Large scale structure formation with the

Schrödinger method

Cora Uhlemann

Arnold Sommerfeld Center, LMU & Excellence Cluster Universe

to be continued in

Utrecht University, Netherlands

visitor grant sponsored by Balzan Centre for Cosmological Studies

Outline

- 1. Structure formation
- 2. Analytical description of cold dark matter
 - a. dust model
 - b. Schrödinger method
 - c. coarse-grained dust model
- 3. Summary

Cosmological Structure Formation

-13.8 billion years: nearly uniform initial stat

Inflation

- established `boring` initial conditions
 - quantum fluctuations get amplified
 - primordial plasma cools \rightarrow recombination \rightarrow CMB

WANTED

theoretical

N-body

double

Structure formation

- hierarchical
- tiny over-densities act as seeds
 - congregation via gravitational instability
 - collapse into bound structures

Large scale structure: Dark Matter

- linear regime
 - \checkmark analytically understood
- nonlinear stage
 - **?! N-body simulations inevitable**

today: rich structures in cosmic web

Kravtsov & Klypin (simulations @NCSA)

with the Schrödinger method

describes number density & distribution of momenta p

numerical realization

Schrödinger method: Widrow & Kaiser (1993, ApJ 416) Widrow (1997, PRD 55)

N-body picture

- N non-relativistic particles
- only gravitational interaction

$$f_N(\boldsymbol{x},\boldsymbol{p},\tau) = \sum_{i=1}^N \delta_{\mathrm{D}}(\boldsymbol{x}-\boldsymbol{x}_i(\tau)) \delta_{\mathrm{D}}(\boldsymbol{p}-\boldsymbol{p}_i(\tau))$$

Vlasov - Poisson equation

$$\partial_t f_N(\boldsymbol{x}, \boldsymbol{p}, \tau) = -\frac{\boldsymbol{p}}{am} \boldsymbol{\nabla}_x f_N + am \boldsymbol{\nabla}_x V \boldsymbol{\nabla}_p f_N \quad \Delta V(\boldsymbol{x}_i) = \frac{4\pi Gm}{a} \left(\sum_{j \neq i}^N \delta_D(\boldsymbol{x}_i - \boldsymbol{x}_j) - \langle n_N \rangle \right)$$

phase space distribution function f(t,x,p)

- N-body: non-relativistic, only gravitationally
- continuous: ensemble average, no collisions

$$\int \frac{f_N}{f} = \sum_i \delta_D (\boldsymbol{x} - \boldsymbol{x}_i) \delta_D (\boldsymbol{p} - \boldsymbol{p}_i)$$

Solving is hard! have to choose a special ansatz for f(x,p) reduce some information content

continuous distribution function f(t,x,p)

- ensemble average
- dropping collision terms ~I/N

Vlasov - Poisson equation

$$\partial_{\tau} f(\boldsymbol{x}, \boldsymbol{p}, \tau) = -\frac{\boldsymbol{p}}{am} \boldsymbol{\nabla}_{x} f + am \boldsymbol{\nabla}_{x} V \boldsymbol{\nabla}_{p} f$$

gravitational potential $\Delta V(\boldsymbol{x},\tau) = \frac{4\pi Gm}{a} \ (n(\boldsymbol{x},\tau) - \langle n \rangle)$

Hierarchy of Moments
$$M^{(n)}(\boldsymbol{x}) = \int d^3p \ p_{i_1} \dots p_{i_n} f$$

- density n(x): $M^{(0)} = n(x)$, velocity v(x): $M^{(1)} = nv(x)$
- velocity dispersion $\sigma(\mathbf{x}): M^{(2)} = n (\mathbf{v}\mathbf{v} + \boldsymbol{\sigma})(\mathbf{x}), \dots$ cumulant

$$\partial_t M^{(n)} = -\frac{1}{a^2 m} \nabla \cdot M^{(n+1)} - m \nabla V \cdot M^{(n-1)}$$

infinite coupled hierarchy

phase space distribution function f(t,x,p)

- **N-body**: non-relativistic, only gravitationally
- continuous: ensemble average, no collisions

Vlasov - Poisson equation

$$\partial_{\tau} f(\boldsymbol{x}, \boldsymbol{p}, \tau) = -\frac{\boldsymbol{p}}{am} \boldsymbol{\nabla}_{x} f + am \boldsymbol{\nabla}_{x} V \boldsymbol{\nabla}_{p} f$$

Hierarchy of Cumulants

- density n(x): $C^{(0)} = \ln n(x)$, velocity v(x): $C^{(1)} = v(x)$
- velocity dispersion $\boldsymbol{\sigma}(\mathbf{x})$: $C^{(2)} = \boldsymbol{\sigma}(\boldsymbol{x})$, …

$$\partial_t C^{(n)} = -\frac{1}{a^2 m} \left[\nabla \cdot C^{(n+1)} + \sum_{|S|=0}^n C^{(n+1-|S|)} \cdot \nabla C^{(|S|)} \right] - \delta_{n1} \cdot m \nabla V$$

consistent truncation $C^{(\geq n)} \equiv 0 \quad \exists n : |S| \leq 1 \land |S| \geq n \quad \forall S \Rightarrow n \stackrel{!}{=} 2$

gravitational potential

 $\Delta V(\boldsymbol{x},\tau) = \frac{4\pi Gm}{a} (n(\boldsymbol{x},\tau) - \langle n \rangle)$

Dust model

dust model

- only consistent truncation of hierarchy
- pressureless fluid: density and velocity

$$f_{\rm d}(\boldsymbol{x}, \boldsymbol{p}, \tau) = n(\boldsymbol{x}, \tau) \delta_D^{(3)}(\boldsymbol{p} - \boldsymbol{\nabla} \phi(\boldsymbol{x}, \tau))$$

Continuity
$$\partial_{\tau} n = -\frac{1}{am} \nabla(n \nabla \phi)$$

Euler $\partial_{\tau} \phi = -\frac{1}{2am} (\nabla \phi)^2 - amV$

- limited to single-stream
- no velocity dispersion, ...
- shell-crossing singularities
- no virialization

Schrödinger method

self-gravitating field

Schrödinger - Poisson equation

$$i\hbar\partial_t\psi = \left[-\frac{\hbar^2}{2a^2m}\Delta + mV\right]\psi$$
$$\Delta V = \frac{4\pi G\rho_0}{a}(|\psi|^2 - 1)$$

Schrödinger method

Wigner function, constructed from self-gravitating field

$$f_W(\boldsymbol{x}, \boldsymbol{p}) = \int \frac{d^3 \tilde{x}}{(2\pi\hbar)^3} \exp\left[2\frac{i}{\hbar}\boldsymbol{p'} \cdot \tilde{\boldsymbol{x}}\right] \psi(\boldsymbol{x'} - \tilde{\boldsymbol{x}}) \bar{\psi}(\boldsymbol{x'} + \tilde{\boldsymbol{x}})$$

Schrödinger - Poisson equation

Wigner-Vlasov equation

$$\partial_t f_W = \left[\frac{\boldsymbol{p}^2}{2a^2m} + mV\right] \frac{2}{\hbar} \sin\left(\frac{\hbar}{2}(\overleftarrow{\boldsymbol{\nabla}}_x \overrightarrow{\boldsymbol{\nabla}}_p - \overleftarrow{\boldsymbol{\nabla}}_p \overrightarrow{\boldsymbol{\nabla}}_x)\right) f_W$$

Vlasov equation

$$\partial_t f = \left[\frac{\boldsymbol{p}^2}{2a^2m} + mV\right] \left(\overleftarrow{\boldsymbol{\nabla}}_x \overrightarrow{\boldsymbol{\nabla}}_p - \overleftarrow{\boldsymbol{\nabla}}_p \overrightarrow{\boldsymbol{\nabla}}_x\right) f$$

Problems

- Wigner distribution function not manifestly positive
- time evolution not in good correspondence to Vlasov

$$i\hbar\partial_t\psi = \left[-\frac{\hbar^2}{2a^2m}\Delta + mV\right]\psi$$
$$\Delta V = \frac{4\pi G\rho_0}{a}(|\psi|^2 - 1)$$

Schrödinger method

• Coarse-grained Wigner function, constructed from self-gravitating field

$$f_{cg}^{W}(\boldsymbol{x},\boldsymbol{p}) = \int \frac{d^{3}x'd^{3}p'}{(\pi\sigma_{x}\sigma_{p})^{3}} \exp\left[-\frac{(\boldsymbol{x}-\boldsymbol{x'})^{2}}{2\sigma_{x}^{2}} - \frac{(\boldsymbol{p}-\boldsymbol{p'})^{2}}{2\sigma_{p}^{2}}\right] \int \frac{d^{3}\tilde{x}}{(2\pi\hbar)^{3}} \exp\left[2\frac{i}{\hbar}\boldsymbol{p'}\cdot\tilde{\boldsymbol{x}}\right] \psi(\boldsymbol{x'}-\tilde{\boldsymbol{x}})\bar{\psi}(\boldsymbol{x'}+\tilde{\boldsymbol{x}}) \psi(\boldsymbol{x'}-\tilde{\boldsymbol{x}}) - \frac{i}{2\sigma_{p}^{2}} \psi(\boldsymbol{x'}-\tilde{\boldsymbol{x}}) \psi(\boldsymbol{x'}-\tilde{\boldsymbol{x}})$$

Wigner-Vlasov equation

$$\partial_t f_W = \left[\frac{\boldsymbol{p}^2}{2a^2m} + mV\right] \frac{2}{\hbar} \sin\left(\frac{\hbar}{2} (\overleftarrow{\boldsymbol{\nabla}}_x \overrightarrow{\boldsymbol{\nabla}}_p - \overleftarrow{\boldsymbol{\nabla}}_p \overrightarrow{\boldsymbol{\nabla}}_x)\right) f_W$$

Vlasov equation

$$\partial_t f = \left[\frac{\boldsymbol{p}^2}{2a^2m} + mV\right] \left(\overleftarrow{\boldsymbol{\nabla}}_x \overrightarrow{\boldsymbol{\nabla}}_p - \overleftarrow{\boldsymbol{\nabla}}_p \overrightarrow{\boldsymbol{\nabla}}_x\right) f$$

Problems

- Wigner distribution function not manifestly positive
- time evolution not in good correspondence to Vlasov
- solution: add a coarse-graining $\sigma_x \sigma_p \gtrsim \hbar/2$

Schrödinger - Poisson equation

$$i\hbar\partial_t\psi = \left[-\frac{\hbar^2}{2a^2m}\Delta + mV\right]\psi$$
$$\Delta V = \frac{4\pi G\rho_0}{a}(|\psi|^2 - 1)$$

 $\psi = \sqrt{n} \exp\left(\frac{i}{\hbar}\phi\right)$

Schrödinger method

Coarse-grained Wigner function, constructed from self-gravitating field

$$f_{cg}^{W}(\boldsymbol{x},\boldsymbol{p}) = \int \frac{d^{3}x'd^{3}p'}{(\pi\sigma_{x}\sigma_{p})^{3}} \exp\left[-\frac{(\boldsymbol{x}-\boldsymbol{x'})^{2}}{2\sigma_{x}^{2}} - \frac{(\boldsymbol{p}-\boldsymbol{p'})^{2}}{2\sigma_{p}^{2}}\right] \int \frac{d^{3}\tilde{x}}{(2\pi\hbar)^{3}} \exp\left[2\frac{i}{\hbar}\boldsymbol{p'}\cdot\tilde{\boldsymbol{x}}\right] \psi(\boldsymbol{x'}-\tilde{\boldsymbol{x}})\bar{\psi}(\boldsymbol{x'}+\tilde{\boldsymbol{x}})$$

degrees of freedom

2: amplitude n & phase φ

parameters

- coarse-graining σ_x, σ_p fundamental resolution $\sigma_x \sigma_p \gtrsim \hbar/2$
- Schrödinger scale \hbar
 - degree of restriction
 - dust as special case

Continuity
$$\partial_{\tau} n = -\frac{1}{am} \nabla(n \nabla \phi)$$
 quantum potential
Euler $\partial_{\tau} \phi = -\frac{1}{2am} (\nabla \phi)^2 - amV + \frac{\hbar^2}{2am} \left(\frac{\Delta \sqrt{n}}{\sqrt{n}}\right)$

$$i\hbar\partial_t\psi = \left[-\frac{\hbar^2}{2a^2m}\Delta + mV\right]\psi$$
$$\Delta V = \frac{4\pi G\rho_0}{a}(|\psi|^2 - 1)$$

 $\psi = \sqrt{n} \exp\left(\frac{i}{\hbar}\phi\right)$

Schrödinger method at a glance

Multi-streaming

- X dust model: fails at shell-crossing
- Schrödinger method: can go beyond shell-crossing

blue S contours: Schrödinger method red dotted Z line: Zeldovich solution (dust model)

Virialization

× even in extended models: no virialization

Schrödinger method: **bound structures** like halos

Schrödinger method

• Coarse-grained Wigner function, constructed from self-gravitating field

$$f_{cg}^{W}(\boldsymbol{x},\boldsymbol{p}) = \int \frac{d^{3}x'd^{3}p'}{(\pi\sigma_{x}\sigma_{p})^{3}} \exp\left[-\frac{(\boldsymbol{x}-\boldsymbol{x'})^{2}}{2\sigma_{x}^{2}} - \frac{(\boldsymbol{p}-\boldsymbol{p'})^{2}}{2\sigma_{p}^{2}}\right] \int \frac{d^{3}\tilde{x}}{(2\pi\hbar)^{3}} \exp\left[2\frac{i}{\hbar}\boldsymbol{p'}\cdot\tilde{\boldsymbol{x}}\right] \psi(\boldsymbol{x'}-\tilde{\boldsymbol{x}})\bar{\psi}(\boldsymbol{x'}+\tilde{\boldsymbol{x}})$$

Cumulants

special p-dependence

• lowest two: macroscopic density & velocity

 $\bar{n}(\boldsymbol{x}) = \exp\left[\frac{1}{2}\sigma_x^2\Delta\right]n(\boldsymbol{x}) \qquad \bar{\boldsymbol{v}}(\boldsymbol{x}) = \frac{1}{am\bar{n}(\boldsymbol{x})}\exp\left[\frac{1}{2}\sigma_x^2\Delta\right](n\boldsymbol{\nabla}\phi)(\boldsymbol{x})$

 higher cumulants given self-consistently evolution equations fulfilled automatically

$$C^{(0)} = \ln n, \quad C^{(1)} = \nabla \phi$$

 $C^{(n+2)} = -\frac{\hbar^2}{4} \nabla \nabla C^{(n)}$

closure of hierarchy CU, Kopp & Haugg (2014, PRD 90, 023517)

add coarse-graining on top of that

$$\psi = \sqrt{n} \exp\left(\frac{i}{\hbar}\phi\right)$$

Multi-streaming

- higher cumulants encode multi-streaming effects
- during shell-crossing: higher moments sourced dynamically

Schrödinger method at a glance

Dark Matter power spectrum

with the Coarse-grained dust model

Coarse-grained perturbation theory

Dust model

- express fluid equations in terms of $\delta = n 1$ and $\theta = \nabla \cdot v \propto \Delta \phi$ (no vorticity)
- perturbative expansion: separation ansatz (fastest growing mode)

$$\delta(\tau, \mathbf{k}) = \sum_{n=1}^{\infty} a^n(\tau) \ \delta_n(\mathbf{k}) \qquad \theta(\tau, \mathbf{k}) = \mathcal{H}(\tau) \sum_{n=1}^{\infty} a^n(\tau) \ \theta_n(\mathbf{k})$$

Correlation function

2-point correlation: excess probability of finding 2 objects separated by r

$$dP = n[1 + \xi(r)]dV$$
 homogeneity & isotropy: $\xi(r) = \xi(r)$

Dust model

- express fluid equations in terms of $\delta = n 1$ and $\theta = \nabla \cdot \boldsymbol{v} = \Delta \phi$ (no vorticity)
- perturbative expansion: separation ansatz (fastest growing mode)

$$\delta(\tau, \mathbf{k}) = \sum_{n=1}^{\infty} a^n(\tau) \ \delta_n(\mathbf{k}) \qquad \theta(\tau, \mathbf{k}) = \mathcal{H}(\tau) \sum_{n=1}^{\infty} a^n(\tau) \ \theta_n(\mathbf{k})$$

Density power spectrum

Coarse grained dust model

- consider only σ_x correction in Schrödinger method
- in 1st order: smoothing of input power spectrum

Density power spectrum

trivial effect:

density power spectrum gets smoothed

Coarse grained dust model

- similar to dust, but mass-weighted velocity $\bar{v} := \frac{\bar{n}v}{\bar{n}}$
- large scale vorticity $\,ar{m w}:=m
 abla imesar{m v}
 eq 0\,$!

Vorticity power spectrum P_{ww}(k)

Conclusion & Prospects

Schrödinger method

- models CDM using a self-gravitating scalar field
- analytical tool to access nonlinear stage of structure formation
 - describes multi-streaming & allows for virialization

CU, Kopp, Haugg (2014, PRD 90, 023517, arXiv: 1403.5567)

Coarse-grained dust model

- mass-weighted velocity via Gaussian smoothing
 - vorticity compatible with N-body

CU & Kopp (2015, PRD 91, 084010, arXiv: 1407.4810)

Prospects

- Schrödinger method in terms of a filtering of the distribution function
 - approximate hierarchy closures instead of exact truncation
 - comparison of moments ID Schrödinger vs. ID Vlasov-Poisson
 - disentangle limitations of pressureless fluid & perturbation theory
- consider the effect of varying phase-space resolution \hbar
- understand universal density profiles of halos (NFW)

Thank You for Your Attention

Questions?