at fGW = 30Hz).

As a consequence, among all the configurations we have considered, only (20 + 5)M⊙ and (20 + 10)M⊙ BBHs can
then have observable transitional-precession phases. These latter binaries are characterized by significantly larger
changes in J [see Tab. III]. However, (20 + 10)M⊙ BBHs still require f > fmin

tran = 138 Hz, which is very close to the
relevant ending frequency; so the change in J is smaller, and we never observed episodes of transitional precession
in the 200 initial configurations analyzed. On the contrary, we observed a few for (20 + 5)M⊙ BBHs; one example
follows from the initial configuration given by θS1

= 175.4◦, θS2
= 105.4◦, and φS1

− φS2
= 92.0◦ (at fGW = 30 Hz).

In this configuration the initial spin of the more massive body is almost exactly antialigned with the orbital angular
momentum. The trajectories of Ĵ and L̂N during this evolution are shown, respectively, in the left and right panels
of Fig. 8.

By contrast, none of the NS–BH configurations examined exhibits transitional precessions. This is because the BH
is taken as maximally spinning, so S is always much larger than L in the frequency band under consideration.

F. Apostolatos’ power law for orbital precession

As discussed in the previous section, the vast majority of binary configurations undergoes simple precession, where
Ĵ remains constant, while L̂N and S1,2 precess around it. For ACST configurations (m1 ≈ m2 and negligible SS

interactions, or S2 ≈ 0), both L̂N and Ŝ precess around J with the precession frequency [10, Eq. (42)]

Ωp ≡
dαp

dt
=

(

2 +
3

2

m2

m1

)

Jω2 . (60)

ACST identified two regimes where the evolution of αp can be approximated very well by a power law in ω (or f).
For LN ≫ S, the total angular-momentum J ≈ LN ∼ ω−1/3; using ω̇ ∼ ω11/3, it is straightforward to derive from
Eq. (60) that αp is approximated well by a linear function of f−1,

αfit
p(−1)(f) ≈

B1

f
+ B2 , (61)

where B1 and B2 are constant coefficients. Since LN/S ∼ η ω−1/3, the condition LN ≫ S corresponds to comparable-
mass binaries (η ∼ 1/4) or to large separations. For LN ≪ S, we have J ≈ S; in this case we derive from Eq. (60)

Transitional precession (20+5)M [BCV 02] :	

regime where S and L almost cancel, and 
direction of J changes rapidly

11
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FIG. 11: The maximum recoil velocity predicted by the
hangup kick and cross kick formulas for BHBs with a given
mass ratio and maximal spin. The inset shows the di↵erence
between these two velocities versus symmetric mass ratio.

TABLE IX: Comparison between the predicted probabilities
for a recoil in a given range as from the hangup kick and cross

kick formulas for hot (top) and cold (bottom) accretion.

Range P(cross) P(cross obs) P(hang) P(hang obs)
0-500 77.000% 91.301% 80.871% 93.210%
500-100 15.564% 6.903% 13.843% 5.623%
1000-2000 6.930% 1.741% 5.046% 1.143%
2000-3000 0.498% 0.055% 0.237% 0.025%
3000-4000 0.007% 3.5 · 10�4% 0.003% 10�4%
0-500 91.193% 97.765% 93.657% 98.522%
500-100 7.974% 2.114% 5.919% 1.423%
1000-2000 0.832% 0.120% 0.423% 0.055%
2000-3000 0.002% 1.3 · 10�4 4.7 · 10�4% 0 %
3000-4000 0% 0% 0% 0%

This is actually most pronounced for the ↵ = 0.9 in
our original hangup kick paper [18] (see Fig. 5 there).
However, this skew appears to be actually due to vary-
ing eccentricity, which leads to di↵erent inspiral times
for di↵erent starting azimuthal configurations. To help
confirm that there is not, in fact, a strong preference
for any particular azimuthal angles, we evolved as set
of 360 superkick configurations (with the spins aligned
along � = 0�, 1�, · · · , 359�), using 3.5 PN, from a sepa-
ration of 10M to 3M (note, we are not concerned with
the accuracy of PN at 3M, rather, if there is any signif-
icant e↵ect predicted by PN). The distribution of final
azimuthal configurations was flat, with no strong pref-
erence or clumping. A plot of final versus the initial
azimuthal angle � is shown in Fig. 12. There is a small
sinusoidal e↵ect at the level of 4 parts in 1000.

By examining the N configuration (which have non-
zero values for Sk, S?, �k, and �?), we found a new
nonlinear term that amplifies the recoil. We verified this
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in
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FIG. 12: A plot of d�final/d�init versus time for a set of 360
binaries in a superkick configuration. The initial separation
is ⇠ 10M , while the final separation is ⇠ 3M . The e↵ect is
only 4 parts in 1000.

new e↵ect be examining several other configurations (S,
K, L). Since the N configurations are generic, in that all
relevant spin parameters are non-trivial, it appears to be
the case that there is no other large nonlinear contribu-
tion to the recoil for equal-mass BHBs (such a contri-
bution would have to vanish when one the BH is non-
spinning). On the other hand, the unequal-mass regime,
which is the subject of major research e↵ort by the au-
thors, promises to hold many new surprises.
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Appendix A: Progenitor and Remnant Parameters

The tables in this appendix provide useful information
for modeling remnant properties and how they relate to
the configuration of the progenitor BHB. These results

Maximal kick : ‘‘Hangup’’ configurations 
[Lousto&Zlochower 12]

Nonlinear Gravitational Recoil from the Mergers of Precessing Black-Hole Binaries

Carlos O. Lousto and Yosef Zlochower

Center for Computational Relativity and Gravitation,

and School of Mathematical Sciences, Rochester Institute of Technology,

85 Lomb Memorial Drive, Rochester, New York 14623

We present results from an extensive study of 83 precessing, equal-mass black-hole binaries with
large spins, |~Si/m

2
i | = 0.8, and use these data to model new nonlinear contributions to the gravita-

tional recoil imparted to the merged black hole. We find a new e↵ect, the cross kick, that enhances
the recoil for partially aligned binaries beyond the hangup kick e↵ect. This has the consequence of
increasing the probabilities (by nearly a factor two) of recoils larger than 2000 km s�1, and, conse-
quently, of black holes getting ejected from galaxies and globular clusters, as well as the observation
of large di↵erential redshifts/blueshifts in the cores of recently merged galaxies.

PACS numbers: 04.25.dg, 04.30.Db, 04.25.Nx, 04.70.Bw

I. INTRODUCTION

The studies of black-hole binaries (BHBs) that imme-
diately followed the 2005 breakthroughs in numerical rel-
ativity [1–3] soon revealed the importance of spin to the
orbital dynamics [4]. One of the the most striking re-
sult was the unexpectedly large recoil velocity imparted
to the remnant due to an intense burst of gravitational
radiation around merger [5, 6]. Recoil velocities as large
as 4000 km s�1 were predicted for maximally spinning
black holes [7] (in a configuration with both spins lying in
the orbital plane, known as the superkick configuration).
This prediction was based on model for the recoil veloci-
ties that included the terms linear in the in the individual
spins of the merging holes [5, 8]. These predictions trig-
gered several astronomical searches for recoiling super-
massive black holes as the byproduct of galaxy collisions,
producing several dozen potential candidates [9–14].

Accretion e↵ects [15, 16] would tend to align the spins
of the BHs with the orbital angular momentum, sup-
pressing the superkick and, apparently, the likelihood of
observing large recoils. We recently found [17, 18] how-
ever, that there are nonlinear spin couplings that lead to
even larger recoil velocities when the spins are partially
aligned with the orbital angular momentum. These so
called hangup kick recoils can be as large as 5000 km s�1

(see Fig. 1).

In this paper we continue our exploration of unex-
pectedly large nonlinear contributions to the total re-
coil [17, 18]. Here we concentrate on equal-mass black-
hole binaries (BHBs) that precess. Our ultimate goal is
to derive an empirical formula that takes into account
all contributions to the recoil (at least to the level of a
few percent accuracy). This would be a near hopeless
task if we just start with a set of random configurations.
Rather, we propose a program for developing sets of con-
figurations with exact or approximate symmetries that
allow us to model the recoil term by term. For example,
in the hangup kick configurations [17, 18], the BHBs can
be described by two parameters, the z component of the

y

L

z

θ θ

φ

φ

P2

P1

S1S2

x

FIG. 1: The hangup kick configuration. Here S1z = S2z, while
S1x = �S2x and S1y = �S2y. The hangup kick configurations
are preserved exactly by numerical evolutions.

total spin Sz, and the in-plane component of ~� (~S
2

� ~S
1

in the equal-mass case). If the generic recoil is also a
function of �z, those terms would be suppressed in the
hangup kick configurations. Here we continue the explo-
ration by evolving configurations that activate di↵erent
possible terms for the recoil.

Not all nonlinear terms in the spins lead to large in-
creases in the recoil [19, 20]. We therefore need to per-
form many diverse simulations to try to elucidate which
nonlinear terms contribute significantly and which can
still be ignored. Here we explore the e↵ects of preces-
sion on recoils. We perform simulations of equal mass,
precessing binary black holes, but also discuss the more
general case of unequal masses. We also extend the phe-
nomenological formulas for predicting recoils to include
higher powers of the spins, explicitly including up to
fourth order, making use of discrete symmetry proper-
ties of the BHBs.
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