Phenomenology of dark matter via a bimetric extension of general relativity

Laura BERNARD

in collaboration with Luc Blanchet (arXiv: 1410.7708)

Institut d'Astrophysique de Paris

16/02/2015

Laura BERNARD

16/02/2015

Phenomenology of dark matter

Some Relativistic MOND theories

Modified Dark Matter and bimetric gravity

▲日> ▲圖> ▲理> ▲理>

Э

16/02/2015

Plan

ヘロン ヘロン ヘビン ヘビン

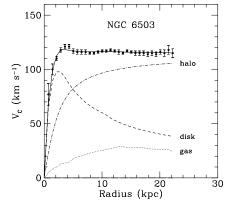
16/02/2015

Phenomenology of dark matter

Some Relativistic MOND theories

Modified Dark Matter and bimetric gravity

Flat rotation curves of galaxies



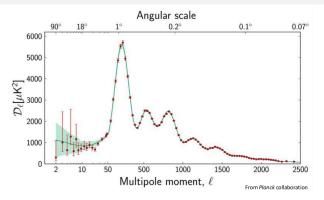
▶ For a circular orbit we expect

$$\frac{v^2}{r} = g_N = \frac{GM(r)}{r^2} \implies v(r) = \sqrt{\frac{GM(r)}{r}},$$

16/02/2015

► Instead we find v(r) constant \implies Dark Matter (DM) halo : $\rho_{\text{halo}} \sim \frac{1}{r^2}$.

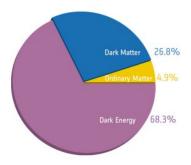
The cosmological concordance model $\Lambda {\rm CDM}$



- Discrepancy between dynamical and visible masses in clusters of galaxies,
- ▶ Formation and growth of large scale structures,
- ▶ Temperature fluctuations in the cosmic microwave background,
- Content of our universe: dark energy (~ 68%, unknown), dark matter (~ 27%, unknown) and baryons (~ 5%).

Laura BERNARD

The cosmological concordance model $\Lambda {\rm CDM}$



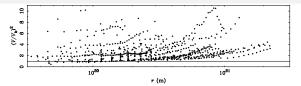
- Discrepancy between dynamical and visible masses in clusters of galaxies,
- ▶ Formation and growth of large scale structures,
- ▶ Temperature fluctuations in the cosmic microwave background,
- Content of our universe: dark energy (~ 68%, unknown), dark matter (~ 27%, unknown) and baryons (~ 5%).

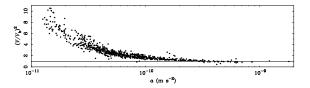
イロト イヨト イヨト イヨト

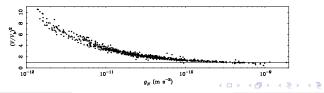
16/02/2015

The mass discrepancy - acceleration relation $_{\mbox{[Famaey \&}}$

McGaugh, 2012]







Laura BERNARD

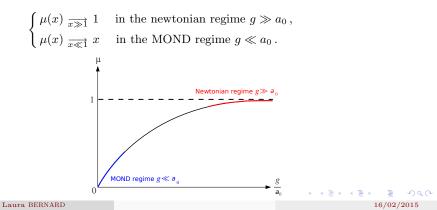
Milgrom's law (1983)

Modification of the Newtonian gravitational acceleration

 $\mu\left(|\mathbf{g}|/a_0\right)\mathbf{g}=\mathbf{g}_N\,,$

▶ $a_0 \approx 1.2 \times 10^{-10} \text{ m s}^{-2}$ is the MOND acceleration constant,

• μ is the MOND interpolating function :



Modification of the Newtonian gravitational acceleration

 $\mu\left(|\mathbf{g}|/a_0\right)\mathbf{g} = \mathbf{g}_N\,,$

- ▶ $a_0 \approx 1.2 \times 10^{-10} \text{ m s}^{-2}$ is the MOND acceleration constant,
- μ is the MOND interpolating function :

 $\begin{cases} \mu(x) \xrightarrow[x \gg 1]{} 1 & \text{in the newtonian regime } g \gg a_0 \,, \\ \mu(x) \xrightarrow[x \ll 1]{} x & \text{in the MOND regime } g \ll a_0 \,. \end{cases}$

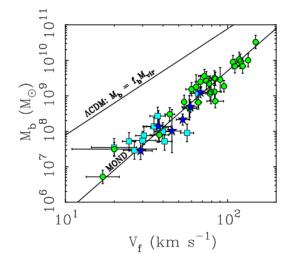
▶ We recover the flat rotation curves of galaxies,

$$\frac{V_c^2}{r} = g = \sqrt{\frac{GMa_0}{r^2}} \implies V_c^4 = GMa_0.$$

16/02/2015

(ロ) (四) (E) (E) (E) (E)

The Baryonic Tully-Fisher Relation [McGaugh, 2011]

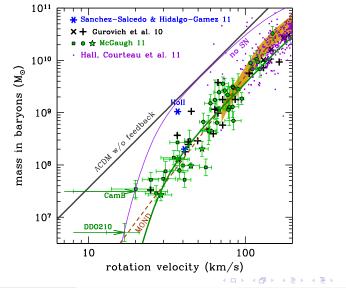


$$V_f \sim \left(a_0 G M_b\right)^{1/4} \;,$$

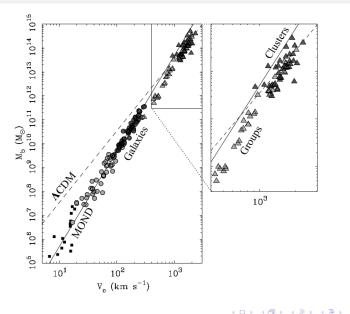
$$a_0 \approx 1.2 \times 10^{-10} \text{ m s}^{-2}$$

イロト イヨト イヨト イヨト

The Baryonic Tully-Fisher Relation [Silk & Mamon, 2012]



Baryonic mass vs rotation velocity [McGaugh, 2014]



Laura BERNARD

Plan

・ロト ・ 日 ト ・ モ ト ・ モ ト

16/02/2015

Phenomenology of dark matter

Some Relativistic MOND theories

Modified Dark Matter and bimetric gravity

◆□ > ◆□ > ◆□ > ◆□ >

16/02/2015

Modified gravity theories

Modified gravity theories

▶ Tensor-Vector-Scalar theory (TeVeS) [Bekenstein 2004, Sanders 2005]

・ロン ・御と ・ヨと ・ヨと

Modified gravity theories

- ▶ Tensor-Vector-Scalar theory (TeVeS) [Bekenstein 2004, Sanders 2005]
- Non canonical Einstein-aether theories [Zlosnik et al. 2007, Halle et al. 2008]

Modified gravity theories

- ▶ Tensor-Vector-Scalar theory (TeVeS) [Bekenstein 2004, Sanders 2005]
- Non canonical Einstein-aether theories [Zlosnik et al. 2007, Halle et al. 2008]

16/02/2015

▶ BIMOND, a bimetric theory of gravity [Milgrom 2009]

Modified gravity theories

- ▶ Tensor-Vector-Scalar theory (TeVeS) [Bekenstein 2004, Sanders 2005]
- Non canonical Einstein-aether theories [Zlosnik et al. 2007, Halle et al. 2008]
- ▶ BIMOND, a bimetric theory of gravity [Milgrom 2009]
- ▶ Non local theories [Deffayet et al. 2011]

・ロン ・四マ ・ヨマ ・ヨマ

Modified gravity theories

- ▶ Tensor-Vector-Scalar theory (TeVeS) [Bekenstein 2004, Sanders 2005]
- Non canonical Einstein-aether theories [Zlosnik et al. 2007, Halle et al. 2008]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

16/02/2015

- ▶ BIMOND, a bimetric theory of gravity [Milgrom 2009]
- ▶ Non local theories [Deffayet et al. 2011]

Modified dark matter theories

▶ Dipolar Dark Matter [Blanchet & Le Tiec 2008;2009]

The MOND equation and its dielectric analogy

Modified Poisson equation for the gravitational field [Bekenstein & Milgrom, 1984]

$$\nabla \cdot \left(\mu \left(\frac{g}{a_0} \right) \mathbf{g} \right) = -4\pi G \rho_b$$
, with $\mathbf{g} = \nabla U$.

・ロト ・回ト ・ヨト ・ヨト

The MOND equation and its dielectric analogy

Modified Poisson equation for the gravitational field [Bekenstein & Milgrom, 1984]

$$\nabla \cdot \left(\mu \left(\frac{g}{a_0} \right) \mathbf{g} \right) = -4\pi G \rho_b$$
, with $\mathbf{g} = \nabla U$.

Analogy with a dielectric medium

Writing $\mu = 1 + \chi$ where χ is the gravitational susceptibility, the analogy with a dielectric medium is apparent,

$$\Delta U = -4\pi G \left(\rho_b + \rho_{\rm pol}\right) \,,$$

where $\rho_{\text{pol}} = -\nabla \cdot \mathbf{P}$ and $\mathbf{P} = -\frac{\chi}{4\pi G} \mathbf{g}$ is the polarization of some DM medium and $\chi < 0$ (because $\mu < 1$).

Dipolar Dark Matter [Blanchet & Le Tiec 2008;2009]

Dark matter fluid endowed with a dipole moment vector field ξ^{μ} ,

$$S_{\rm DDM} = \int d^4x \sqrt{-g} \left[-\rho + J^{\mu} \dot{\xi}_{\mu} - V(P_{\perp}) \right] \,,$$

with $P_{\perp} = \rho \, \xi_{\perp}$ the polarization field and

$$V(P_{\perp}) = \frac{\Lambda}{8\pi} + 2\pi P_{\perp}^2 + \frac{16\pi^2}{3a_0} P_{\perp}^3 + \mathcal{O}(P_{\perp}^4) \,.$$

◆□ > ◆□ > ◆□ > ◆□ > ●

Dipolar Dark Matter [Blanchet & Le Tiec 2008;2009]

Dark matter fluid endowed with a dipole moment vector field ξ^{μ} ,

$$S_{\rm DDM} = \int d^4x \sqrt{-g} \left[-\rho + J^{\mu} \dot{\xi}_{\mu} - V(P_{\perp}) \right] \,,$$

with $P_{\perp} = \rho \, \xi_{\perp}$ the polarization field and

$$V(P_{\perp}) = \frac{\Lambda}{8\pi} + 2\pi P_{\perp}^2 + \frac{16\pi^2}{3a_0} P_{\perp}^3 + \mathcal{O}(P_{\perp}^4) \,.$$

ヘロン 人間 とうきょう 人口 とう

16/02/2015

Success

 \blacktriangleright Indistinguishable from $\Lambda\text{-}\mathrm{CDM}$ at first order in cosmological perturbations.

Dipolar Dark Matter [Blanchet & Le Tiec 2008;2009]

Dark matter fluid endowed with a dipole moment vector field ξ^{μ} ,

$$S_{\rm DDM} = \int d^4x \sqrt{-g} \left[-\rho + J^{\mu} \dot{\xi}_{\mu} - V(P_{\perp}) \right] \,,$$

with $P_{\perp} = \rho \, \xi_{\perp}$ the polarization field and

$$V(P_{\perp}) = \frac{\Lambda}{8\pi} + 2\pi P_{\perp}^2 + \frac{16\pi^2}{3a_0} P_{\perp}^3 + \mathcal{O}(P_{\perp}^4) \,.$$

Success

 Indistinguishable from Λ-CDM at first order in cosmological perturbations.

Drawbacks

▶ Requires a weak clustering hypothesis to recover the MOND equation : the dipolar DM medium should not cluster much in galaxies compared to baryonic matter and stays at rest, *p* ≈ *p*₀ ≪ *p*_b.

16/02/2015

- ▶ Instability of the evolution of the dipole moment vector ξ^{μ}_{\perp} (with a very long time scale).
- ▶ No microscopic description for the dipole moment.

Plan

・ロト ・四ト ・ヨト ・ヨト

16/02/2015

Phenomenology of dark matter

Some Relativistic MOND theories

Modified Dark Matter and bimetric gravity

Microscopic description of a dipolar DM medium

- We describe the dipolar DM medium as made of individual dipole moments $\mathbf{p} = m\boldsymbol{\xi}$, with a polarization field $\mathbf{P} = n\mathbf{p}$.
- ▶ The polarization field **P** should be aligned with the gravitational field,

$$\mathbf{P} = -\frac{\chi}{4\pi G} \,\mathbf{g} \quad \text{and} \quad \rho_{\text{pol}} = -\boldsymbol{\nabla} \cdot \mathbf{P} \,,$$

・ロト ・四ト ・ヨト ・ヨト

16/02/2015

with $\chi < 0$, such that the constituant have an "anti-screening" behaviour, in agreement with MOND.

Microscopic description of a dipolar DM medium

- We describe the dipolar DM medium as made of individual dipole moments $\mathbf{p} = m\boldsymbol{\xi}$, with a polarization field $\mathbf{P} = n\mathbf{p}$.
- ▶ The polarization field **P** should be aligned with the gravitational field,

$$\mathbf{P} = -\frac{\chi}{4\pi G} \,\mathbf{g} \quad \text{and} \quad \rho_{\text{pol}} = -\boldsymbol{\nabla} \cdot \mathbf{P} \,,$$

with $\chi < 0$, such that the constituant have an "anti-screening" behaviour, in agreement with MOND.

▶ The dipole moment can be seen as pairs of particles with positive and negative gravitational masses $(m_i, m_g) = (m, \pm m) \longrightarrow$ cannot be coupled to GR.

・ロト ・四ト ・ヨト ・ヨト

Non-relativistic description of a dipolar DM medium

▶ To describe the individual dipole moments correctly, the two species of DM particles couple to two different gravitational potential U and \underline{U} ,

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{\nabla}(U+\phi)\,, \qquad \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{\nabla}(\underline{U}-\phi)\,, \qquad \frac{\mathrm{d}\mathbf{v}_b}{\mathrm{d}t} = \mathbf{\nabla}U\,.$$

▶ A non-gravitational internal force ϕ is necessary to stabilize the dipolar medium

$$\Delta \phi = \frac{-4\pi G}{\chi} \left(\rho - \underline{\rho} \right).$$

・ロト ・回ト ・ヨト ・ヨト

Non-relativistic description of a dipolar DM medium

▶ To describe the individual dipole moments correctly, the two species of DM particles couple to two different gravitational potential U and U,

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{\nabla}(U+\phi)\,, \qquad \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{\nabla}(\underline{U}-\phi)\,, \qquad \frac{\mathrm{d}\mathbf{v}_b}{\mathrm{d}t} = \mathbf{\nabla}U\,.$$

▶ A non-gravitational internal force ϕ is necessary to stabilize the dipolar medium

$$\Delta \phi = \frac{-4\pi G}{\chi} \left(\rho - \underline{\rho} \right).$$

▶ When the mechanism of gravitational polarization will take place, $\underline{U} = -U$ such that we recover the MOND formula,

$$\boldsymbol{\nabla} \cdot [\boldsymbol{\nabla} U - 4\pi \mathbf{P}] = -4\pi G \rho_b \,.$$

・ロト ・四ト ・ヨト ・ヨト

Non-relativistic description of a dipolar DM medium

▶ To describe the individual dipole moments correctly, the two species of DM particles couple to two different gravitational potential U and U,

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{\nabla}(U+\phi)\,, \qquad \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{\nabla}(\underline{U}-\phi)\,, \qquad \frac{\mathrm{d}\mathbf{v}_b}{\mathrm{d}t} = \mathbf{\nabla}U\,.$$

▶ A non-gravitational internal force ϕ is necessary to stabilize the dipolar medium

$$\Delta \phi = \frac{-4\pi G}{\chi} \left(\rho - \underline{\rho} \right).$$

▶ When the mechanism of gravitational polarization will take place, $\underline{U} = -U$ such that we recover the MOND formula,

$$\boldsymbol{\nabla} \cdot [\boldsymbol{\nabla} U - 4\pi \mathbf{P}] = -4\pi G \rho_b \,.$$

 When weakly excited, the dipolar dark matter medium behaves as a polarizable and stable plasma of particles,

$$\frac{\mathrm{d}^2 \boldsymbol{\xi}}{\mathrm{d}t^2} + \omega^2 \boldsymbol{\xi} = 2\mathbf{g}$$

Laura BERNARD

16/02/2015

・ロト ・四ト ・ヨト ・ヨト

Going to a relativistic model

• One needs two metrics $\mathbf{g}_{\mu\nu}$ and $\mathbf{g}_{\mu\nu}$ interacting with each other through $f_{\mu\nu}$ algebraically defined by the implicit relation

$$f_{\mu\nu} = f^{\rho\sigma} g_{\rho\mu} \underline{g}_{\nu\sigma} = f^{\rho\sigma} g_{\rho\nu} \underline{g}_{\mu\sigma},$$

◆□ > ◆□ > ◆豆 > ◆豆 > ●

Going to a relativistic model

• One needs two metrics $\mathbf{g}_{\mu\nu}$ and $\mathbf{g}_{\mu\nu}$ interacting with each other through $f_{\mu\nu}$ algebraically defined by the implicit relation

$$f_{\mu\nu} = f^{\rho\sigma} g_{\rho\mu} \underline{g}_{\nu\sigma} = f^{\rho\sigma} g_{\rho\nu} \underline{g}_{\mu\sigma},$$

イロト 不同 ト イヨト イヨト

16/02/2015

• Two kinds of dark matter ρ and $\underline{\rho}$, with mass currents $J^{\mu} = \rho u^{\mu}$ and $\underline{J}^{\mu} = \underline{\rho} \underline{u}^{\mu}$, and respectively coupled to $g_{\mu\nu}$ and $\underline{g}_{\mu\nu}$,

Going to a relativistic model

• One needs two metrics $\mathbf{g}_{\mu\nu}$ and $\mathbf{g}_{\mu\nu}$ interacting with each other through $f_{\mu\nu}$ algebraically defined by the implicit relation

$$f_{\mu\nu} = f^{\rho\sigma} g_{\rho\mu} \underline{g}_{\nu\sigma} = f^{\rho\sigma} g_{\rho\nu} \underline{g}_{\mu\sigma},$$

イロト 不同 ト イヨト イヨト

- Two kinds of dark matter ρ and $\underline{\rho}$, with mass currents $J^{\mu} = \rho u^{\mu}$ and $\underline{J}^{\mu} = \underline{\rho} \underline{u}^{\mu}$, and respectively coupled to $g_{\mu\nu}$ and $\underline{g}_{\mu\nu}$,
- Ordinary baryonic matter ρ_b living in the sector $g_{\mu\nu}$,

Going to a relativistic model

• One needs two metrics $\mathbf{g}_{\mu\nu}$ and $\mathbf{g}_{\mu\nu}$ interacting with each other through $f_{\mu\nu}$ algebraically defined by the implicit relation

$$f_{\mu\nu} = f^{\rho\sigma} g_{\rho\mu} \underline{g}_{\nu\sigma} = f^{\rho\sigma} g_{\rho\nu} \underline{g}_{\mu\sigma},$$

- Two kinds of dark matter ρ and $\underline{\rho}$, with mass currents $J^{\mu} = \rho u^{\mu}$ and $\underline{J}^{\mu} = \underline{\rho} \underline{u}^{\mu}$, and respectively coupled to $g_{\mu\nu}$ and $\underline{g}_{\mu\nu}$,
- Ordinary baryonic matter ρ_b living in the sector $g_{\mu\nu}$,
- A vector field K_{μ} living in the interacting sector $f_{\mu\nu}$ and with a non-canonical kinetic term.

イロト イロト イヨト イヨト 三日

The action

$$S = \int d^4x \left\{ \sqrt{-g} \left(\frac{R - 2\lambda}{32\pi} - \rho_{\rm b} - \rho \right) + \sqrt{-\underline{g}} \left(\frac{\underline{R} - 2\underline{\lambda}}{32\pi} - \underline{\rho} \right) \right. \\ \left. + \sqrt{-f} \left[\frac{\mathcal{R}[f] - 2\lambda_f}{16\pi\varepsilon} + (j^{\mu} - \underline{j}^{\mu})K_{\mu} + \frac{a_0^2}{8\pi}W(-\frac{H^{\mu\nu}H_{\mu\nu}}{2a_0^2}) \right] \right\}$$

・ロン ・四マ ・ヨン ・ヨン

æ

16/02/2015

The action

$$S = \int d^4x \left\{ \sqrt{-g} \left(\frac{R - 2\lambda}{32\pi} - \rho_{\rm b} - \rho \right) + \sqrt{-\underline{g}} \left(\frac{R - 2\lambda}{32\pi} - \underline{\rho} \right) \right. \\ \left. + \sqrt{-f} \left[\frac{\mathcal{R}[f] - 2\lambda_f}{16\pi\varepsilon} + (j^{\mu} - \underline{j}^{\mu})K_{\mu} + \frac{a_0^2}{8\pi}W(-\frac{H^{\mu\nu}H_{\mu\nu}}{2a_0^2}) \right] \right\}$$

• the ordinary sector : $g_{\mu\nu}$, λ , ρ_b and ρ ,

Laura BERNARD

■ 16/02/2015

・ロン ・四マ ・ヨン ・ヨン

The action

$$S = \int d^4x \left\{ \sqrt{-g} \left(\frac{R - 2\lambda}{32\pi} - \rho_{\rm b} - \rho \right) + \sqrt{-\underline{g}} \left(\frac{R - 2\lambda}{32\pi} - \underline{\rho} \right) \right. \\ \left. + \sqrt{-f} \left[\frac{\mathcal{R}[f] - 2\lambda_f}{16\pi\varepsilon} + (j^{\mu} - \underline{j}^{\mu})K_{\mu} + \frac{a_0^2}{8\pi}W(-\frac{H^{\mu\nu}H_{\mu\nu}}{2a_0^2}) \right] \right\}$$

< 日 > < 四 > < 回 > < 回 > < 回 > <

16/02/2015

It is divided in three sectors

- the ordinary sector : $g_{\mu\nu}$, λ , ρ_b and ρ ,
- the hidden sector : $\underline{g}_{\mu\nu}$, $\underline{\lambda}$, and $\underline{\rho}$,

The action

The action

$$S = \int d^4x \left\{ \sqrt{-g} \left(\frac{R - 2\lambda}{32\pi} - \rho_{\rm b} - \rho \right) + \sqrt{-\underline{g}} \left(\frac{R - 2\lambda}{32\pi} - \underline{\rho} \right) \right. \\ \left. + \sqrt{-f} \left[\frac{\mathcal{R}[f] - 2\lambda_f}{16\pi\varepsilon} + (j^{\mu} - \underline{j}^{\mu})K_{\mu} + \frac{a_0^2}{8\pi} W(-\frac{H^{\mu\nu}H_{\mu\nu}}{2a_0^2}) \right] \right\}$$

◆□ > ◆□ > ◆□ > ◆□ > ●

16/02/2015

It is divided in three sectors :

- the ordinary sector : $g_{\mu\nu}$, λ , ρ_b and ρ ,
- the hidden sector : $\underline{g}_{\mu\nu}$, $\underline{\lambda}$, and $\underline{\rho}$,
- the interacting sector : $f_{\mu\nu}[g,\underline{g}]$, λ_f and K_{μ} .

$$\begin{split} S &= \int \mathrm{d}^4 x \left\{ \sqrt{-g} \left(\frac{R-2\lambda}{32\pi} - \rho_{\rm b} - \rho \right) + \sqrt{-\underline{g}} \left(\frac{R-2\lambda}{32\pi} - \underline{\rho} \right) \\ &+ \sqrt{-f} \left[\frac{\mathcal{R}[f] - 2\lambda_f}{16\pi\varepsilon} + (j^\mu - \underline{j}^\mu) K_\mu + \frac{a_0^2}{8\pi} W(-\frac{H^{\mu\nu}H_{\mu\nu}}{2a_0^2}) \right] \right\} \,. \end{split}$$

► Three different cosmological constants in the three sectors, will be related to the observed cosmological constant Λ_{obs} .

■ √ ○ 16/02/2015

・ロト ・四ト ・ヨト ・ヨト

The action

$$\begin{split} S &= \int \mathrm{d}^4 x \left\{ \sqrt{-g} \left(\frac{R-2\lambda}{32\pi} - \rho_\mathrm{b} - \rho \right) + \sqrt{-\underline{g}} \left(\frac{R-2\lambda}{32\pi} - \underline{\rho} \right) \right. \\ &+ \sqrt{-f} \left[\frac{\mathcal{R}[f] - 2\lambda_f}{16\pi\varepsilon} + (j^\mu - \underline{j}^\mu) K_\mu + \frac{a_0^2}{8\pi} W(-\frac{H^{\mu\nu}H_{\mu\nu}}{2a_0^2}) \right] \right\} \,. \end{split}$$

- Three different cosmological constants in the three sectors, will be related to the observed cosmological constant Λ_{obs} .
- ▶ ε measures the strength of the interaction between the two sectors. In the (post-)Newtonian limit we will assume $\varepsilon \ll 1$.

・ロト ・日ト ・ヨト ・ヨト

The action

$$S = \int d^4x \left\{ \sqrt{-g} \left(\frac{R - 2\lambda}{32\pi} - \rho_{\rm b} - \rho \right) + \sqrt{-\underline{g}} \left(\frac{R - 2\lambda}{32\pi} - \underline{\rho} \right) \right. \\ \left. + \sqrt{-f} \left[\frac{\mathcal{R}[f] - 2\lambda_f}{16\pi\varepsilon} + (j^\mu - \underline{j}^\mu)K_\mu + \frac{a_0^2}{8\pi} W(-\frac{H^{\mu\nu}H_{\mu\nu}}{2a_0^2}) \right] \right\} \,.$$

- ► Three different cosmological constants in the three sectors, will be related to the observed cosmological constant Λ_{obs} .
- ▶ ε measures the strength of the interaction between the two sectors. In the (post-)Newtonian limit we will assume $\varepsilon \ll 1$.
- \blacktriangleright The function W is determined phenomenologically to recover
 - MOND in the weak field limit $X \to 0$,

$$W(X) = X - \frac{2}{3}X^{3/2} + \mathcal{O}(X^2),$$

▶ 1PN limit of GR in the strong field limit $X \gg 1$,

$$W(X) = A + \frac{B}{X^{\alpha}} + \mathcal{O}(X^{-\alpha-1}), \quad \alpha > 0.$$

Laura BERNARD

Equation of motion

Einstein field equations

$$\begin{split} \sqrt{-g} \left(G^{\mu\nu} + \lambda g^{\mu\nu} \right) + \frac{\sqrt{-f}}{\varepsilon} \,\mathcal{A}^{\mu\nu}_{\rho\sigma} \Big(\mathcal{G}^{\rho\sigma} + \lambda_f f^{\rho\sigma} \Big) &= 16\pi \left[\sqrt{-g} \left(T^{\mu\nu}_{\rm b} + T^{\mu\nu} \right) \right. \\ &+ \sqrt{-f} \,\mathcal{A}^{\mu\nu}_{\rho\sigma} \,\tau^{\rho\sigma} \right], \\ \sqrt{-g} \left(\underline{G}^{\mu\nu} + \underline{\lambda} \underline{g}^{\mu\nu} \right) + \frac{\sqrt{-f}}{\epsilon} \,\underline{\mathcal{A}}^{\mu\nu}_{\rho\sigma} \Big(\mathcal{G}^{\rho\sigma} + \lambda_f f^{\rho\sigma} \Big) &= 16\pi \left[\sqrt{-g} \,\underline{T}^{\mu\nu} + \sqrt{-f} \,\underline{\mathcal{A}}^{\mu\nu}_{\rho\sigma} \,\tau^{\rho\sigma} \right]. \end{split}$$

Equations of motion

$$\begin{array}{rcl} a^{\mu}_{b} & = & 0 \, , \\ a^{\mu} & = & u^{\nu} \, H_{\mu\nu} \, , \\ \underline{a}^{\mu} & = & - \underline{u}^{\nu} \, H_{\mu\nu} \, . \end{array}$$

$$\mathcal{D}_{\nu}\left(W'\,H^{\mu\nu}\right) = 4\pi\left(j^{\mu} - \underline{j}^{\mu}\right) \,.$$

イロト イヨト イヨト イヨト

16/02/2015

Perturbative solution to the implicit relation for $f_{\mu\nu}$

• Matrix formulation : we define $G^{\nu}_{\mu} = f^{\nu\rho}g_{\mu\rho}$ and $\underline{G}^{\nu}_{\mu} = f^{\nu\rho}\underline{g}_{\mu\rho}$, the implicit relation becomes

$$G\underline{G}=\underline{G}G=\mathbb{1}$$

・ロト ・四ト ・ヨト ・ヨト

Perturbative solution to the implicit relation for $f_{\mu\nu}$

• Matrix formulation : we define $G^{\nu}_{\mu} = f^{\nu\rho}g_{\mu\rho}$ and $\underline{G}^{\nu}_{\mu} = f^{\nu\rho}\underline{g}_{\mu\rho}$, the implicit relation becomes

$$G\underline{G}=\underline{G}G=\mathbb{1}$$

• Defining $H = \frac{1}{2} (G - \underline{G})$, we get the perturbative solution

$$\begin{split} G &= H + \sqrt{\mathbbm{1} + H^2} \\ \underline{G} &= -H + \sqrt{\mathbbm{1} + H^2} \end{split}$$

16/02/2015

with
$$\sqrt{1 + H^2} = \sum_{p=0}^{+\infty} \gamma_p H^{2p}$$
 with $\gamma_p = \frac{(-)^{p+1}(2p-3)!!}{2^p p!}$

Perturbative solution to the implicit relation for $f_{\mu\nu}$

• Matrix formulation : we define $G^{\nu}_{\mu} = f^{\nu\rho}g_{\mu\rho}$ and $\underline{G}^{\nu}_{\mu} = f^{\nu\rho}\underline{g}_{\mu\rho}$, the implicit relation becomes

$$G\underline{G}=\underline{G}G=\mathbb{1}$$

• Defining $H = \frac{1}{2} (G - \underline{G})$, we get the perturbative solution

$$\begin{split} G &= H + \sqrt{\mathbbm{1} + H^2} \\ \underline{G} &= -H + \sqrt{\mathbbm{1} + H^2} \end{split}$$

with $\sqrt{\mathbb{1} + H^2} = \sum_{p=0}^{+\infty} \gamma_p H^{2p}$ with $\gamma_p = \frac{(-)^{p+1}(2p-3)!!}{2^p p!}$.

Returning to a metric formulation,

$$g_{\mu\nu} = (f_{\mu\nu} + h_{\mu\nu} + x_{\mu\nu}), \text{ and } \underline{g}_{\mu\nu} = (f_{\mu\nu} - h_{\mu\nu} + x_{\mu\nu})$$

イロト 不同 ト イヨト イヨト

16/02/2015

with $x_{\mu\nu} = \sum_{p=1}^{+\infty} \gamma_p H^{\rho_1}_{\mu} H^{\rho_2}_{\rho_1} \cdots H^{\rho_{2p-1}}_{\rho_{2p-2}} h_{\nu\rho_{2p-1}}.$

Linearizing matter and gravitational fields

• Pertubative solution for $f_{\mu\nu}$:

$$g_{\mu\nu} = f_{\mu\nu} + h_{\mu\nu} + \mathcal{O}(h^2), \qquad \underline{g}_{\mu\nu} = f_{\mu\nu} - h_{\mu\nu} + \mathcal{O}(h^2),$$

・ロン ・御と ・ヨと ・ヨと

Linearizing matter and gravitational fields

• Pertubative solution for $f_{\mu\nu}$:

$$g_{\mu\nu} = f_{\mu\nu} + h_{\mu\nu} + \mathcal{O}(h^2), \qquad \underline{g}_{\mu\nu} = f_{\mu\nu} - h_{\mu\nu} + \mathcal{O}(h^2),$$

Plasma-like hypothesis :

• The two fluid of DM particles differ from a common equilibrium configuration by small displacement vectors y^{μ} and y^{μ} ,

$$\begin{split} j^{\mu} &= j^{\mu}_{0} + \mathcal{D}_{\nu} \left(j^{\nu}_{0} y^{\mu}_{\perp} - j^{\mu}_{0} y^{\nu}_{\perp} \right) + \mathcal{O} \left(y^{2} \right) \,, \\ \underline{j}^{\mu} &= j^{\mu}_{0} + \mathcal{D}_{\nu} \left(j^{\nu}_{0} \underline{y}^{\mu}_{\perp} - j^{\mu}_{0} \underline{y}^{\nu}_{\perp} \right) + \mathcal{O} \left(y^{2} \right) \,, \end{split}$$

• inserting it in the equation of motion for the vector field $\mathcal{D}_{\nu} (W' H^{\mu\nu}) = 4\pi (j^{\mu} - \underline{j}^{\mu})$, we obtain the plasma-like solution for the internal field, with $\xi^{\mu} = y^{\mu} - \underline{y}^{\mu}$,

$$W'H^{\mu\nu} = \alpha \left(j_0^{\nu} \xi_{\perp}^{\mu} - j_0^{\mu} \xi_{\perp}^{\nu} \right) + \mathcal{O}(2) \,.$$

・ロト ・四ト ・ヨト ・ヨト

Linearizing matter and gravitational fields

• Pertubative solution for $f_{\mu\nu}$:

$$g_{\mu\nu} = f_{\mu\nu} + h_{\mu\nu} + \mathcal{O}(h^2), \qquad \underline{g}_{\mu\nu} = f_{\mu\nu} - h_{\mu\nu} + \mathcal{O}(h^2),$$

Plasma-like hypothesis :

• The two fluid of DM particles differ from a common equilibrium configuration by small displacement vectors y^{μ} and y^{μ} ,

$$\begin{split} j^{\mu} &= j_{0}^{\mu} + \mathcal{D}_{\nu} \left(j_{0}^{\nu} y_{\perp}^{\mu} - j_{0}^{\mu} y_{\perp}^{\nu} \right) + \mathcal{O} \left(y^{2} \right) \,, \\ \underline{j}^{\mu} &= j_{0}^{\mu} + \mathcal{D}_{\nu} \left(j_{0}^{\nu} \underline{y}_{\perp}^{\mu} - j_{0}^{\mu} \underline{y}_{\perp}^{\nu} \right) + \mathcal{O} \left(y^{2} \right) \,, \end{split}$$

• inserting it in the equation of motion for the vector field $\mathcal{D}_{\nu} (W' H^{\mu\nu}) = 4\pi (j^{\mu} - \underline{j}^{\mu})$, we obtain the plasma-like solution for the internal field, with $\xi^{\mu} = y^{\mu} - \underline{y}^{\mu}$,

$$W'H^{\mu\nu} = \alpha \left(j_0^{\nu} \xi_{\perp}^{\mu} - j_0^{\mu} \xi_{\perp}^{\nu} \right) + \mathcal{O}(2) \,.$$

> All perturbation variables are of the same order of magnitude

$$\nabla y \sim \nabla \underline{y} \sim h \sim \mathcal{O}(1)$$

16/02/2015

ヘロア 人間 ア 人間 ア 人間 ア

Cosmological perturbations

Background solutions : FLRW metrics

$$\left.\begin{array}{c}g_{\mu\nu}^{\rm FLRW}\left[a,\gamma_{ij}\right]\\ \underline{g}_{\mu\nu}^{\rm FLRW}\left[\underline{a},\gamma_{ij}\right]\end{array}\right\} \quad \Longrightarrow \quad f_{\mu\nu}^{\rm FLRW}\left[\sqrt{a\underline{a}},\gamma_{ij}\right]$$

• We recover the standard background equations with the observed cosmological constant being $\Lambda_{obs} = \lambda = \alpha \lambda_f = \alpha^2 \underline{\lambda}$, with $\alpha = \frac{a}{\underline{a}} = \text{cste.}$

ヘロア 人間 ア 人間 ア 人間 ア

Cosmological perturbations

Background solutions : FLRW metrics

$$\begin{array}{c} \left. \begin{array}{c} g_{\mu\nu}^{\rm FLRW}\left[a,\gamma_{ij}\right] \\ \underline{g}_{\mu\nu}^{\rm FLRW}\left[\underline{a},\gamma_{ij}\right] \end{array} \right\} \quad \Longrightarrow \quad f_{\mu\nu}^{\rm FLRW}\left[\sqrt{a\underline{a}},\gamma_{ij}\right] \end{array} \right\}$$

• We recover the standard background equations with the observed cosmological constant being $\Lambda_{obs} = \lambda = \alpha \lambda_f = \alpha^2 \underline{\lambda}$, with $\alpha = \frac{a}{\underline{a}} = \text{cste.}$

First order cosmological perturbations

- Cosmological perturbations variables
 - in the g-sector : $\{\Psi, \Phi, \Phi^i, E^{ij}\}, \{\delta^F, V, V^i\}$ and $\{\rho_b, u_b^{\mu}\}, \{\delta^F, V, V^i\}$
 - in the <u>g</u>-sector : { $\underline{\Psi}$, $\underline{\Phi}$, $\underline{\Phi}^i$, \underline{E}^{ij} } and { $\underline{\delta}^F$, \underline{V} , \underline{V}^i },
 - in the f-sector : $\xi^{\mu}_{\perp} = (0, D^i z + z^i).$
- Then we compare the ordinary sector $g_{\mu\nu}$ on which ordinary matter moves with Λ -CDM scenario \longrightarrow identify the observed dark matter variables in the sector $g_{\mu\nu}$.

16/02/2015

▶ Introducing **new effective dark matter variables** in the observable *g*-sector

$$\stackrel{\circ}{\rho}_{\rm DM} = \frac{2\varepsilon}{1+\varepsilon} \stackrel{\circ}{\rho}, \qquad \qquad \delta^F_{\rm DM} = \delta^F - \frac{1}{2\varepsilon} \left(\Delta z - (A - \underline{A}) \right) ,$$
$$V_{\rm DM} = V + \frac{1}{2\varepsilon} \left(z' + \frac{1}{2} (B - \underline{B}) \right) , \qquad V^i_{\rm DM} = V^i + \frac{1}{2\varepsilon} \left(z'^i + \frac{1}{2} (B^i - \underline{B}^i) \right) ,$$

・ロト ・四ト ・ヨト ・ヨト

Introducing new effective dark matter variables in the observable g-sector

$$\overset{\circ}{\rho}_{\rm DM} = \frac{2\varepsilon}{1+\varepsilon} \overset{\circ}{\rho}, \qquad \qquad \delta^F_{\rm DM} = \delta^F - \frac{1}{2\varepsilon} \left(\Delta z - (A - \underline{A}) \right),$$
$$V_{\rm DM} = V + \frac{1}{2\varepsilon} \left(z' + \frac{1}{2} (B - \underline{B}) \right), \qquad V^i_{\rm DM} = V^i + \frac{1}{2\varepsilon} \left(z'^i + \frac{1}{2} (B^i - \underline{B}^i) \right),$$

1. we recover the standard continuity and Euler equations for the effective dark matter,

$$\begin{split} & \delta^{'\mathrm{F}}_{\mathrm{DM}} + \Delta V_{\mathrm{DM}} = 0 \,, \\ & V_{\mathrm{DM}}' + \mathcal{H} V_{\mathrm{DM}} + \Psi = 0 \,, \qquad V^{'i}_{\mathrm{DM}} + \mathcal{H} V^{i}_{\mathrm{DM}} = 0 \,. \end{split}$$

・ロト ・四ト ・ヨト ・ヨト

Introducing new effective dark matter variables in the observable g-sector

$$\overset{\circ}{\rho}_{\rm DM} = \frac{2\varepsilon}{1+\varepsilon} \overset{\circ}{\rho}, \qquad \qquad \delta^F_{\rm DM} = \delta^F - \frac{1}{2\varepsilon} \left(\Delta z - (A - \underline{A}) \right),$$
$$V_{\rm DM} = V + \frac{1}{2\varepsilon} \left(z' + \frac{1}{2} (B - \underline{B}) \right), \qquad V^i_{\rm DM} = V^i + \frac{1}{2\varepsilon} \left(z'^i + \frac{1}{2} (B^i - \underline{B}^i) \right),$$

1. we recover the standard continuity and Euler equations for the effective dark matter,

$$\begin{split} & \delta'_{\rm DM}^{\rm F} + \Delta V_{\rm DM} = 0 \,, \\ & V_{\rm DM}' + \mathcal{H} V_{\rm DM} + \Psi = 0 \,, \qquad V'_{\rm DM}^i + \mathcal{H} V_{\rm DM}^i = 0 \,. \end{split}$$

(日) (四) (日) (日)

16/02/2015

2. we get for these new effective variables the same gravitational perturbation equations as in Λ -CDM, e.g. $\Psi - \Phi = 0$.

 Introducing new effective dark matter variables in the observable g-sector

$$\stackrel{\circ}{\rho}_{\rm DM} = \frac{2\varepsilon}{1+\varepsilon} \stackrel{\circ}{\rho}, \qquad \qquad \delta^F_{\rm DM} = \delta^F - \frac{1}{2\varepsilon} \left(\Delta z - (A - \underline{A}) \right) ,$$
$$V_{\rm DM} = V + \frac{1}{2\varepsilon} \left(z' + \frac{1}{2} (B - \underline{B}) \right) , \qquad V^i_{\rm DM} = V^i + \frac{1}{2\varepsilon} \left(z'^i + \frac{1}{2} (B^i - \underline{B}^i) \right) ,$$

1. we recover the standard continuity and Euler equations for the effective dark matter,

$$\begin{split} & \delta'_{\rm DM}^{\rm F} + \Delta V_{\rm DM} = 0 \,, \\ & V_{\rm DM}' + \mathcal{H} V_{\rm DM} + \Psi = 0 \,, \qquad V'_{\rm DM}^i + \mathcal{H} V_{\rm DM}^i = 0 \,. \end{split}$$

16/02/2015

- 2. we get for these new effective variables the same gravitational perturbation equations as in Λ -CDM, e.g. $\Psi \Phi = 0$.
- ► There are similar equations in the unobservable dark sector ; in particular the whole set of equations is fully consistent.

Non-relativistic limit of the model

In the limit where $\varepsilon \ll 1$,

1. $U = -\underline{U}$,

2. At equilibrium the polarization field **P** is aligned with the gravitational field,

$$\mathbf{P} = \rho_0^* \, \boldsymbol{\lambda} = \tfrac{W'}{4\pi} \, \boldsymbol{\nabla} U \,,$$

- 3. We recover the MOND formula in the weak field regime with $\mu = 1 - W' = \frac{|\nabla U|}{a_0},$ $\nabla \cdot [\nabla U - 4\pi \mathbf{P}] = -4\pi G \rho_b,$
- 4. The dipolar dark matter medium should undergoes stable plasma-like oscillations

$$rac{\mathrm{d}^2 \boldsymbol{\xi}}{\mathrm{d}t^2} + \omega^2 \boldsymbol{\xi} = 2\mathbf{g}, \quad ext{with } w = \sqrt{rac{8\pi
ho_0*}{W'}}.$$

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

16/02/2015

Solar system tests

In the limit where $\varepsilon \ll 1$

1. To recover GR in the strong field regime $(X \to \infty)$, we impose

$$W(X) = A + \frac{B}{X^{\alpha}} + \mathcal{O}\left(\frac{1}{X^{\alpha+1}}\right), \qquad \alpha < 0,$$

2. And expand both metrics up to second order in h

$$g_{\mu\nu} = f_{\mu\nu} + h_{\mu\nu} + \frac{1}{2} h_{\mu\rho} h^{\rho}{}_{\nu}$$
 and $\underline{g}_{\mu\nu} = f_{\mu\nu} - h_{\mu\nu} + \frac{1}{2} h_{\mu\rho} h^{\rho}{}_{\nu}$.

3. Post-Newtonian expansion

We expand the metrics to get the standard PN potentials

$$g_{\mu\nu}^{1\mathrm{PN}}[V,V^i]$$
 and $\underline{g}_{\mu\nu}^{1\mathrm{PN}}[V,V^i]$,

▶ We obtain the same parametrized PN parameters as in GR

$$\beta^{1\text{PN}} = 1$$
, $\gamma^{1\text{PN}} = 1$, all others being zero.

Laura BERNARD

Investigating the gravitational sector at linear order

$$S_g = \frac{1}{32\pi} \int \mathrm{d}^4 x \left\{ \sqrt{-g} \, R + \sqrt{-\underline{g}} \, \underline{R} + \frac{2}{\varepsilon} \sqrt{-f} \, \mathcal{R} \right\} \,,$$

Laura BERNARD

16/02/2015

Investigating the gravitational sector at linear order

$$S_g = \frac{1}{32\pi} \int \mathrm{d}^4 x \left\{ \sqrt{-g} \, R + \sqrt{-\underline{g}} \, \underline{R} + \frac{2}{\varepsilon} \sqrt{-f} \, \mathcal{R} \right\} \,,$$

► To linear order we write $g_{\mu\nu} = \eta_{\mu\nu} + k_{\mu\nu}$, $\underline{g}_{\mu\nu} = \eta_{\mu\nu} + \underline{k}_{\mu\nu}$, and define the gravitational modes

$$s_{\mu\nu} = \frac{1}{2} \left(k_{\mu\nu} + \underline{k}_{\mu\nu} \right)$$
 and $h_{\mu\nu} = \frac{1}{2} \left(k_{\mu\nu} + \underline{k}_{\mu\nu} \right)$.

$$S_g = \frac{1}{32\pi} \int d^4x \left\{ -\frac{1}{2} \partial_\mu h_{\nu\rho} \partial^\mu \hat{h}^{\nu\rho} + \hat{H}_\mu \hat{H}^\mu + \frac{1+\varepsilon}{\varepsilon} \left(-\frac{1}{2} \partial_\mu s_{\nu\rho} \partial^\mu \hat{s}^{\nu\rho} + \hat{S}_\mu \hat{S}^\mu \right) \right\} + \mathcal{O}(3) ,$$

・ロト ・四ト ・ヨト ・ヨト

16/02/2015

where $\hat{h}^{\mu\nu} = h^{\mu\nu} - \frac{1}{2}\eta^{\mu\nu}h$ and $\hat{H}^{\mu} = \partial_{\nu}\hat{h}^{\mu\nu}$.

Investigating the gravitational sector at linear order

$$S_g = \frac{1}{32\pi} \int \mathrm{d}^4 x \left\{ \sqrt{-g} \, R + \sqrt{-\underline{g}} \, \underline{R} + \frac{2}{\varepsilon} \sqrt{-f} \, \mathcal{R} \right\} \,,$$

► To linear order we write $g_{\mu\nu} = \eta_{\mu\nu} + k_{\mu\nu}$, $\underline{g}_{\mu\nu} = \eta_{\mu\nu} + \underline{k}_{\mu\nu}$, and define the gravitational modes

$$s_{\mu\nu} = \frac{1}{2} \left(k_{\mu\nu} + \underline{k}_{\mu\nu} \right)$$
 and $h_{\mu\nu} = \frac{1}{2} \left(k_{\mu\nu} + \underline{k}_{\mu\nu} \right)$.

$$S_g = \frac{1}{32\pi} \int d^4x \left\{ -\frac{1}{2} \partial_\mu h_{\nu\rho} \partial^\mu \hat{h}^{\nu\rho} + \hat{H}_\mu \hat{H}^\mu + \frac{1+\varepsilon}{\varepsilon} \left(-\frac{1}{2} \partial_\mu s_{\nu\rho} \partial^\mu \hat{s}^{\nu\rho} + \hat{S}_\mu \hat{S}^\mu \right) \right\} + \mathcal{O}(3) \,,$$

ヘロア 人間 ア 人間 ア 人間 ア

16/02/2015

where $\hat{h}^{\mu\nu} = h^{\mu\nu} - \frac{1}{2}\eta^{\mu\nu}h$ and $\hat{H}^{\mu} = \partial_{\nu}\hat{h}^{\mu\nu}$.

Sum of two massless non-interacting spin-two fields .

Summary

Results

- $\blacktriangleright\,$ The model is indistinguishable from the standard A-CDM paradigm at cosmological scales,
- It correctly reproduces the phenomenology of MOND in the non-relativistic limit without any weak clustering hypothesis, and the dipolar DM medium is stable,

・ロト ・回ト ・ヨト ・ヨト

- ▶ It passes solar system tests (same ppN parameters as GR),
- At linear order the gravitational sector is safe.

Summary

Results

- $\blacktriangleright\,$ The model is indistinguishable from the standard A-CDM paradigm at cosmological scales,
- It correctly reproduces the phenomenology of MOND in the non-relativistic limit without any weak clustering hypothesis, and the dipolar DM medium is stable,
- ▶ It passes solar system tests (same ppN parameters as GR),
- At linear order the gravitational sector is safe.

Remarks and perspectives

- Check the consistency of the model by counting the propagating degrees of freedom at the non-linear level,
- ▶ The arbitrary function W should in principle be derived from a more fundamental theory,
- Test the model by performing N-body simulations, in particular to look at the scale of galaxy clusters.