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Talk Outline
• Introduction to pulsar timing arrays

• Formalism for CMB polarisation analysis

• PTA response to individual modes of the background

• Recovery of Hellings and Downs correlation curve for an 
isotropic uncorrelated background

• Characterising and measuring general backgrounds

• Implications of a measurement of the coefficients inconsistent 
with expectations

• Extension to ground-based interferometers



Pulsar timing arrays
• Pulsars are very accurate clocks. 

- GW passing between source and observer 
induces periodic change in pulse time of arrival.

- Use a network (array) of pulsars to increase 
signal to noise.

- Ongoing international effort using various radio 
telescopes - EPTA, PPTA and NANOGrav.



• No detection yet, but recent limits are starting to become 
astrophysical interesting.

Pulsar timing arrays
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Table 2
Summary model parameters and prior ranges.

Parameter Description Prior Comments
White Noise

Ek EFAC per backend/receiver system uniform in [0,10] Only used in single pulsar analysis
Qk EQUAD per backend/receiver system uniform in logarithm [-8.5,-5] Only used in single pulsar analysis
Jk ECORR per backend/receiver system uniform in logarithm [-8.5,-5] Only used in single pulsar analysis
Red Noise

Ared Red noise power law amplitude uniform in [10-20,10-11] 1 parameter per pulsar
�red Red noise power law spectral index uniform in [0,7] 1 parameter per pulsar
GWB

Agw GWB power law amplitude uniform in [10-18,10-11] 1 parameter for PTA for power-law models
�gw GWB power law spectral index delta function Fixed to different values depending on analysis
⇢i GWB power spectrum coefficients at frequency i/T uniform in ⇢

1/2
i [10-18,10-8]a 1 parameter per frequency

A GWB broken power-law amplitude log-normalb for models A(B)
N (-14.4(-15),0.26(0.22)) 1 parameter for PTA for broken power law models

 GWB broken power-law low-frequency spectral index uniform in [0,7] 1 parameter for PTA for broken power law models
fbend GWB broken power-law bend frequency uniform in logarithm [-9,-7]c 1 parameter for PTA for broken power law models

a The prior uniform in ⇢
1/2
i is chosen to be consistent with a uniform prior in Agw for the power law model since 'i / A2

gw.

b These values are quoted in log base 10 and are obtained from MOP14 and S13.
c We choose different prior values on fbend when mapping to astrophysical model parameters as described in Section 5.
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Figure 2. Strain amplitude vs. GW frequency. The solid black and long
dashed black lines are the 95% upper limits from our spectral and power-law
analyses. The red, blue and green shaded regions are the one-sigma predic-
tions from the models of S13, RWS14, and MOP14. The green shaded region
uses the simulation results from MOP14, but replaces the fit to the GWB pre-
dictions used in that paper with the functional form given by Eq. (24).

than the recent EPTA upper limit of LTM15, and a factor of
5 more constraining than the 5 year data release upper limit
when applying the same Bayesian analysis. Furthermore, we
find a slightly less constraining upper limit when using the
free spectrum model (power-law equivalent upper limit of
2 ⇥ 10-15). This is to be expected since the free spectrum
model has many more degrees of freedom (we use 50 free
amplitudes for each of the 50 frequencies in this case) over
the power law parameterization (1 degree of freedom). Thus,
since the power law model can leverage extra information at
all frequencies, as opposed to the spectrum model where each
frequency is independent of the others, more constraining up-
per limits are expected from a power law model. We also find
that the upper limit on the strain spectrum from the spectrum
analysis is consistent with white noise (i.e., hwhite

c ( f )/ f 3/2) at

frequencies & 3/T , where T is the length of the longest set of
residuals in the data set, which indicates that our GWB upper
limits are coming from the three lowest frequency bins. This
behavior is to be expected since we have several well timed
pulsars that do not span the full 9-year baseline (see Table 1)
and thus will have peak sensitivity at frequencies greater than
1/T .

From inspection of Figure 2 we see that our 95% upper limit
is within at least the 2-sigma confidence region of all three as-
trophysical models and is sensitive to a potential turnover in
the spectrum due to environmental coupling factors. We wish
to determine the level of consistency between our data and
the power-law models displayed in Figure 2. To accomplish
this we follow the method applied in Shannon et al. (2013).
Given that we have a model M for the value of the GW ampli-
tude Agw whose probability distribution function is denoted
p(Agw|M) and that we have a probability distribution func-
tion for Agw given the data, denoted p(Agw|d), where d repre-
sents the data, the probability that we measure a value of Âgw
greater than that predicted by the model, AM

gw, is given by the
law of total probablility

P(Âgw > AM
gw) =

Z 1

-1
p(Agw|M)dAgw

Z 1

Agw

p(A0
gw|d)dA0

gw.

(21)
Therefore, low values of P(Âgw > AM

gw) indicate that the range
of Agw that is consistent with our data is inconsistent with
the model M, and vice versa. To carry out this procedure
the distribution p(Agw|d) is simply the marginalized poste-
rior distribution when using the uniform prior on Agw. We
use log-normal distributions to model the MOP14, S13, and
RWS14, models. Since the models of RWS14, and S13 pre-
dict nearly the same GWB amplitude distribution (assuming
a power-law only) we make no distinction between these two
models. Furthermore, the model distributions on Agw, given
by log-normal distributions have mean and standard devia-
tions of (-14.4,-15) and (0.26,0.22) for the MOP14 (here-
after model A) and S13/RWS14 (hereafter model B) mod-
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Lessons from the CMB
• CMB community measure 

temperature and polarisation maps

• Polarisation is described in terms 
of Stokes parameters Q and U that 
give the polarisation tensor

• This is a transverse-traceless 
tensor on the sky, c.f. the GW field
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Spin-weighted functions
• A spin-weighted function                 maps a point    and an 

orthonormal basis          on the sphere onto    and has the property

• where s is the spin weight.

• Under such a rotation

• so the quantities                        , where                            have spin-
weight      . A spin-weight s function can be expanded in terms of 
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Grad and curl spherical harmonics
• Can decompose any transverse-traceless tensor field on the sky 

as a superposition of gradients and curls of spherical harmonics

• NB we have modes with           only. Using standard polarisation 
tensors on the sky

• we have
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• The W and X functions are related to spin-2 spherical harmonics

• and can be written in terms of associated Legendre polynomials

• In terms of these grad and curl harmonics, a general GW 
background with GR polarisation can be written

Grad and curl spherical harmonics
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PTA response
• A plane gravitational wave induces a redshift in a pulsar signal

• The redshift induced by a GW background can be written as

• where the response functions for individual modes are given by

• We make the simplifying assumption that            . We will use the 
notation                       and often assume           .

~x ⇡ 0
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h
ab

(f, k̂)
h
1� e�i2⇡fL(1+k̂·û)/c
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• GR admits two transverse and 
traceless (TT) polarisations

• In other metric theories of gravity, 
can have up to four additional states

• Can use a similar approach to map 
non-GR polarisation backgrounds. 
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• For the scalar modes (B, L) the quantities

• where                            as before, are invariant under rotations, 
i.e., they are spin-weight zero.

• Expand in terms of standard spherical harmonics, e.g.,

Extensions - alternative polarisations
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• For the vector modes (X, Y) the quantities

• transform like spin-weight       objects under rotations. Expand 
in terms of spin-weight       spherical harmonics 

• Can write  

Extensions - alternative polarisations

m̂a
±m̂

b
±h

Y
ab(k̂)m̂a

±m̂
b
±h

X
ab(k̂)

±1
±1

hX(f, k̂) =
1

2
p
2

X

lm

h
vG(lm)(f)

⇣
�1Ylm(k̂)� 1Ylm(k̂)

⌘
� ivC(lm)(f)

⇣
�1Ylm(k̂) + 1Ylm(k̂)

⌘i
,

hY (f, k̂) =
1

2
p
2

X

lm

h
vC(lm)(f)

⇣
�1Ylm(k̂)� 1Ylm(k̂)

⌘
+ ivG(lm)(f)

⇣
�1Ylm(k̂) + 1Ylm(k̂)

⌘i

h

ab

(t, ~x) =

Z 1

�1
df

Z

S

2

d2⌦
k̂

h
h

X

(f, k̂)eX
ab

(k̂) + h

Y

(f, k̂)eY
ab

(k̂)
i
ei2⇡f(t�k̂·~x/c)

Y VG

(lm)a(k̂) =
1

2
p
2

h⇣
�1Ylm(k̂)� 1Ylm(k̂)

⌘
l̂a + i

⇣
�1Ylm(k̂) + 1Ylm(k̂)

⌘
m̂a

i
,

Y VC

(lm)a(k̂) =
1

2
p
2

h⇣
�1Ylm(k̂)� 1Ylm(k̂)

⌘
m̂a � i

⇣
�1Ylm(k̂) + 1Ylm(k̂)

⌘
l̂a
i



• Then we define

• so that

• and work with the responses

Extensions - alternative polarisations
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• Compute response in computational !ame, in which pulsar is in the z-
direction. Expansion coefficients transform under a rotation in a 
similar way to spherical harmonic coefficients.

• Deduce that the response functions in the cosmic frame for a pulsar 
in direction                                                                    take the form

• for all polarisation states.

Pulsar response functions
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• In the computational frame we have

• Recall

• We deduce that, in this frame

• We have zero sensitivity to curl modes in any frame.

Response to tensor modes
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• For the grad modes we have

• The y-dependent terms are the contributions from the pulsar term 
and are negligible for            , the regime in which PTAs operate. 

• Deduce that the response functions in the cosmic frame for a pulsar 
in direction                                                                    are

Response to tensor modes
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Response to tensor modes



• For the breathing mode, we find

• and in the limit in which we can ignore the pulsar term, this 
becomes

Response to scalar modes
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Response to breathing modes



• For the scalar longitudinal modes

• in which

• and for large y, we have

Response to scalar modes
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Response to scalar-longitudinal modes



Response to scalar-longitudinal modes



Response to scalar-longitudinal modes



• For the vector-longitudinal modes we have

• Once again we find zero response of a PTA to the curl 
components of the background, but for grad modes

• For large y, this can be approximated by

Response to vector modes
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l (yI) , RVC

I(lm)(f) = 0

RVG

I(lm)(f) ⇡ 2⇡Ylm(ûI)
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Response to vector modes



• To summarise, the full set of response functions are

• We have zero sensitivity to tensor and vector curl modes.

• Without the pulsar term, we have no sensitivity to structure 
beyond dipole in scalar-tensor (breathing mode) backgrounds.
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• PTAs have a common origin (the Solar System) for all pulsar lines of 
sight. Curl mode metric perturbation vanishes at the origin.

• Analogous to separation between odd and even modes, e.g., waves 
on a string

• Measurement at x=0 can only determine A+C and B+D. Break 
degeneracy by adding a measurement at              or using point-able 
detector that can distinguish left and right propagating modes.

• GW detectors are non-point-able and over a year

• for a GW frequency                     . 

• No curl sensitivity because PTA moves by much less than a GW 
wavelength over typical observation durations.

Why zero curl response?

A cos(x� t) +B sin(x� t) + C cos(x+ t) +D sin(x+ t)

x1 6= 0

�(fk̂ · ~x/c) ⇠ 0.0005

f = 10�6Hz



Scalar-tensor background recovery
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Scalar-tensor background recovery
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Isotropic, uncorrelated backgrounds
• An isotropic, uncorrelated and unpolarised background is 

described by the two-point functions

• or in terms of the grad and curl expansion coefficients

• The expected correlation between the response of two pulsars 
for such a background is
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Isotropic, uncorrelated backgrounds

• This agrees with the standard Hellings and Downs correlation.
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Isotropic, uncorrelated backgrounds

• Including three modes in the expansion is enough to characterise 
an isotropic background.



Isotropic, uncorrelated backgrounds



General backgrounds
• Can characterise any kind of background in this formalism

• For example, recover overlap reduction functions for 
anisotropic, uncorrelated backgrounds (Mingarelli et al. 2013)

haP(lm)(f)a
P 0⇤
(l0m0)(f

0)i = CPP 0

lml0m0 H(f) �(f � f 0)

�12(f) = 4⇡2
X

(lm)

X

(l0m0)

(�1)l+l0NlNl0C
GG
lml0m0Y(lm)(û1)Y
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General backgrounds
• and extend these results analytically to arbitrary multipole order
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General backgrounds
• Also obtain similar results for other polarisation states.

Scalar-transverse (breathing) modes



General backgrounds
Scalar-longitudinal modes



General backgrounds
Scalar-longitudinal modes



General backgrounds
Vector-longitudinal modes



Isotropic, uncorrelated backgrounds of 
arbitrary polarisation

18

(a) (b)

(c) (d)

FIG. 8: Approximations to the overlap reduction functions for an isotropic, unpolarized and uncorrelated stochastic background,
plotted as a function of the angle between a pair of pulsars. The approximations are obtained by summing products of the
response functions over l for di↵erent values of l

max

. Panel (a): transverse tensor background; Panel (b): scalar-transverse
(breathing) background; panel (c): scalar-longitudinal background; panel (d): vector-longitudinal background. We are working
in the large y limit for all of these cases. For the scalar-longitudinal background, we have taken y

1

= 100 and y

2

= 200. The
thick black line in each plot is the “full” expression for the overlap reduction function, corresponding to the limit l

max

! 1.
(These limiting expressions equal

p
4⇡/2 times the l = 0, m = 0 component of the overlap reduction functions calculated in

Sec. III.) For the scalar-longitudinal case, the full expression was calculated numerically.

dent of the distance to the pulsar. In that regime, PTAs
are only sensitive to modes of the scalar-transverse back-
ground with l < 2, while transverse tensor backgrounds
can only contain modes with l � 2. However, longitu-
dinal backgrounds can only be distinguished from trans-
verse backgrounds if there are multiple pulsars along a
given line of sight, or if there is a known correlation (e.g.,
a power law) between the background amplitudes at dif-
ferent frequencies. In either of these scenarios, we can
exploit the dependence of the pulsar term on 2⇡fL/c,
which is much more significant for the longitudinal modes
of the background. Thus, in the limit of infinitely many
pulsars distributed across the sky at a range of distances,
we would expect to be able to measure the entire content
of the background in each polarisation state and at each
frequency. In practice, of course, a pulsar timing array of
N

p

pulsars can only measure 2N
p

real components of the
background [35, 38], and so the resolution of any map
that we produce will be limited by the number of pul-
sars in the array. Roughly speaking, to produce a map
of the gravitational-wave sky in all polarisation states to

an angular resolution of �✓ ⇡ 180�/l
max

would require
N

p

= 3(l
max

+ 1)2 � 1 pulsars.

To understand the possible detectability of these
anisotropic backgrounds, we can refer to previous work
in related contexts. In [33], the detectability of isotropic
backgrounds of di↵erent polarisations was considered.
They found that the scalar-transverse background would
be detectable with comparable signal-to-noise ratio as
the transverse-tensor background (requiring 40 pulsars
timed for 5 years with 100 ns timing precision for a
first confident detection), but the longitudinal modes
would require 50% more pulsars (60 pulsars) to be de-
tected in a comparable time with the same signal-to-
noise ratio. However, this analysis was done assuming
that the correlation at zero pulsar separation was fixed
for all modes, rather than the intrinsic strain amplitude.
For fixed strain amplitude, the longitudinal modes have
much higher responses at low pulsar separations and so
would be detectable much more quickly. In [31] the de-
tectability of anisotropic transverse-tensor backgrounds
of gravitational waves was investigated. It was found



Background mapping
• We can use observed timing residuals, s, to infer the coefficients, 
a, of the background. The likelihood takes the form

• At a given frequency we make only 2Np measurements - an 
amplitude and phase for each of the Np pulsars. Can only hope to 
recover Np combinations of the (complex) aG(lm)’s. 

• This shows up in a singular-value decomposition of H

• The rectangular matrix     has at most Np non-zero elements on 
the diagonal.

• We can write                                 where the Np columns of            
span the range of H. 

p(s|F,~a) / exp


�1

2

(~s�H~a)
†
F�1

(~s�H~a)

�

H = U⌃V †

⌃

U = [HrangeHnull] Hrange



Background mapping - GR modes
• In a search we can replace        by               in the likelihood. The 

value of    corresponding to a given value of     is given in terms of 
the pseudo-inverse of    ,     , by                   .

• A similar analysis can be performed in a real space representation  
(Cornish & van Haasteren 2014).

• Which components do we expect to be able to measure? Since

• we expect to measure the low-l modes more precisely. To reach an 
angular resolution of lmax we therefore need an array of

• Need                pulsars to reach lmax=4 required for an isotropic 
background;                 to reach single source resolution at lmax=10.

Np ⇡ 21
Np ⇡ 100

Np ⇡ (l
max

+ 1)2 � 4

RG
I(lm) ⇠

1

l
3
2

as l ! 1

Hrange
~bH~a

~a ~b
~a = V ⌃+~b⌃+⌃



• Gradient piece of background behaves as expected. Adding more 
pulsars increases resolution of map and reduces residual.

Background mapping - GR modes

Injected background



• Gradient piece of background behaves as expected. Adding more 
pulsars increases resolution of map and reduces residual.

Background mapping - GR modes

Residual Np=1 



• Gradient piece of background behaves as expected. Adding more 
pulsars increases resolution of map and reduces residual.

Background mapping - GR modes

Residual Np=2 



• Gradient piece of background behaves as expected. Adding more 
pulsars increases resolution of map and reduces residual.

Background mapping - GR modes

Residual Np=5 



• Gradient piece of background behaves as expected. Adding more 
pulsars increases resolution of map and reduces residual.

Background mapping - GR modes

Residual Np=10 



• Gradient piece of background behaves as expected. Adding more 
pulsars increases resolution of map and reduces residual.

Background mapping - GR modes

Residual Np=20 



• Gradient piece of background behaves as expected. Adding more 
pulsars increases resolution of map and reduces residual.

Background mapping - GR modes

Residual Np=50 



• Gradient piece of background behaves as expected. Adding more 
pulsars increases resolution of map and reduces residual.

Background mapping - GR modes

Residual Np=100 



• Curl part of background can never be observed.

Background mapping - GR modes



• Total GW background map could still be missing a significant 
component.

Background mapping - GR modes

Curl Total

Grad Recovered



Implications
• Individual modes of the background represent GW emission that 

is correlated between different points on the sky.

• No well-established physical mechanism to create such correlations 
- discovery of a correlated background would be a profound result.

• Mild anisotropy expected in power of GW background - could be 
consistent with either uncorrelated or correlated background.
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• Polarization of background can distinguish correlated and 
uncorrelated origin.

Implications
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• If we allow for alternative polarisations, the number of GR modes 
we can measure is reduced further.

• The total response of a pulsar in direction      is

• If we have pulsars all over the sky, can decompose “pulsar 
response” map into spherical harmonic basis. Coefficients are 
linear combinations of different polarisations.

• No confusion between B and G modes due to range of l. 
Confusion with VG and L possible unless have pulsars at several 
distances, i.e., several y’s.

• Even with multiple pulsar distances, we expect great confusion 
between VG and other modes, due to weaker y dependence.

Background mapping - all modes

ûI

RI(f) =
X

lm

⇣
aB(lm)(f)RB
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• Fisher matrix analysis predicts precision with which coefficients 
will be measured. E.g., analysis with lmax = 2 and Np = 30.

Background mapping - all modes

21

(l, m) mode
(0, 0) (1,�1) (1, 0) (1, 1) (2,�2) (2,�1) (2, 0) (2, 1) (2, 2)

G: transverse-tensor (gradient) � � � � 0.44 0.38 0.32 0.38 0.44

G: transverse-tensor (gradient) � � � � 0.49 0.39 0.37 0.39 0.49
B: scalar-transverse (breathing) 0.16 0.53 0.46 0.53 � � � � �

G: transverse-tensor (gradient) � � � � 16.2 10.5 11.4 10.5 16.2
B: scalar-transverse (breathing) 4.36 16.1 14.1 16.1 � � � � �
L: scalar-longitudinal 0.71 0.96 0.84 0.96 1.21 0.78 0.86 0.78 1.21

G: transverse-tensor (gradient) � � � � 1.4e5 5.4e4 8.0e4 5.4e4 1.4e5
B: scalar-transverse (breathing) 18.4 9.4e4 6.2e4 9.4e4 � � � � �
L: scalar-longitudinal 3.08 11.5 8.68 11.5 20.9 7.51 11.9 7.52 20.9
VG: vector-longitudinal (gradient) � 6.6e4 4.4e4 6.6e4 7.0e4 2.7e4 4.0e4 2.7e4 7.0e4

TABLE II: The uncertainties, �
ML

, for the transverse-tensor, scalar-transverse, scalar-longitudinal, and vector-longitudinal
polarisation modes searched for separately or in various combinations for l

max

= 2 and N = 30 pulsars.

in the power of a scalar-transverse background. This re-
sult holds regardless of the number of pulsars, timing-
precision, or observational schedules—it is a property of
the geometric sensitivity of PTAs to gravitational-wave
signals of scalar-transverse polarisation. Additionally, we
have found analytic expressions for the overlap reduction
functions for arbitrary anisotropic vector-longitudinal
backgrounds. We also derived a semi-analytic expression
for the overlap reduction functions of anisotropic scalar-
longitudinal backgrounds, in which case a consideration
of the pulsar-term is crucial to avoid divergences.

In the second half of this paper, we extended the for-
malism of our previous work in Gair et al. [35], where the
Fourier amplitudes in a plane-wave expansion of the GR
metric perturbation were decomposed with respect to a
basis of gradient and curl spherical harmonics, which are
related to spin-weight ±2 spherical harmonics. By deter-
mining the components of the background in such a de-
composition it is possible to construct a map of both the
amplitude and the phase of the gravitational wave back-
ground across the sky, rather than simply reconstructing
the power distribution. The decomposition in terms of
spin-weight ±2 spherical harmonics is made possible by
the transverse-traceless nature of the GR gravitational-
wave metric perturbations. Here we have appealed to
the structure of the gravitational-wave metric pertur-
bations for non-GR polarisations to perform the same
procedure—the Fourier amplitudes of scalar modes can
be expanded in terms of ordinary spin-weight 0 spherical
harmonics, while the vector mode amplitudes can be ex-
panded in terms of a spin-weight ±1 spherical harmonic
basis. In so doing, we found that PTAs lack sensitivity
to structure in the polarisation amplitude of a scalar-
transverse background beyond dipole anisotropy, which
can be used to explain the lack of sensitivity to power
anisotropies beyond quadrupole. This result was veri-
fied through numerical map making and recovery, where
we found some sensitivity to modes beyond dipole when
y = 2⇡fL/c was very small, but this would require all

pulsars to lie within a distance of 0.01 kpc from Earth.
We also found that PTAs will lack sensitivity to vector
curl modes for a vector-longitudinal background, which is
analogous to the finding in Gair et al. [35] that PTAs are
insensitive to the tensor curl modes of gravitational-wave
backgrounds in GR.

This paper provides several ready-to-use expressions
for overlap reduction functions for non-GR stochastic
backgrounds with arbitrary anisotropy. These expres-
sions can be trivially plugged into any current or planned
PTA stochastic background search pipeline to obtain lim-
its on the strain amplitude of a non-GR gravitational-
wave sky. We also provide several ready-to-use expres-
sions for the response functions of a single pulsar to
anisotropies in a non-GR gravitational-wave background.
The implications of this are that we can use an array of
pulsars to perform a Bayesian or frequentist search for
the angular dependence of the Fourier modes of a plane-
wave expansion of the gravitational-wave metric pertur-
bations, and in so doing produce maps of the polarisation
content of the sky that include phase information rather
than simply map the distribution of power.

The results in this paper also indicate what is pos-
sible to measure in principle with a su�ciently exten-
sive pulsar timing array, and in Sec. V we discussed
this both qualitatively and gave some simple quantita-
tive examples. For a further discussion of the prospects
of this type of mapping analysis in the case of GR-
polarised gravitational-wave backgrounds, we refer the
reader to Gair et al. [35] and Cornish and van Haasteren
[38]. In the future, we plan to apply the results of this pa-
per to the analysis of real data, to map the amplitude and
phase content of non-GR gravitational-wave backgrounds
influencing the arrival times of millisecond pulsars. This
will allow us to place constraints on beyond-GR polari-
sations of nanohertz gravitational waves.

• Extension to ground-based interferometers.



Extension to interferometers
• Can apply the same formalism to other GW detectors. Consider 

ground-based interferometers and make static approximation.

• The strain response of a static interferometer in the point 
detector limit may be approximated by

• Using separate integration frames for each arm, such that the 
arm is in the z-direction, and using the rotation properties of the 
aP(lm) coefficients we find

• for a detector with arms pointing in the directions            . 
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• Including transfer function, still have zero curl mode response, 
but sensitivity to grad modes with           is recovered.

• A moving detector recovers curl mode sensitivity since

• over a year for                                .

• Regard moving detector as superposition of static detectors at 
different locations. 

• Under a translation to a frame with origin at 

l > 2
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Extension to interferometers



• Using the identity

• where                          , we can transform the components of the 
background in the cosmic frame into the frame of the detector at x̂0

e
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• Recover more and more modes as number of effective 
independent detectors increases over time.

• Earth rotation crucial to break degeneracies for a single detector 
network.

Extension to interferometers
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Extension to interferometers
• Recovery of point source. 14

FIG. 6: Recovery of the simulated point source in noise for the 6-detector network. Injected maps (first row); maximum-
likehood recovered maps (second row); uncertainty map (third row); SNR map (last row). Note that the uncertainties maps
for the real and imaginary parts of h

+

(or h⇥) are the same.

which plateaus at ⇠0.9 even with orbital-only motion.

The key lessons here are that Earth’s daily rotation is
an important influence on top of the orbital motion of the
Earth around the Sun, since it sweeps the detector an-
tenna beam patterns across the sky to gather additional
information about any gravitational-wave signal of inter-
est. Furthermore, from Fig. 10 we can clearly see that the
first peak of the match value occurs at ⇠ 50�60 s, when
the detectors decorrelate from themselves for the first
time (see Fig. 3) and are no longer driven in coincidence
by a passing gravitational wave. With this time incre-
ment the detector’s strain measurements are e↵ectively
independent from their preceding or subsequent measure-
ments, thereby allowing us to synthesize a large network
of virtual interferometers from the daily and orbital mo-
tion of the Earth. The small dip after the first peak may
be due to the detectors being driven in anti-coincidence,
thereby losing some of their independence. However, the
match value recovers in the limit of large �t, since the de-
tectors are then separated by several gravitational-wave
wavelengths and this behaviour is averaged out.

VII. DISCUSSION

We have presented a new method for mapping the
gravitational-wave sky using a network of ground-based
laser interferometers. This method extends the for-
malisms developed in [1, 2], which were originally applied
to the case of pulsar timing arrays. We have shown that
we can recover both the gradient and curl components
of a gravitational-wave background, as a consequence of
the spatial separation of the individual interferometers
in the network, or of a single interferometer at di↵erent
times during its rotational and orbital motion around
the Sun. This is in contrast to the case for a pulsar
timing array, which is completely insensitive to the curl
modes. Also, by mapping both the amplitude and phase
of h

+

(f, k̂) and h⇥(f, k̂) as functions of direction on the
sky (as referenced from the SSB), our method extends
previous approaches [3–9] for anisotropic backgrounds,
which map the distribution of gravitational-wave power,
|h

+

|2 + |h⇥|2. Our formalism can be cast in terms of ei-
ther the traditional + and ⇥ polarization modes of the



• Recovery of grad mode GR background.

Extension to interferometers
16

FIG. 8: Recovery of the grad-only background in noise. Injected maps (first row); recovered maps for the 6-detector network
(second row); recovered maps for the 3-detector network having the same number of total data points (N = 2400) as the
6-detector network (third row); recovered maps for the 3-detector network having half as many total data points (N = 1200)
as the 6-detector network (fourth row).

di↵erent frequency components.
(v) If one would like to compare the consistency of dif-

ferent models of a stochastic background with the mea-
sured data—e.g., is the measured data consistent with an
unpolarized, isotropic background or with a background
having a non-zero dipole component or with correlated
emission on the sky, etc.—a Bayesian formulation of the
problem would be more appropriate. The di↵erent mod-
els would be defined by the appropriate choice of vari-
ables for the stochastic background and prior probably
distributions for these variables. Bayesian model selec-
tion would then be used to select between the competing
models.

Perhaps the most compelling reason for using the for-
malism presented here is that it provides a completely
generic approach to mapping the gravitational-wave sky.
It allows us to construct a map of the background that
extracts all of the information that is possible to extract
from the measured data. With the advanced ground-
based interferometers coming on-line at the end of this
year, and with the first detection of gravitational waves

expected to follow shortly thereafter, it seems appropri-
ate to utilize approaches such as this that attempt to
maximize the science return of the data.
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FIG. 9: Recovery of the curl-only background in noise. Injected maps (first row); recovered maps for the 6-detector network
(second row); recovered maps for the 3-detector network having the same number of total data points (N = 2400) as the
6-detector network (third row); recovered maps for the 3-detector network having half as many total data points (N = 1200)
as the 6-detector network (fourth row).
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APPENDIX A: DERIVATION OF GRADIENT
AND CURL RESPONSE FUNCTIONS

Here we derive the gradient and curl response func-
tions for an interferometer in the small-antenna limit,

allowing for a non-zero displacement ~x

0

of the vertex of
the interferometer from the origin of coordinates.

Expressions for the response functions evaluated in a
reference frame whose origin is located at the vertex of
the interferometer were derived in Appendix D of [1]:
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where û, v̂ are unit vectors in the directions of the two
arms of the interferometer. We have put bars on the
above expressions to distinguish them from similar un-
barred quantities that we will calculate in a reference
frame whose origin is at the solar system barycentre
(SSB). Note that R̄

G

(lm)

is independent of frequency and
is non-zero only for the quadrupole modes, l = 2.

Under a translation of reference frames from the SSB
to the vertex of the interferometer located at ~x

0

, the
Fourier components h

ab

(f, k̂) of the metric perturbations



Summary
• The framework used to analyse CMB polarisation can be applied to 

describe arbitrary gravitational wave backgrounds.

• PTA response to modes of the background takes a simple form - 
spherical harmonics evaluated at pulsar locations, multiplied by 
distance-dependent factors.

• PTAs have no sensitivity to the curl components of the background 
or to modes higher than dipole in scalar-transverse backgrounds.

• Can describe an isotropic uncorrelated background with just three l-
modes.

• A PTA of Np pulsars can measure Np combinations of the grad 
component of the background. PTAs are blind to the other grad 
components and the whole curl component.

• A measurement of unexpected values for these components would 
reveal correlations in the background and profound new physics.


