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Flat rotation curves of galaxies

I For a circular orbit we expect

v2

r
= gN =

GM(r)

r2
=⇒ v(r) =

√
GM(r)

r
,

I Instead we find v(r) constant =⇒ Dark Matter (DM) halo :
ρhalo ∼ 1

r2 .
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The cosmological concordance model ΛCDM

I Discrepancy between dynamical and visible masses in clusters of
galaxies,

I Formation and growth of large scale structures,

I Temperature fluctuations in the cosmic microwave background,

I Content of our universe: dark energy (∼ 68%, unknown), dark matter
(∼ 27%, unknown) and baryons (∼ 5%).
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The mass discrepancy - acceleration relation [Famaey &

McGaugh, 2012]
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Milgrom’s law (1983)

Modification of the Newtonian gravitational acceleration

µ (|g|/a0)g = gN ,

I a0 ≈ 1.2× 10−10 m s−2 is the MOND acceleration constant,

I µ is the MOND interpolating function :{
µ(x) −−→

x�1
1 in the newtonian regime g � a0 ,

µ(x) −−→
x�1

x in the MOND regime g � a0 .







g


Newtonian regime g≫ a 

MOND regime g≪ a


a

Laura BERNARD 16/02/2015



Milgrom’s law (1983)

Modification of the Newtonian gravitational acceleration

µ (|g|/a0)g = gN ,

I a0 ≈ 1.2× 10−10 m s−2 is the MOND acceleration constant,

I µ is the MOND interpolating function :{
µ(x) −−→

x�1
1 in the newtonian regime g � a0 ,

µ(x) −−→
x�1

x in the MOND regime g � a0 .

I We recover the flat rotation curves of galaxies,

V 2
c

r
= g =

√
GMa0
r2

=⇒ V 4
c = GMa0 .
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The Baryonic Tully-Fisher Relation [McGaugh, 2011]

Vf ∼ (a0GMb)
1/4 ,

a0 ≈ 1.2× 10−10 m s−2
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The Baryonic Tully-Fisher Relation [Silk & Mamon, 2012]
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Baryonic mass vs rotation velocity [McGaugh, 2014]

Laura BERNARD 16/02/2015



Plan

Phenomenology of dark matter

Some Relativistic MOND theories

Modified Dark Matter and bimetric gravity

Laura BERNARD 16/02/2015



Some Relativistic MOND theories

Modified gravity theories

I Tensor-Vector-Scalar theory (TeVeS) [Bekenstein 2004, Sanders 2005]

I Non canonical Einstein-aether theories [Zlosnik et al. 2007, Halle et

al. 2008]

I BIMOND, a bimetric theory of gravity [Milgrom 2009]

I Non local theories [Deffayet et al. 2011]

Modified dark matter theories

I Dipolar Dark Matter [Blanchet & Le Tiec 2008;2009]
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The MOND equation and its dielectric analogy

Modified Poisson equation for the gravitational field
[Bekenstein & Milgrom, 1984]

∇ ·
(
µ

(
g

a0

)
g

)
= −4πGρb , with g = ∇U .

Analogy with a dielectric medium
Writing µ = 1 + χ where χ is the gravitational susceptibility, the
analogy with a dielectric medium is apparent,

∆U = −4πG (ρb + ρpol) ,

where ρpol = −∇ ·P and P = − χ
4πG g is the polarization of some DM

medium and χ < 0 (because µ < 1).
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Dipolar Dark Matter [Blanchet & Le Tiec 2008;2009]

Dark matter fluid endowed with a dipole moment vector field ξµ,

SDDM =

∫
d4x
√
−g
[
−ρ+ Jµξ̇µ − V (P⊥)

]
,

with P⊥ = ρ ξ⊥ the polarization field and

V (P⊥) =
Λ

8π
+ 2π P 2

⊥ +
16π2

3a0
P 3
⊥ +O(P 4

⊥) .

Success

I Indistinguishable from Λ-CDM at first order in cosmological
perturbations.

Drawbacks

I Requires a weak clustering hypothesis to recover the MOND
equation : the dipolar DM medium should not cluster much in galaxies
compared to baryonic matter and stays at rest, ρ ≈ ρ0 � ρb.

I Instability of the evolution of the dipole moment vector ξµ⊥ (with a
very long time scale).

I No microscopic description for the dipole moment.
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Microscopic description of a dipolar DM medium

I We describe the dipolar DM medium as made of individual dipole
moments p = mξ, with a polarization field P = np.

I The polarization field P should be aligned with the gravitational field,

P = − χ

4πG
g and ρpol = −∇ ·P ,

with χ < 0, such that the constituant have an ”anti-screening”
behaviour, in agreement with MOND.

I The dipole moment can be seen as pairs of particles with positive and
negative gravitational masses (mi,mg) = (m,±m) −→ cannot be coupled to
GR.
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Non-relativistic description of a dipolar DM medium

I To describe the individual dipole moments correctly, the two species of
DM particles couple to two different gravitational potential U and U ,

dv

dt
=∇(U + φ) ,

dv

dt
=∇(U − φ) ,

dvb
dt

=∇U .

I A non-gravitational internal force φ is necessary to stabilize the
dipolar medium

∆φ =
−4πG

χ

(
ρ− ρ

)
.

I When the mechanism of gravitational polarization will take place,
U = −U such that we recover the MOND formula,

∇ · [∇U − 4πP] = −4πGρb .

I When weakly excited, the dipolar dark matter medium behaves as a
polarizable and stable plasma of particles,

d2ξ

dt2
+ ω2ξ = 2g
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Modified Dark Matter and bimetric gravity

Going to a relativistic model

I One needs two metrics gµν and g
µν

interacting with each other

through fµν algebraically defined by the implicit relation

fµν = fρσ gρµ g
νσ

= fρσ gρν g
µσ
,

I Two kinds of dark matter ρ and ρ, with mass currents Jµ = ρ uµ

and Jµ = ρ uµ, and respectively coupled to gµν and g
µν

,

I Ordinary baryonic matter ρb living in the sector gµν ,

I A vector field Kµ living in the interacting sector fµν and with a
non-canonical kinetic term.
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The action

The action

S =

∫
d4x

{√
−g
(
R− 2λ

32π
− ρb − ρ

)
+
√
−g
(
R− 2λ

32π
− ρ
)

+
√
−f
[
R[f ]− 2λf

16πε
+ (jµ − jµ)Kµ +

a20
8π

W (−H
µνHµν

2a20
)

]
}
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It is divided in three sectors :

I the ordinary sector : gµν , λ, ρb and ρ,

I the hidden sector : g
µν

, λ, and ρ,

I the interacting sector : fµν [g, g], λf and Kµ.

Laura BERNARD 16/02/2015



The action
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related to the observed cosmological constant Λobs.
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I Three different cosmological constants in the three sectors, will be
related to the observed cosmological constant Λobs.

I ε measures the strength of the interaction between the two sectors.
In the (post-)Newtonian limit we will assume ε� 1.

I The function W is determined phenomenologically to recover

I MOND in the weak field limit X → 0,

W (X) = X − 2

3
X3/2 +O(X2) ,

I 1PN limit of GR in the strong field limit X � 1,

W (X) = A+
B

Xα
+O(X−α−1) , α > 0 .
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Equation of motion

Einstein field equations

√
−g (Gµν + λgµν) +

√
−f
ε
Aµν
ρσ

(
Gρσ + λff

ρσ
)

= 16π

[√
−g (Tµνb + Tµν)

+
√
−f Aµν

ρσ τ
ρσ

]
,

√
−g
(
Gµν + λgµν

)
+

√
−f
ε
Aµν
ρσ

(
Gρσ + λff

ρσ
)

= 16π

[√
−g Tµν +

√
−f Aµν

ρσ τ
ρσ

]
.

Equations of motion

aµb = 0 ,

aµ = uν Hµν ,

aµ = −uν Hµν .

Dν (W ′Hµν) = 4π
(
jµ − jµ

)
.

Laura BERNARD 16/02/2015



Perturbative solution to the implicit relation for fµν

I Matrix formulation : we define Gνµ = fνρgµρ and Gνµ = fνρg
µρ

, the

implicit relation becomes

GG = GG = 1

I Defining H = 1
2

(
G−G

)
, we get the perturbative solution

G = H +
√
1 +H2

G = −H +
√
1 +H2

with
√
1 +H2 =

∑+∞
p=0 γpH

2p with γp = (−)p+1(2p−3)!!
2pp!

.

I Returning to a metric formulation,

gµν =
(
fµν + hµν + xµν

)
, and g

µν
=
(
fµν − hµν + xµν

)
with xµν =

∑+∞
p=1 γpH

ρ1
µ Hρ2

ρ1 · · ·H
ρ2p−1
ρ2p−2 hνρ2p−1 .
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Linearizing matter and gravitational fields

I Pertubative solution for fµν :

gµν = fµν + hµν +O(h2) , g
µν

= fµν − hµν +O(h2) ,

I Plasma-like hypothesis :
I The two fluid of DM particles differ from a common equilibrium

configuration by small displacement vectors yµ and yµ,

jµ = jµ0 +Dν (jν0 y
µ
⊥ − j

µ
0 y

ν
⊥) +O

(
y2
)
,

jµ = jµ0 +Dν
(
jν0 y

µ

⊥
− jµ0 y

ν

⊥

)
+O

(
y2
)
,

I inserting it in the equation of motion for the vector field
Dν (W ′Hµν) = 4π

(
jµ − jµ

)
, we obtain the plasma-like solution

for the internal field, with ξµ = yµ − yµ,

W ′Hµν = α (jν0 ξ
µ
⊥ − j

µ
0 ξ

ν
⊥) +O(2) .

I All perturbation variables are of the same order of magnitude

∇y ∼ ∇y ∼ h ∼ O(1) .
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Dν (W ′Hµν) = 4π

(
jµ − jµ

)
, we obtain the plasma-like solution

for the internal field, with ξµ = yµ − yµ,

W ′Hµν = α (jν0 ξ
µ
⊥ − j

µ
0 ξ

ν
⊥) +O(2) .

I All perturbation variables are of the same order of magnitude

∇y ∼ ∇y ∼ h ∼ O(1) .
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Cosmological perturbations

Background solutions : FLRW metrics

I
gFLRW
µν [a, γij ]

gFLRW

µν
[a, γij ]

}
=⇒ fFLRW

µν

[√
aa, γij

]
I We recover the standard background equations with the observed

cosmological constant being Λobs = λ = αλf = α2 λ, with
α = a

a
= cste.

First order cosmological perturbations

• Cosmological perturbations variables

I in the g-sector : {Ψ, Φ, Φi, Eij}, {δF , V, V i} and {ρb, uµb },
I in the g-sector : {Ψ, Φ, Φi, Eij} and {δF , V , V i},
I in the f -sector : ξµ⊥ =

(
0, Diz + zi

)
.

• Then we compare the ordinary sector gµν on which ordinary matter
moves with Λ-CDM scenario −→ identify the observed dark matter
variables in the sector gµν .
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First order cosmological perturbations

I Introducing new effective dark matter variables in the observable
g-sector

◦
ρDM =

2ε

1 + ε

◦
ρ , δFDM = δF − 1

2ε
(∆z − (A−A)) ,

VDM = V +
1

2ε

(
z′ + 1

2
(B −B)

)
, V iDM = V i +

1

2ε

(
z′
i

+
1

2
(Bi −Bi)

)
,

1. we recover the standard continuity and Euler equations for
the effective dark matter,

δ′
F
DM + ∆VDM = 0 ,

V ′DM +HVDM + Ψ = 0 , V ′
i
DM +HV iDM = 0 .

2. we get for these new effective variables the same gravitational
perturbation equations as in Λ-CDM, e.g. Ψ− Φ = 0.

I There are similar equations in the unobservable dark sector ; in
particular the whole set of equations is fully consistent.
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Non-relativistic limit of the model

In the limit where ε� 1,

1. U = −U ,

2. At equilibrium the polarization field P is aligned with the
gravitational field,

P = ρ∗0 λ = W ′

4π
∇U ,

3. We recover the MOND formula in the weak field regime with
µ = 1−W ′ = |∇U|

a0
,

∇ · [∇U − 4πP] = −4πGρb ,

4. The dipolar dark matter medium should undergoes stable plasma-like
oscillations

d2ξ

dt2
+ ω2ξ = 2g , with w =

√
8πρ0∗
W ′

.
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Solar system tests

In the limit where ε� 1

1. To recover GR in the strong field regime (X →∞), we impose

W (X) = A+
B

Xα
+O

( 1

Xα+1

)
, α < 0 ,

2. And expand both metrics up to second order in h

gµν = fµν + hµν +
1

2
hµρh

ρ
ν and g

µν
= fµν − hµν +

1

2
hµρh

ρ
ν .

3. Post-Newtonian expansion

I We expand the metrics to get the standard PN potentials

g1PN
µν [V, V i] and g1PN

µν
[V, V i] ,

I We obtain the same parametrized PN parameters as in GR

β1PN = 1 , γ1PN = 1 , all others being zero .
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Investigating the gravitational sector at linear order

Sg =
1

32π

∫
d4x

{√
−g R+

√
−g R+

2

ε

√
−f R

}
,

I To linear order we write gµν = ηµν + kµν , g
µν

= ηµν + kµν , and define

the gravitational modes

sµν =
1

2

(
kµν + kµν

)
and hµν =

1

2

(
kµν + kµν

)
.

Sg =
1

32π

∫
d4x

{
− 1

2
∂µhνρ ∂

µĥνρ + ĤµĤ
µ

+
1 + ε

ε

(
−1

2
∂µsνρ ∂

µŝνρ + ŜµŜ
µ
)}

+O(3) ,

where ĥµν = hµν − 1
2
ηµνh and Ĥµ = ∂ν ĥ

µν .

I Sum of two massless non-interacting spin-two fields .
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µ
)}

+O(3) ,
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where ĥµν = hµν − 1
2
ηµνh and Ĥµ = ∂ν ĥ
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Summary

Results
I The model is indistinguishable from the standard Λ-CDM paradigm at

cosmological scales,

I It correctly reproduces the phenomenology of MOND in the
non-relativistic limit without any weak clustering hypothesis, and the
dipolar DM medium is stable,

I It passes solar system tests (same ppN parameters as GR),

I At linear order the gravitational sector is safe.

Remarks and perspectives

I Check the consistency of the model by counting the propagating
degrees of freedom at the non-linear level,

I The arbitrary function W should in principle be derived from a more
fundamental theory,

I Test the model by performing N-body simulations, in particular to
look at the scale of galaxy clusters.
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