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The fluid limit in cosmology
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In standard cosmology:

matter is described as a fluid
(continuous medium);

we assume that light
propagates through this fluid;

observations are interpreted
in this context;

it raises the so-called
Ricci-Weyl paradox.

General Question [Zel’dovich 1964. . . Clarkson et al. 2011]

Is the fluid limit a good framework to interpret observations?
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Which observations are concerned?

light beam
beamd

cosmological fluid

The fluid limit should be valid if dinhom � dbeam;

It is questionable if dinhom � dbeam...

...which is the case for astronomical observations (e.g. supernovae).
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Hubble diagram and luminosity-redshift relation

A light source is characterized by:

1 its luminosity distance

DL ≡
√

L

4πFobs
,

2 its redshift

z ≡ νobs − νem

νem
.
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A light source is characterized by:

1 its luminosity distance

DL ≡
√

L

4πFobs
,

2 its redshift

z ≡ νobs − νem

νem
.

If light travels through a homogeneous and isotropic universe, then

DL(z) = (1 + z)fK

(∫ z

0

dζ

H0

√
ΩΛ0 + ΩK0(1 + ζ)2 + Ωm0(1 + ζ)3

)
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A light source is characterized by:

1 its luminosity distance

DL ≡
√

L

4πFobs
,

2 its redshift

z ≡ νobs − νem

νem
.

If light travels through a more realistic universe, then

DL(z) =??
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The questions we want to answer

Technically

How to model the impact of the small-scale inhomogeneity (i.e.
clumpiness) of the Universe on light propagation?

Observationally

How does it change the interpretation of the Hubble diagram?

Philosophically?

Why does the standard ΛCDM model work so well?
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Light rays

Light rays are null geodesics. If v denotes an affine parameter along
the ray, the wave 4-vector kµ = dxµ/dv reads

Dkµ

dv
= 0 and kµkµ = 0.

The frequency ν measured by an observer with 4-velocity uµ is

2πν = −uµkµ.

The redshift z is defined by

z ≡ νobs − νem

νem
, i.e. 1 + z =

(uµkµ)em

(uµkµ)obs
.
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Light beams, Jacobi matrix
Computing angular/luminosity distances requires to consider light beams
(bundles of null geodesics).

v2<v1

v=0

kμ

kμ

v1<0

The Jacobi matrix is defined as

DA
B (v) ≡ dξA(v)

dξ̇B(0)
= −dξA(v)

dθB(0)
A,B ∈ {1, 2}.
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Light beams, Jacobi matrix
Computing angular/luminosity distances requires to consider light beams
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ξ2

v2<v1

v=0

kμ
ξ1

kμ

v1<0
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Geometrical meaning of the Jacobi matrix

First note that

det(DA
B ) =

d2ξ

d2θ0

v=vs=
source’s physical area

observed angular size
≡ D2

A =

[
DL

(1 + z)2

]2

,

more generally

(DA
B ) = DA︸︷︷︸

distance

(
cosψ sinψ
− sinψ cosψ

)
︸ ︷︷ ︸

rotation

exp

(
−Γ1 Γ2

Γ2 Γ1

)
︸ ︷︷ ︸

shear

.

ψ
e-Γ

eΓ

physical source observed image

Pierre Fleury (IAP) Lensing in a clumpy Universe June 8th 2015 9 / 30



Evolution of the Jacobi matrix
From the geodesic deviation equation one derives the Sachs equation

d2DA
B

dv2
= T A

C DC
B ,

where TAB is the optical tidal matrix

TAB ≡ −Rµνρσ sµAk
νsρBk

σ.

which can be decomposed into a Ricci part and a Weyl part

(TAB) =

(
R 0
0 R

)
+

(
−ReW ImW

ImW ReW

)
,

where

R ≡ −1

2
Rµνk

µkν , W ≡ −1

2
Cµνρσ (sµ1 − isµ2 )kν(sρ1 − isρ2 )kσ.
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Evolution of the angular distance

The Sachs equation imply in particular

d2DA

dv2
= (R− |σ|2)DA,

dD2
Aσ

dv
= D2

AW,

where σ is the shear rate.

Ricci focuses directly, and Weyl indirectly.
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Summary

R
W

S

Ricci focuses due to diffuse matter inside the beam, as

R = −4πGTµνk
µkν = −4πGω2(ρ+ p).

Weyl distorts and focuses mostly due to matter outside the beam.
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Swiss-cheese models in brief
[Einstein & Straus 1945]

FL spacetime
Construction

1 start from a homogeneous
and isotropic model;

2 pick a comoving sphere;

3 concentrate the matter it
contains at the center;

4 do it again, without
overlapping holes.

Main advantage

The Ricci-Weyl issue is directly
addressed by breaking the fluid
approximation.
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Other types of Swiss-cheese models

Lemâıtre-Tolman-Bondi (LTB) interior [Marra et al. 2007, Brouzakis et al.

2007, Biswas & Notari 2008, Clifton & Zuntz 2009, Valkenburg 2009, Szybka

2011, Bolejko 2011, Flanagan et al. 2012, Lavinto et al. 2013. . . ];

rh rh 3rh 5rh

Szekeres interior [Bolejko & Célérier 2010, Peel et al. 2014, . . . ]

!"#$%&$%'

#!(%)$'

*+,'"-)./%!(01'Λ

23$.$%$#'4!5$#'

Such models solutions do not address the Ricci-Weyl issue.
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Orders of magnitude

For us, the masses inside the holes represent bound objects, such as

galaxies (M ∼ 1011M�);

clusters of galaxies (M ∼ 1015M�).

Kottler

rS

h

FL

r

physr

Type galaxy cluster

rS (pc) 10−2 100
rphys (kpc) 10 1000
rh (Mpc) 1 20

ε 10−8 10−6

where
ε ≡ rS

rh

Pierre Fleury (IAP) Lensing in a clumpy Universe June 8th 2015 15 / 30



The smoothness parameter
The amount of holes in a given Swiss cheese is quantified by

ᾱ ≡ lim
V→∞

VFL

V
= lim

V→∞

(
1− Vholes

V

)
called the smoothness parameter. Hence,

ᾱ = 1 refers to a perfectly smooth (FL) universe;

ᾱ = 0 is a universe entirely filled with clumps and holes.

holesV = V    + V 
FL
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The opacity hypothesis

We consider the clumps inside holes as effectively opaque; thus we
only allow for impact parameters b such that

b > rphys.

This is observationally justified in the case of galaxies (signal/noise).

b

b

b
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Light propagation in a Swiss cheese
[Kantowski 1969, Dyer & Roeder 1973, Fleury 2014a]

The z(v) relation is almost unaffected (negligible Rees-Sciama effect);

Weyl lensing in the holes is very weak if rphys � rS;

Ricci lensing is effectively reduced,

Reff ≈ αRFL with α =
∆vcheese

∆vtot
∈ [0, 1] ≈ ᾱ

This leads to the Kantowski-Dyer-Roeder distance equation

d2DA

dv2
= −4πGαρ(1 + z)2DA.

Light effectively propagates in an underdense homogeneous universe.
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Numerical illustration
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Relieving the tension between SNe and the CMB
[Fleury et al. 2013b]

α=0
SNe

SNe
α=1
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Dependence in the cosmological constant
[Fleury et al. 2013a]
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Summary

Results

The Hubble diagram is biased in a clumpy universe,

not enough to kill Λ,

but enough to explain the tension between SNe and the CMB.

Why does ΛCDM work so well? Because of Λ!

We need to go further

How to measure α?

How to efficiently estimate the shear?

Swiss-cheese models do not allow for the large-scale structure.
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The idea

Treating lensing as a diffusion process.
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The Sachs-Langevin equations

Consider the equation for the Jacobi matrix as

D̈ =

([
〈R〉 0

0 〈R〉

]
+

[
δR 0
0 δR

]
︸ ︷︷ ︸

Ricci fluct.

+

[
−W1 W2

W2 W1

]
︸ ︷︷ ︸

Weyl fluct.

)
D

where δR, WA are white noises, with

〈δR(v1)δR(v2)〉 = CR(v1)δ(v1 − v2)

〈WA(v1)WB(v2)〉 = CW(v1)δABδ(v1 − v2)

〈δR(v1)WA(v2)〉 = 0

The covariance amplitudes CX represent

CX ∼ (fluctuations of X )2 × correlation interval ∆v
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The Fokker-Planck equation

The probability density function p(D, Ḋ; v) satisfies

∂p

∂v
= −ḊAB

∂p

∂DAB
− 〈R〉DAB

∂p

∂ḊAB

+
1

2
(CR δAEδCF + CW δACδEF − CW εACεEF )DEBDFD

∂2p

∂ḊAB∂ḊCD

,

with a drift term and a diffusion term.

It generates evolutions equations for the moments of p(D, Ḋ; v).

Order-n moments form a closed system (no hierarchy).

Everything is contained in the functions 〈R〉 (v), CR(v), CW(v).
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Moments of the angular distance distribution

Correction to the average distance: if D0 is the distance for
δR = W = 0,

δDA
≡ 〈DA〉 − D0

D0

≈ −
∫ v

0
dv1

∫ v1

0
dv2

∫ v2

0
dv3

[
D2

0 (v3)

D0(v1)D0(v2)

]2

2CW(v3)

Variance of the distance:

d3

dx3

(
σDA

D0

)2

−2D6
0 (CR−2CW)

(
σDA

D0

)2

≈ 2CRD
6
0 +6

∫
dx

[
d2δDA

dx2

]2

,

with the variable x defined as dx = D−2
0 dv .

Pierre Fleury (IAP) Lensing in a clumpy Universe June 8th 2015 26 / 30



Moments of the angular distance distribution

Correction to the average distance: if D0 is the distance for
δR = W = 0,

δDA
≡ 〈DA〉 − D0

D0

≈ −
∫ v

0
dv1

∫ v1

0
dv2

∫ v2

0
dv3

[
D2

0 (v3)

D0(v1)D0(v2)

]2

2CW(v3)

Variance of the distance:

d3

dx3

(
σDA

D0

)2

−2D6
0 (CR−2CW)

(
σDA

D0

)2

≈ 2CRD
6
0 +6

∫
dx

[
d2δDA

dx2

]2

,

with the variable x defined as dx = D−2
0 dv .

Pierre Fleury (IAP) Lensing in a clumpy Universe June 8th 2015 26 / 30



Application to Swiss-cheese models

We use Swiss-cheese models as a benchmark of the method.

〈R〉, CR(v), CW(v), can be calculated analytically, e.g.

CW =
3

2
(1− α)H2

0 Ωm0(1 + z)6

〈
(2GM)4/3〈

(2GM)1/3
〉
r2
phys

〉

Notice. For galaxies CW ∼ H3
0 ; for stars CW ∼ 1010H3

0 !
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The problem of nongaussianity

The Fokker-Planck approach assumes gaussian noises.

It is motivated by the central limit theorem.

Here the convergence towards the central limit must be too slow.

Two arguments

1 Reducing the nongaussianity (by increasing rphys) gives a much better
agreement between theory and ray-tracing.

2 Direct simulations of the Sachs-Langevin equation (J. Larena) give
I the theoretical result for a Gaussian noise;
I the ray-tracing result for the appropriate nongaussian noise,
I nongaussian → Gaussian as the integration step is reduced.
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Concluding thoughts

On stochastic lensing

A promising framework, because simple and flexible.

Can be coupled with the effects of the large-scale structure.

More generally

The role of clumpiness on lensing is not fully understood yet.

It may reveal information on the nature and distribution of matter in
the Universe. From data to theory?

What’s next?

Write my thesis.

Observational/numerical constraints on α? (I need you!)

Apply stochastic lensing to realistic models.

Maths: how to extend Fokker-Planck to nongaussian noises?
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Merci pour votre attention.

Pierre Fleury (IAP) Lensing in a clumpy Universe June 8th 2015 30 / 30



Light propagation in Bianchi I

Bianchi spacetimes are models of homogeneous but possibly anisotropic
universes. Bianchi I is one of them:

ds2 = −dt2 + X 2(t)dx2 + Y 2(t)dy2 + Z 2(t)dz2.

Bianchi I is well known, but is optical properties have not been
comprehensively studied.

Result [Fleury et al. 2014c]

An exact expression for the Jacobi matrix DA
B in Bianchi I

D(ηs ← ηo) = a(ηs)(E−1)T
∫ ηo

ηs

ω̃−1ETE dη.

Ideas of new observables to constrain anisotropy.
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Stability and causality of scalar-vector models
Recent interest in inflationary/dark energy models involving both
scalar and vector fields.
Motivated by the large-scale anomalies of the CMB [Planck 2013], or
large-scale/primordial magnetic fields [Bonvin et al. 2013,. . . ].
Problem: there is a priori an infinite amount of models to tests.

Goal

Select the scalar-vector models that are physically acceptable, i.e.

1 stable (Hamiltonian by below),

2 causal (hyperbolic equations of motion).

Result [Fleury et al. 2014b]

Among a very large (but not comprehensive) class of models involving a
scalar φ and a vector Aµ, the acceptable Lagrangians read

L = −1

2
f0[φ, (∂φ)2]− 1

4
f 2(φ)FµνFµν −

1

4
g(φ)Fµν F̃µν .
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Affine parameter-redshift relation

Effect of one hole on the redshift:

the hole grows (its frontier is comoving), hence Φ(rin) < Φ(rout);

this gravitational redshift, similar to the integrated Sachs-Wolfe
(ISW) effect adds to the usual cosmological redshift.

The exact formula for the redshift is [Dyer 1975, Fleury 2014a]

(1 + z)in→out =
Aout

Ain

1 +
√

1− Ain/γ2

√
1− Ain (b/rin)2

1−
√

1− Aout/γ2

√
1− Aout (b/rout)

2
,

=
aout

ain
[1 +O(ε)]

Conclusion

The Swiss-cheese inhomogeneities do not change the z(v) relation.
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Numerical illustrations
z(v) relation
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Weak lensing in a Swiss-cheese universe
Magnification and convergence: PDFs
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Weak lensing in a Swiss-cheese universe
Magnification and convergence: mean and standard deviation
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Weak lensing in a Swiss-cheese universe
Shear and rotation: PDFs
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Weak lensing in a Swiss-cheese universe
Shear and rotation: mean and standard deviation
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Light beams
A light beam is a bundle of null geodesics {xµ(v , γ)}.

k
µ

γ = 2

γ = 3

γ = 1

v = −1

v = 0

The relative behaviour of two neighbouring geodesics is described by their
separation vector

ξµ ≡ ∂xµ

∂γ
,

which reads

kµξµ = 0, and
D2ξµ

dv2
= Rµναβ k

νkαξβ

Pierre Fleury (IAP) Lensing in a clumpy Universe June 8th 2015 30 / 30



Light beams
A light beam is a bundle of null geodesics {xµ(v , γ)}.

ξ
µ

k
µ

γ = 2

γ = 3

γ = 1

v = −1

v = 0

The relative behaviour of two neighbouring geodesics is described by their
separation vector

ξµ ≡ ∂xµ

∂γ
,

which reads

kµξµ = 0, and
D2ξµ

dv2
= Rµναβ k

νkαξβ

Pierre Fleury (IAP) Lensing in a clumpy Universe June 8th 2015 30 / 30



The Sachs basis

An observer with 4-velocity uµ sees the light beam by projecting it on a
screen, spanned by two vectors (sµA)A∈{1,2} with

sµAuµ = sµAkµ = 0, gµνs
µ
As

ν
B = δAB .

Projection of the separation vector on the screen: ξA ≡ ξµsµA

kspatial

u
µ

k

space
s

µ

µ

µ

scr
een
1

ti
m
e

s1
µ

scr
een

µ

spatialk
µ

2s
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Angular distance

The angular distance DA is defined by

DA ≡

√
d2Sem

d2Ωobs
.

It is related to the Jacobi map by

DA =
√
| detD |

Ω

��
��
��
��

d
2

d S
2

em

obs

s
o
u
rc
e

astronomer
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Luminosity distance
The luminosity distance is defined by

Lsource = Fobs × 4πD2
L =⇒ DL = (1 + z)

√
d2Sobs

d2Ωem
.

It is related to the Jacobi map by

DL = (1 + z)2DA = (1 + z)2
√
| detD |

d Ω

��
��
��
��

2

em

obsd S
2source

astronomer
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A new tool: the Wronski matrix
To deal more easily with a patchwork a spacetimes, we extend the Jacobi
matrix formalism for arbitrary initial conditions

if ξ(v0) = 0 then ξ(v) = D(v ← v0) · ξ̇(v0)

The Wronski matrix W satifies a Chasles-like relation

W(v3 ← v1) = W(v3 ← v2) ·W(v2 ← v1)

Application to the Swiss-cheese

W(vem ← 0) = WFL(vem ← v
(1)
in )·WK(v

(1)
in ← v

(1)
out)·WFL(v

(1)
out ← v

(2)
in )

· · ·WK(v
(N)
in ← v

(N)
out ) ·WFL(v

(N)
out ← 0).
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Ċ(v ← v0) Ḋ(v ← v0)

]
︸ ︷︷ ︸

Wronski matrix W(v←v0)

·

[
ξ

ξ̇

]
(v0)

The Wronski matrix W satifies a Chasles-like relation

W(v3 ← v1) = W(v3 ← v2) ·W(v2 ← v1)

Application to the Swiss-cheese

W(vem ← 0) = WFL(vem ← v
(1)
in )·WK(v

(1)
in ← v

(1)
out)·WFL(v

(1)
out ← v

(2)
in )

· · ·WK(v
(N)
in ← v

(N)
out ) ·WFL(v

(N)
out ← 0).

Pierre Fleury (IAP) Lensing in a clumpy Universe June 8th 2015 30 / 30



A new tool: the Wronski matrix
To deal more easily with a patchwork a spacetimes, we extend the Jacobi
matrix formalism for arbitrary initial conditions[

ξ

ξ̇

]
(v) =

[
C(v ← v0) D(v ← v0)
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Simulating a cosmological observation
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Simulating a cosmological observation
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Simulating a cosmological observation
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