Realistic Cosmic Strings

Erwan Allys $\mathcal{G}\mathbb{R}\epsilon\mathbb{C}\mathcal{O}$, IAP

$\mathcal{G}\mathbb{R}\epsilon\mathbb{C}\mathcal{O}$ seminar, IAP, November 9th 2015

arXiv:1505.07888

Erwan Allys Realistic Cosmic Strings

Topological defects Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

Outline

1 Why a realistic model of cosmic strings

- 2 Theoretical framework
- **3** Abelian cosmic strings
- 4 Microscopic and macroscopic structure

Topological defects

- Topological defects
 - ▶ Phase transitions with Spontaneous Symmetry Breaking (SSB)

$$G \xrightarrow{\langle \Phi \rangle} G'$$

- General predictions
- ▶ Topological properties of G/G'

Topological defects Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

Topological defects

- Topological defects
 - ▶ Phase transitions with Spontaneous Symmetry Breaking (SSB)

$$G \xrightarrow{\langle \Phi \rangle} G'$$

Topological defects

Abelian Higgs model

Cosmic strings and cosmology

Necessity of a realistic implementation

- General predictions
- ▶ Topological properties of G/G'

• Different kinds

- Monopoles
- Domain walls
- Cosmic strings

Why a realistic model of cosmic strings Theoretical framework Abelian cosmic strings

Microscopic and macroscopic structure

Topological defects

Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

• Cosmic strings

- Vortex lines
- $\pi_1(G/G') \neq \mathbf{1}$

Topological defects Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

• Cosmic strings

- Vortex lines
- $\pi_1(G/G') \neq \mathbf{1}$

Why a realistic model of cosmic strings

Theoretical framework Abelian cosmic strings Microscopic and macroscopic structure Topological defects Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

Abelian Higgs model

$$\mathcal{L} = -\left(\partial_{\mu} + iqA_{\mu}\right)\phi^*\left(\partial^{\mu} - iqA^{\mu}\right)\phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \kappa^2\left(\phi^*\phi - M^2\right)^2$$

Topological defects Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

• Ansatz

- Cylindrical coordinates locally along the string (r, θ, z, t)
- $\phi = f(r) \mathrm{e}^{in\theta}$ with $f \in \mathbb{R}$
- $A^{\mu} = A_{\theta}(r) \tau_{\rm str} \delta^{\theta}_{\mu}$

Topological defects Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

• Ansatz

- Cylindrical coordinates locally along the string (r, θ, z, t)
- $\phi = f(r) \mathrm{e}^{in\theta}$ with $f \in \mathbb{R}$
- $A^{\mu} = A_{\theta}(r) \tau_{\rm str} \delta^{\theta}_{\mu}$

▶ $\lim_{r \to \infty} f(r) = M$ and $\lim_{r \to \infty} A_{\theta}^{\text{str}}(r) = n/g$ ▶ f(0) = 0 and $A_{\theta}(0) = 0$

Why a realistic model of cosmic strings

Theoretical framework Abelian cosmic strings Microscopic and macroscopic structure Topological defects Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

Erwan Allys Realistic Cosmic Strings

Topological defects Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

Macroscopic properties

• From $T^{\mu\nu}$

- Symmetries $\Rightarrow T^{ab}$ with $a, b \in \{z, t\}$
- \blacktriangleright Diagonalization \Rightarrow energy per unit length and tension

$$U = \int 2\pi r \mathrm{d}r T^{t't'} \qquad T = -\int 2\pi r \mathrm{d}r T^{z'z'}$$

• Equation of state
$$U = f(T)$$

Topological defects Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

Macroscopic properties

• From $T^{\mu\nu}$

- Symmetries $\Rightarrow T^{ab}$ with $a, b \in \{z, t\}$
- \blacktriangleright Diagonalization \Rightarrow energy per unit length and tension

$$U = \int 2\pi r \mathrm{d}r T^{t't'} \qquad T = -\int 2\pi r \mathrm{d}r T^{z'z'}$$

- Equation of state U = f(T)
- Nambu-Goto String
 - ▶ Lorentz-invariant along the worldsheet

$$\blacktriangleright \Rightarrow U = T$$

Topological defects Abelian Higgs model **Cosmic strings and cosmology** Necessity of a realistic implementation

Cosmic strings and cosmology

- Grand Unified Theory (GUT)
 - ▶ Particle physics in one gauge group G_{GUT} , e.g. SO(10) or SU(6)
 - ▶ SSB to Standard Model (SM) at $E_{\text{GUT}} \sim (10^{15} 10^{16}) \text{GeV}$

Topological defects Abelian Higgs model **Cosmic strings and cosmology** Necessity of a realistic implementation

Cosmic strings and cosmology

- Grand Unified Theory (GUT)
 - ▶ Particle physics in one gauge group G_{GUT} , e.g. SO(10) or SU(6)
 - ▶ SSB to Standard Model (SM) at $E_{\text{GUT}} \sim (10^{15} 10^{16}) \text{GeV}$
 - ▶ Many theoretical motivations, e.g. $q \in \mathbf{Z}/3$ or coupling constants

Topological defects Abelian Higgs model **Cosmic strings and cosmology** Necessity of a realistic implementation

• Formation of strings

- ► During SSB from the GUT to the SM
- Formation of strings at the end of inflation

Topological defects Abelian Higgs model **Cosmic strings and cosmology** Necessity of a realistic implementation

• Formation of strings

- ► During SSB from the GUT to the SM
- Formation of strings at the end of inflation
- ▶ Almost unavoidable consequence

	$\stackrel{1}{\rightarrow}$	5 1 ₆	$\begin{cases} \begin{array}{cccc} \stackrel{2}{\rightarrow} & 5 & \stackrel{1}{\rightarrow} & G_{\rm SM} \\ \\ \stackrel{1}{\rightarrow} & 3_{\rm C} & 2_{\rm L} & 1 & 1 & \stackrel{2}{\rightarrow} & G_{\rm SM} \\ \\ \stackrel{1.2}{\rightarrow} & G_{\rm SM} & \\ \end{array}$
	$\stackrel{1}{\rightarrow}$	4 _C 2 _L 1	$ \left\{ \begin{array}{cccc} \stackrel{1}{\rightarrow} & 3_{\rm C} & 2_{\rm L} & 1 & 1 & \stackrel{2}{\rightarrow} & G_{\rm SM} \\ \\ \stackrel{2'}{\rightarrow} & G_{\rm SM} \end{array} \right.$
SU(6)	$\stackrel{1}{\rightarrow}$	3 _C 3 _L 1	$ \left\{ \begin{array}{cccc} \overset{1}{\rightarrow} & 3_{\mathrm{C}} & 2_{\mathrm{L}} & 1 & 1 & \overset{2}{\rightarrow} & G_{\mathrm{SM}} \\ \\ \overset{2'}{\rightarrow} & G_{\mathrm{SM}} \end{array} \right. $
	$\stackrel{1}{\rightarrow}$	3 _C 2 _L 1 1	$\stackrel{2}{\rightarrow} G_{\rm SM}$
	$\stackrel{0}{\rightarrow}$	5	$\stackrel{1}{\rightarrow} G_{SM}$
	1	$G_{\rm SM}$.	

Jeannerot, Rocher, Sakellariadou, Phys.Rev., D68:103514, (2003)

Topological defects Abelian Higgs model **Cosmic strings and cosmology** Necessity of a realistic implementation

• String Network

- ▶ Initial conditions from correlation length
- Numerical simulations

Ringeval, Sakellariadou, Bouchet, JCAP 0702 (2007)

• Evolution from large to small scales

Topological defects Abelian Higgs model **Cosmic strings and cosmology** Necessity of a realistic implementation

• In the CMB

- ▶ Good candidate before inflation to seed the LSS formation
- ▶ Power spectrum different from inflationary prediction

Topological defects Abelian Higgs model **Cosmic strings and cosmology** Necessity of a realistic implementation

• In the CMB

- ▶ Good candidate before inflation to seed the LSS formation
- ▶ Power spectrum different from inflationary prediction
- No significant observations

Bevis, Hindmarsh, Kunz, Urrestilla, Phys. Rev. Lett. 100 (2008)

Topological defects Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

Necessity of a realistic implementation

- Toy model strings
 - ▶ Only scale of formation appears
 - ▶ Does not encode the GUT

Topological defects Abelian Higgs model Cosmic strings and cosmology Necessity of a realistic implementation

Necessity of a realistic implementation

• Toy model strings

- ▶ Only scale of formation appears
- Does not encode the GUT

• Realistic implementation

- $\blacktriangleright~U$ as function of the GUT parameters
- ▶ New structure and properties
- Could differ from toy-models

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

Outline

Why a realistic model of cosmic strings

- **2** Theoretical framework
 - 3 Abelian cosmic strings
- 4 Microscopic and macroscopic structure

SUSY GUT

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• GUT

- ► Gauge group SO(10)
- ▶ 45 gauge field A^a_μ
- Higgs field content : Σ in **126**, $\overline{\Sigma}$ in **126** and Φ in **210**

SUSY GUT

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• GUT

- ► Gauge group SO(10)
- ▶ 45 gauge field A^a_μ
- Higgs field content : Σ in **126**, $\overline{\Sigma}$ in **126** and Φ in **210**

• Valid with particle physics

- Recover the SM at low energy
- ▶ Coupling constant, mass spectrum, proton decay...

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• Supersymmetry (SUSY)

- Bosonic part of the supermultiplets
- F-term theory \Rightarrow D-term identically zero

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• Supersymmetry (SUSY)

- Bosonic part of the supermultiplets
- F-term theory \Rightarrow D-term identically zero

• Potential from *F*-terms

- Superpotential W, singlet, $X^3 (\Rightarrow X^4 \in V)$
- \blacktriangleright Potential from F-terms

$$F_X = \frac{\partial W}{\partial X}$$
 and $V_X = F^{\dagger}F$

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• With SO(10)

$$W = \frac{m}{2} \Phi^2 + m_{\Sigma} \Sigma \overline{\Sigma} + \frac{\lambda}{3} \Phi^3 + \eta \Phi \Sigma \overline{\Sigma}$$

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• With SO(10)

$$W = \frac{m}{2} \Phi^2 + m_{\Sigma} \Sigma \overline{\Sigma} + \frac{\lambda}{3} \Phi^3 + \eta \Phi \Sigma \overline{\Sigma}$$

$$F_{\Phi} = m\Phi + \lambda(\Phi^2)_{\Phi} + \eta(\Sigma\overline{\Sigma})_{\Phi}$$

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• With SO(10)

$$W = \frac{m}{2} \Phi^2 + m_{\Sigma} \Sigma \overline{\Sigma} + \frac{\lambda}{3} \Phi^3 + \eta \Phi \Sigma \overline{\Sigma}$$

$$F_{\Phi} = m\Phi + \lambda(\Phi^2)_{\Phi} + \eta(\Sigma\overline{\Sigma})_{\Phi}$$

$$V_{\Phi} = m^{2} \Phi \Phi^{\dagger} + |\eta|^{2} (\Sigma \overline{\Sigma})_{\Phi} (\Sigma \overline{\Sigma})_{\Phi}^{\dagger} + |\lambda|^{2} (\Phi^{2})_{\Phi} (\Phi^{2})_{\Phi}^{\dagger} + \left[\lambda \eta^{*} (\Phi^{2})_{\Phi} (\Sigma \overline{\Sigma})_{\Phi}^{\dagger} + + m \lambda^{*} \Phi (\Phi^{2})_{\Phi}^{\dagger} + m \eta^{*} \Phi (\Sigma \overline{\Sigma})_{\Phi}^{\dagger} \right] + \text{h.c.}$$

Hybrid inflation

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• Hybrid inflation (HI)

- ▶ Inflationary potential from GUT physics
- Inflaton S, SO(10) singlet
- \blacktriangleright Additional term in W

$$W_{\rm HI} = \kappa S \left(\Sigma \overline{\Sigma} - M^2 \right)$$

Hybrid inflation

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• Hybrid inflation (HI)

- ▶ Inflationary potential from GUT physics
- Inflaton S, SO(10) singlet
- \blacktriangleright Additional term in W

$$W_{\rm HI} = \kappa S \left(\Sigma \overline{\Sigma} - M^2 \right)$$

• Generalization

• SUSY, HI, SO(10) = example

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

$$V_S = \kappa^2 (\mathbf{\Sigma} \overline{\mathbf{\Sigma}} - M^2)^2$$

$$V_{\overline{\Sigma}} = m_{\Sigma}^{2} \Sigma \Sigma^{\dagger} + |\eta|^{2} (\Phi \Sigma)_{\Sigma} (\Phi \Sigma)_{\Sigma}^{\dagger} + \kappa^{2} S S^{*} \Sigma \Sigma^{\dagger} + \left[m_{\Sigma} \kappa S^{*} \Sigma \Sigma^{\dagger} + \eta \kappa S^{*} (\Phi \Sigma)_{\Sigma} \Sigma^{\dagger} + m_{\Sigma} \eta^{*} \Sigma (\Phi \Sigma)_{\Sigma}^{\dagger} \right] + \text{h.c.}$$

$$V_{\Sigma} = V_{\overline{\Sigma}}(\mathbf{\Sigma} \longleftrightarrow \overline{\mathbf{\Sigma}})$$

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

$$V_S = \kappa^2 (\mathbf{\Sigma} \overline{\mathbf{\Sigma}} - M^2)^2$$

$$V_{\overline{\Sigma}} = m_{\Sigma}^{2} \Sigma \Sigma^{\dagger} + |\eta|^{2} (\Phi \Sigma)_{\Sigma} (\Phi \Sigma)_{\Sigma}^{\dagger} + \kappa^{2} S S^{*} \Sigma \Sigma^{\dagger} + \left[m_{\Sigma} \kappa S^{*} \Sigma \Sigma^{\dagger} + \eta \kappa S^{*} (\Phi \Sigma)_{\Sigma} \Sigma^{\dagger} + m_{\Sigma} \eta^{*} \Sigma (\Phi \Sigma)_{\Sigma}^{\dagger} \right] + \text{h.c.}$$

$$V_{\Sigma} = V_{\overline{\Sigma}}(\mathbf{\Sigma} \longleftrightarrow \overline{\mathbf{\Sigma}})$$

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

Cosmological evolution

• SSB scheme

 $SO(10) \xrightarrow{\langle \Phi \rangle} G' \xrightarrow{\langle \Sigma \rangle} G_{SM} \times \mathbf{Z}_2$

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

Cosmological evolution

• SSB scheme

$$\operatorname{SO}(10) \xrightarrow{\langle \Phi \rangle} G' \xrightarrow{\langle \Sigma \rangle} G_{\operatorname{SM}} \times \mathbf{Z}_2$$

- ▶ Monopoles form at first step (before inflation)
- ▶ Inflation begins after first step, ends at second step
- Cosmic strings form at second step (after inflation)

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• First step

•
$$V_{\Sigma} \sim |\kappa S \Sigma|^2 \Rightarrow \Sigma = 0$$

- $V_{\Phi} = 0 \Rightarrow$ several solutions, associated to different G'
- ▶ Inflaton : $V = \kappa^2 M^4 + \text{quant. corr.} \Rightarrow \text{inflation begins}$
SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• First step

$$V_{\Sigma} \sim |\kappa S \Sigma|^2 \Rightarrow \Sigma = 0$$

- $V_{\Phi} = 0 \Rightarrow$ several solutions, associated to different G'
- Inflaton : $V = \kappa^2 M^4 + \text{quant. corr.} \Rightarrow \text{inflation begins}$

• Second step

- $\blacktriangleright S \longrightarrow S_{\rm crit}$
- $V = 0 \Rightarrow$ several solutions, different gauge symmetries

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• Requirement

- ▶ Recover the SM at low energy
- Stability of inflationary valley

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• Requirement

- ▶ Recover the SM at low energy
- Stability of inflationary valley
- Two possible schemes

•
$$G'_1 = 3_C 2_L 2_R 1_{B-L}$$

• $G'_2 = 3_C 2_L 1_R 1_{B-L}$

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

Description with singlet of the SM

- Proper description
 - ▶ Vacuum Expectations Values (VEVs) at the end of SSB
 - No symmetry restoration
 - ▶ Simplify the model

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• Branching rules

- ▶ Description on a (maximal) subalgebra
- $\blacktriangleright \operatorname{SU}(4) \subset \operatorname{SU}(3) \times \operatorname{U}(1)$
- ▶ Restricted representations w.r.t. the subalgebra

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• Branching rules

- ▶ Description on a (maximal) subalgebra
- $SU(4) \subset SU(3) \times U(1)$
- ▶ Restricted representations w.r.t. the subalgebra

$$\begin{cases} \mathbf{1} = \mathbf{1}(0) \\ \mathbf{10} = \mathbf{1}(-6) + \mathbf{3}(-2) + \mathbf{6}(2) \\ \mathbf{15} = \mathbf{1}(0) + \mathbf{3}(4) + \mathbf{\overline{3}}(-4) + \mathbf{8}(0) \end{cases}$$

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• SO(10) case

- Σ in 126, $\overline{\Sigma}$ in $\overline{126}$ and Φ in 210
- Pati-Salam group : $2_L 2_R 4_C$

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• SO(10) case

- Σ in 126, $\overline{\Sigma}$ in $\overline{126}$ and Φ in 210
- Pati-Salam group : $2_L 2_R 4_C$

$$\begin{split} \boldsymbol{\Phi}_p &= \boldsymbol{\Phi}(1,1,1), \quad \boldsymbol{\sigma} = \boldsymbol{\Sigma}(1,3,\overline{10}), \\ \boldsymbol{\Phi}_a &= \boldsymbol{\Phi}(1,1,15), \quad \overline{\boldsymbol{\sigma}} = \overline{\boldsymbol{\Sigma}}(1,3,10), \\ \boldsymbol{\Phi}_b &= \boldsymbol{\Phi}(1,3,15), \quad S = S(1,1,1). \end{split}$$

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• SSB scheme

- $\blacktriangleright V(\mathbf{\Phi}_a, \mathbf{\Phi}_b, \mathbf{\Phi}_p, \boldsymbol{\sigma}, \overline{\boldsymbol{\sigma}}, S)$
- ▶ Properly describe the SSB scheme

SUSY GUT Hybrid inflation Cosmological evolution Singlets of the SM

• SSB scheme

$$\blacktriangleright V(\mathbf{\Phi}_a, \mathbf{\Phi}_b, \mathbf{\Phi}_p, \boldsymbol{\sigma}, \overline{\boldsymbol{\sigma}}, S)$$

Properly describe the SSB scheme

$$\operatorname{SO}(10) \xrightarrow{\langle \Phi \rangle} G' \xrightarrow{\langle \Sigma \rangle} G_{\operatorname{SM}} \times \mathbf{Z}_2$$

•
$$G'_1 = 3_C 2_L 2_R \mathbf{1}_{B-L}$$
 : $\mathbf{\Phi}_a \neq 0$
• $G'_2 = 3_C 2_L \mathbf{1}_R \mathbf{1}_{B-L}$: $\mathbf{\Phi}_a \neq 0$, $\mathbf{\Phi}_b \neq 0$ and $\mathbf{\Phi}_p \neq 0$

Cosmic strings Tensor formulation Ansatz for the string

Outline

- 1 Why a realistic model of cosmic strings
- 2 Theoretical framework
- **3** Abelian cosmic strings
- 4 Microscopic and macroscopic structure

Cosmic strings Tensor formulation Ansatz for the string

Cosmic strings

$$\operatorname{SO}(10) \xrightarrow{\langle \Phi \rangle} G' \xrightarrow{\langle \Sigma \rangle} G_{\operatorname{SM}} \times \mathbf{Z}_2$$

• String-forming step

- From G' to $G_{\rm SM} \times {\bf Z}_2$
- At the end of inflation
- At least one U(1) is broken

Cosmic strings Tensor formulation Ansatz for the string

Cosmic strings

$$\operatorname{SO}(10) \xrightarrow{\langle \Phi \rangle} G' \xrightarrow{\langle \Sigma \rangle} G_{\operatorname{SM}} \times \mathbf{Z}_2$$

• String-forming step

- From G' to $G_{\rm SM} \times {\bf Z}_2$
- At the end of inflation
- At least one U(1) is broken

• Abelian string

- ▶ Non abelian case left aside
- ► No current
- U(1)_{str} and τ_{str}
- $U(1)_{str} = U(1)_{B-L}$

Cosmic strings Tensor formulation Ansatz for the string

• Ansatz for the string

- Cylindrical coordinates locally along the string (r, θ, z, t)
- $\Sigma = \overline{\Sigma} = 0$ in the center of string
- ▶ VEVs defining the SM at infinity

Cosmic strings Tensor formulation Ansatz for the string

• Ansatz for the string

- Cylindrical coordinates locally along the string (r, θ, z, t)
- $\Sigma = \overline{\Sigma} = 0$ in the center of string
- ▶ VEVs defining the SM at infinity

• Coupling with the gauge field

- Only Σ and $\overline{\Sigma}$ charged under U(1)_{str}
- Phase in $e^{\pm in\theta}$

Cosmic strings Tensor formulation Ansatz for the string

• Use of SM singlets

▶ (1) Potential at least quadratic in the non singlet terms

 $V = \varphi \varphi \varphi \tilde{\varphi} \Rightarrow \text{not possible}$

Cosmic strings Tensor formulation Ansatz for the string

• Use of SM singlets

▶ (1) Potential at least quadratic in the non singlet terms

$$V = \varphi \varphi \varphi \tilde{\varphi} \implies \text{not possible}$$

Cosmic strings Tensor formulation Ansatz for the string

• Use of SM singlets

▶ (1) Potential at least quadratic in the non singlet terms

$$V = \varphi \varphi \varphi \tilde{\varphi} \implies \text{not possible}$$

- ▶ (2) They all vanish at infinity
- ▶ (1) + (2) \Rightarrow configuration where they all vanish permitted by the EOM

Cosmic strings Tensor formulation Ansatz for the string

Tensor formulation

- Fields
 - ▶ Σ : (126) fifth rank anti-symmetric tensor Σ_{ijklm} , self dual

$$\Sigma_{ijklm} = \frac{i}{5!} \epsilon_{ijklmabcde} \Sigma_{abcde},$$

▶ $\overline{\Sigma}$ (126): fifth rank anti-symmetric tensor $\overline{\Sigma}_{ijklm}$, anti-self-dual

$$\overline{\Sigma}_{ijklm} = -\frac{i}{5!} \epsilon_{ijklmabcde} \overline{\Sigma}_{abcde},$$

- Φ (210) fourth rank anti-symmetric tensor Φ_{ijkl}
- \blacktriangleright S singlet: complex function

$$W = \frac{1}{2}m\Phi_{ijkl}\Phi_{ijkl} + m_{\Sigma}\Sigma_{ijklm}\overline{\Sigma}_{ijklm} + \frac{1}{3}\lambda\Phi_{ijkl}\Phi_{klmn}\Phi_{mnij} + \eta\Phi_{ijkl}\Sigma_{ijmno}\overline{\Sigma}_{klmno} + \kappa S(\Sigma_{ijklm}\overline{\Sigma}_{ijklm} - M^2)$$

Cosmic strings **Tensor formulation** Ansatz for the string

$$W = \frac{1}{2}m\Phi_{ijkl}\Phi_{ijkl} + m_{\Sigma}\Sigma_{ijklm}\overline{\Sigma}_{ijklm} + \frac{1}{3}\lambda\Phi_{ijkl}\Phi_{klmn}\Phi_{mnij} + \eta\Phi_{ijkl}\Sigma_{ijmno}\overline{\Sigma}_{klmno} + \kappa S(\Sigma_{ijklm}\overline{\Sigma}_{ijklm} - M^2)$$

• *F*-terms computation

- ▶ Taking into account that the components are not independent
- F_X in the conjugate representation of X

$$(F_{\Phi})_{ijkl} = m\Phi_{ijkl} + \lambda\Phi_{[ij|ab}\Phi_{ab|kl]} + \eta\Sigma_{[ij|abc}\overline{\Sigma}_{|kl]abc}$$

Cosmic strings **Tensor formulation** Ansatz for the string

• Group theoretical approach

$$\Phi\Sigma\overline{\Sigma} = 1_{210 imes126 imes\overline{126}}$$

Cosmic strings Tensor formulation Ansatz for the string

• Group theoretical approach

$$\Phi\Sigma\overline{\Sigma}=1_{210 imes126 imes\overline{126}}$$

 $\mathbf{210}\times\overline{\mathbf{126}}=\mathbf{10}+\mathbf{120}+\overline{\mathbf{126}}+\mathbf{320}+\cdots$

Cosmic strings Tensor formulation Ansatz for the string

• Group theoretical approach

$$\Phi\Sigma\overline{\Sigma} = 1_{210 imes126 imes\overline{126}}$$

 $\mathbf{210}\times\overline{\mathbf{126}} = \mathbf{10} + \mathbf{120} + \overline{\mathbf{126}} + \mathbf{320} + \cdots$

 $\mathbf{1_{210\times 126\times \overline{126}}} \ni \mathbf{126}\times (\mathbf{210}\times \overline{\mathbf{126}})_{\overline{\mathbf{126}}}$

Cosmic strings **Tensor formulation** Ansatz for the string

• Group theoretical approach

$$\Phi\Sigma\overline{\Sigma} = 1_{\mathbf{210} imes\mathbf{126} imes\overline{\mathbf{126}}}$$

 $\mathbf{210}\times\overline{\mathbf{126}}=\mathbf{10}+\mathbf{120}+\overline{\mathbf{126}}+\mathbf{320}+\cdots$

 $\mathbf{1_{210\times126\times\overline{126}}}\ni\mathbf{126}\times(\mathbf{210}\times\overline{\mathbf{126}})_{\overline{\mathbf{126}}}$

$$\Rightarrow \frac{\partial (\boldsymbol{\Phi}\boldsymbol{\Sigma}\overline{\boldsymbol{\Sigma}})}{\partial\boldsymbol{\Sigma}} = (\boldsymbol{\Phi}\overline{\boldsymbol{\Sigma}})_{\overline{\boldsymbol{\Sigma}}}$$

Cosmic strings **Tensor formulation** Ansatz for the string

• SM singlet formulation

$$\Phi_a = a(x^{\mu}) \langle \Phi_a \rangle_0$$
 with $\langle \Phi_a \rangle_0 \langle \Phi_a \rangle_0^{\dagger} = 1$

Cosmic strings Tensor formulation Ansatz for the string

• SM singlet formulation

$$\Phi_{a} = a(x^{\mu})\langle \Phi_{a} \rangle_{0} \quad \text{with} \quad \langle \Phi_{a} \rangle_{0} \langle \Phi_{a} \rangle_{0}^{\dagger} = 1$$

$$\begin{cases} \Sigma = \langle \overline{\Sigma} \rangle^{\dagger} = \sigma(x^{\mu}) \langle \sigma \rangle_{0}, \\ \Phi = a(x^{\mu}) \langle \Phi_{a} \rangle_{0} + b(x^{\mu}) \langle \Phi_{b} \rangle_{0} + p(x^{\mu}) \langle \Phi_{p} \rangle_{0}, \end{cases}$$

$$\begin{cases} \frac{p}{\sqrt{4!}} = \Phi_{1234} \\ \frac{a}{\sqrt{4!3}} = \Phi_{5678} = \Phi_{5690} = \Phi_{7890} \\ \frac{b}{\sqrt{4!6}} = \Phi_{1256} = \Phi_{1278} = \Phi_{1290} = \Phi_{3456} = \Phi_{3478} = \Phi_{3490} \\ \frac{1}{\sqrt{4!6}} (i)^{(-a-b+c+d+e)} \sigma = \Sigma_{a+1,b+3,c+5,d+7,e+9} \\ \frac{1}{\sqrt{5!2^5}} (-i)^{(-a-b+c+d+e)} \overline{\sigma} = \overline{\Sigma}_{a+1,b+3,c+5,d+7,e+9} \end{cases}$$

$$\langle \mathbf{\Phi} \rangle \langle \mathbf{\Phi} \rangle^{\dagger} = pp^* + aa^* + bb^*$$

$$\langle \mathbf{\Phi} \rangle \langle \mathbf{\Phi} \rangle^{\dagger} = pp^* + aa^* + bb^*$$

$$\langle \boldsymbol{\Phi} \boldsymbol{\Phi} \rangle_{\Phi} \langle \boldsymbol{\Phi} \rangle^{\dagger} = \underbrace{\frac{1}{9\sqrt{2}}}_{\sqrt{N}} a^2 a^* + \left[\frac{1}{6\sqrt{6}} \left(2b^* bp + b^2 p^* \right) + \frac{1}{9\sqrt{2}} \left(2b^* ba + b^2 a^* \right) \right]$$

$$\langle \mathbf{\Phi} \rangle \langle \mathbf{\Phi} \rangle^{\dagger} = pp^* + aa^* + bb^*$$

$$\langle \boldsymbol{\Phi} \boldsymbol{\Phi} \rangle_{\Phi} \langle \boldsymbol{\Phi} \rangle^{\dagger} = \underbrace{\frac{1}{9\sqrt{2}}}_{\sqrt{N}} a^2 a^* + \left[\frac{1}{6\sqrt{6}} \left(2b^* bp + b^2 p^* \right) + \frac{1}{9\sqrt{2}} \left(2b^* ba + b^2 a^* \right) \right]$$

$$\langle \boldsymbol{\Phi} \boldsymbol{\Phi} \rangle_{\Phi} \langle \boldsymbol{\Sigma} \overline{\boldsymbol{\Sigma}} \rangle_{\Phi}^{\dagger} = \underbrace{\frac{a^2 \sigma \sigma^*}{180}}_{N} + \frac{b^2 \sigma \sigma^*}{120} - \frac{a b \sigma \sigma^*}{45\sqrt{2}} - \frac{b p \sigma \sigma^*}{30\sqrt{6}},$$

$$K = -\left| \left(\nabla_{\mu} - igA_{\mu}^{\text{str}} \right) \sigma \right|^{2} - \left| (\nabla_{\mu}p) \right|^{2} - \left| (\nabla_{\mu}a) \right|^{2} - \left| (\nabla_{\mu}b) \right|^{2} - \left| (\nabla_{\mu}b) \right|^{2} - \frac{\text{Tr}\left(\tau_{\text{str}}^{2} \right)}{4} F_{\mu\nu}^{\text{str}} F^{\mu\nu \, \text{str}}$$

Cosmic strings Tensor formulation Ansatz for the string

Ansatz for the string

• Ansatz

$$\begin{cases}
p = p(r) \\
a = a(r) \\
b = b(r) \\
\sigma = f(r)e^{in\theta} \\
A_{\mu} = A_{\theta}^{\text{str}}(r)\tau^{\text{str}}\delta_{\mu}^{\theta} \\
S = S(r)
\end{cases}$$

Cosmic strings Tensor formulation Ansatz for the string

• Boundary conditions

$$\blacktriangleright r \to \infty: \begin{cases} f, a, b, p, S \to \text{SM VEVs} \\ A_{\theta} = n \end{cases}$$

Cosmic strings Tensor formulation Ansatz for the string

• Boundary conditions

•
$$r \to \infty$$
:
$$\begin{cases} f, a, b, p, S \to \text{SM VEVs} \\ A_{\theta} = n \end{cases}$$

• $r = 0$:
$$\begin{cases} f = A_{\theta} = 0 \\ \frac{\mathrm{d}x}{\mathrm{d}r} = 0 \text{ for } a, b, p \text{ and } S \end{cases}$$

Numerical solution Microscopic structure Macroscopic structure Conclusion

Outline

- 1 Why a realistic model of cosmic strings
- 2 Theoretical framework
- 3 Abelian cosmic strings
- **4** Microscopic and macroscopic structure
Numerical solution

Numerical solution Microscopic structure Macroscopic structure Conclusion

• Numerical Implementation

- Successive overrelaxed method
- ▶ On a finite range lattice
- ▶ Around 2000 configurations studied

Numerical solution Microscopic structure Macroscopic structure Conclusion

• Range of GUT parameters

$$W = \frac{m}{2} \Phi^2 + m_{\Sigma} \Sigma \overline{\Sigma} + \frac{\lambda}{3} \Phi^3 + \eta \Phi \Sigma \overline{\Sigma} + \kappa S(\Sigma \overline{\Sigma} - M^2).$$

with
$$\begin{cases} \frac{m}{M} = \frac{m_{\Sigma}}{M} \in \{1, 20\} \\ \kappa \in \{10^{-2}, 30\} \\ \eta \in \{10^{-2}, 10\} \\ \lambda \in \{10^{-2}, 1\} \end{cases}$$

Numerical solution Microscopic structure Macroscopic structure Conclusion

• Range of GUT parameters

$$W = \frac{m}{2} \Phi^2 + m_{\Sigma} \Sigma \overline{\Sigma} + \frac{\lambda}{3} \Phi^3 + \eta \Phi \Sigma \overline{\Sigma} + \kappa S(\Sigma \overline{\Sigma} - M^2).$$

with
$$\begin{cases} \frac{m}{M} = \frac{m_{\Sigma}}{M} \in \{1, 20\} \\ \kappa \in \{10^{-2}, 30\} \\ \eta \in \{10^{-2}, 10\} \\ \lambda \in \{10^{-2}, 1\} \end{cases}$$

• Toy-model limit: $\eta \to 0$

Numerical solution Microscopic structure Macroscopic structure Conclusion

Microscopic structure

Numerical solution Microscopic structure Macroscopic structure Conclusion

•
$$\eta = 10, \kappa \in \{10^{-2}, 30\}$$

$$W \supset \eta \Phi \Sigma \overline{\Sigma} + \kappa S(\Sigma \overline{\Sigma} - M^2)$$

Numerical solution Microscopic structure Macroscopic structure Conclusion

• Lagrangian density

 $W \supset \eta \mathbf{\Phi} \mathbf{\Sigma} \overline{\mathbf{\Sigma}} + \kappa S(\mathbf{\Sigma} \overline{\mathbf{\Sigma}} - M^2)$

Numerical solution Microscopic structure Macroscopic structure Conclusion

• Characteristic radiuses

 $W \supset \eta \Phi \Sigma \overline{\Sigma} + \kappa S(\Sigma \overline{\Sigma} - M^2)$

R_X Erwan Allys Realistic Cosmic Strings

Numerical solution Microscopic structure Macroscopic structure Conclusion

• Characteristic radiuses

 $W \supset \eta \Phi \Sigma \overline{\Sigma} + \kappa S(\Sigma \overline{\Sigma} - M^2)$

Numerical solution Microscopic structure Macroscopic structure Conclusion

• Condensation in the string

$$W \supset \eta \Phi \Sigma \overline{\Sigma} + \kappa S(\Sigma \overline{\Sigma} - M^2)$$

$$X(r=0)$$
 for $(m/M, \eta)$

Numerical solution Microscopic structure Macroscopic structure Conclusion

Macroscopic structure

• Influence of η $W \supset \eta \Phi \Sigma \overline{\Sigma} + \kappa S(\Sigma \overline{\Sigma} - M^2)$

Numerical solution Microscopic structure Macroscopic structure Conclusion

• Influence of η

$$W \supset \eta \mathbf{\Phi} \mathbf{\Sigma} \overline{\mathbf{\Sigma}} + \kappa S(\mathbf{\Sigma} \overline{\mathbf{\Sigma}} - M^2)$$

Numerical solution Microscopic structure Macroscopic structure Conclusion

• Influence of κ

$$W \supset \eta \mathbf{\Phi} \mathbf{\Sigma} \overline{\mathbf{\Sigma}} + \kappa S(\mathbf{\Sigma} \overline{\mathbf{\Sigma}} - M^2)$$

Numerical solution Microscopic structure Macroscopic structure Conclusion

• Influence of
$$\frac{m}{M} = \frac{m_{\Sigma}}{M}$$

$$W \supset \eta \Phi \Sigma \overline{\Sigma} + \kappa S(\Sigma \overline{\Sigma} - M^2)$$

Conclusion

Numerical solution Microscopic structure Macroscopic structure **Conclusion**

• Results

- ▶ Realistic description of cosmic strings
- Structure and energy per unit length function of the GUT parameters
- Perturbative description \Rightarrow two different classes of model

Conclusion

• Results

- ▶ Realistic description of cosmic strings
- Structure and energy per unit length function of the GUT parameters

Numerical solution

Conclusion

Microscopic structure

Macroscopic structure

• Perturbative description \Rightarrow two different classes of model

• Perspectives

- Bosonic currents
- ► Intercommutation and reconnexion ⇒ network evolution
 ⇒ CMB observation

Conclusion

• Results

- ▶ Realistic description of cosmic strings
- Structure and energy per unit length function of the GUT parameters

Numerical solution

Conclusion

Microscopic structure

Macroscopic structure

• Perturbative description \Rightarrow two different classes of model

• Perspectives

- Bosonic currents
- ► Intercommutation and reconnexion ⇒ network evolution
 ⇒ CMB observation

• Thanks for your attention !