Approximate No-hair Relations for Neutron Stars

Kent Yagi Department of Physics, Montana State University

IAP, Paris 11th May 2015

Who is Kent Yagi???

Montana State University (postdoc) Princeton University (JSPS fellow, from Sept.)

Introduction

What does Kent work on?

 (I) Testing strong-field gravity with binary pulsar and gravitational wave observations
 -scalar-tensor theories

- -massive graviton theories
- -extra dimension theories
- -Einstein-dilaton Gauss-Bonnet gravity
- -dynamical Chern-Simons gravity
- -Lorentz-violating gravity

(II) Neutron star properties in General Relativity
 -universal relations among observables
 -approximate no-hair relations

Why Neutron Stars?

(i) probing nuclear physics

Problems

Degeneracies among parameters
Degeneracies between uncertainties in nuclear and gravitational physics

(ii) probing strong-field gravity

Einstein-EAther theory [KY, Blas, Barausse & Yunes 2014]

Roadmap

I-Love-Q Relations

Construct slowly-rotating/tidally-deformed NS solutions by solving the Einstein equations numerically.

Extract I, Love & Q from the asymptotic behavior of the metric at spatial infinity.

Applications (I): Nuclear Physics

Applications (II): Gravitational Physics

I-Love-Q Relations

Kent Yagi

Strong-field Tests of Gravity

[KY & Yunes, Science, PRD (2013)]

Approximate No-hair Relations for Neutron Stars

Multipole Moments (Gravity)

Exterior spacetime of an object is characterized by multipole moments

NS No-hair Relations

Kent Yagi

Black Holes are Bald

BHs only have two hairs, mass and spin

 $\frac{\text{Black Hole No-hair Relation}}{M_{\ell} + iS_{\ell}} = M(ia)^{\ell}$ $a = S/M \qquad \text{[Hansen (1974)]}$

Is there a similar relation for neutron stars?

Are Newtonian Stars also bald?

NS No-hair Relations Kent Yagi

Are Newtonian Stars also bald?

NS No-hair Relations Kent Yagi

Decoupling the Integrals

Radial coordinate transformation

$$r \to \tilde{r} = \frac{r}{\Theta(\cos \theta)} \left(\Theta(\cos \theta) = \frac{R_*(\theta)}{a_1} \right) \qquad \text{allows us to decouple the integrals}$$

$$M\ell = 2\pi R\ell I_{\ell,3}$$

$$\left(R_{\ell} = \int_{0}^{a_1} \rho(\tilde{r}) \tilde{r}^{\ell+2} d\tilde{r} \quad I_{\ell,k} = \int_{-1}^{1} \Theta(\cos \theta)^{\ell+k} P_{\ell}(\cos \theta) d\cos \theta \right)$$

$$Rewrite in terms of Lane-Emden function
$$\rho = \rho_c (\vartheta_{\text{LE}})^n \checkmark \text{polytropic index}$$

$$S_{\ell} = \frac{4\pi\ell}{2\ell+1} \Omega R_{\ell+1} (I_{\ell-1,5} - I_{\ell+1,3})$$

$$NS \text{ No-hair Relations}$$

$$Rewrite in terms of S_{\ell}$$

$$Rewrite in terms of S_{\ell}$$$$

3-Hair Relations for Newtonian Stars

$$M_{\ell} + i\frac{\mathbf{q}}{a}S_{\ell} = \bar{B}_{n,\lfloor\frac{\ell-1}{2}\rfloor}M(i\mathbf{q})^{\ell}$$

[Stein, KY & Yunes (2014)]
$$\left[a = S/M \quad q^2 = -Q/M \right]$$

Once the polytropic index *n* is specified, all the higher moments can be expressed in terms of the first three.

Coefficient is equation of state insensitive within $\sim 5\%$ for low-*l* modes.

NS No-hair Relations Kent Yagi

NSs are Follicly-challenged

[KY+(2014)]

Relating Follicly-Challenged Neutron Stars to Bald Black Holes

Filling the gap...?

Follicly challenged NSs vs bald BHs

Kent Yagi

Filling the gap...?

Relation between follicly-challenged neutron stars and bald black holes is unclear

Is there a stellar sequence that can continuously reach the black hole limit?

Anisotropic neutron stars!

(radial pressure) \neq (tangential pressure)

Follicly challenged NSs vs bald BHs

Kent Yagi

1986

Max Compactness

Multipole Relations for Anisotropic Stars

Follicly challenged NSs vs bald BHs

Kent Yagi

Zoom In!!

Follicly challenged NSs vs bald BHs Kent Yagi

Phase Transition...?

$$\begin{array}{c|c|c} \bar{A}_{\ell} - 1 \propto \tau^{k_{\bar{A}_{\ell}}} \\ \hline & \text{Isotropic} & \text{EoS} \\ \lambda_{\text{BL}} & 0 & \text{variation} \\ \hline k_{\bar{S}_1} & 3.90(\pm 0.49) \\ k_{\bar{M}_2} & 4.22(\pm 0.45) \\ k_{\bar{S}_3} & 4.19(\pm 0.49) \end{array}$$

EoS universality of ~10% in the scaling exponent

Follicly challenged NSs vs bald BHs Kent Yagi

Conclusions & Future Work

Conclusions & Future Work

-universal relations are useful for probing nuclear and gravitational physics with NS observations

-approximate no-hair (3-hair) relations for NS multipole moments

-multipole relations for anisotropic stars approach the BH limit in a non-trivial way

Relations to

- phase transitions?
- critical behaviors?
- gravity/fluid correspondence?

Gravitational collapse simulations of rotating NSs

Conclusions

Kent Yagi