Modelling the Large Scale Structure w and w/o massive neutrinos

Elena Massara SISSA - Trieste - Italy

The halo model in a massive neutrino cosmology (E.M., F. Villaescusa-Navarro, M. Viel - JCAP 1412 (2014) 12, 053)

Voids in massive neutrino cosmologies (E.M., F. Villaescusa-Navarro, M. Viel, P.M. Sutter - JCAP 1511 (2015) 11, 018)

Density profiles around biased tracers of the cosmic web (E.M., R. Sheth, P. M. Sutter et al. - in preparation)

Looking into simulations

Massive neutrino cosmology: CDM+neutrino field

Neutrinos in cosmology

- 3 species of active neutrinos
- Neutrinos are massive $\Delta m_{21}^2 \sim 10^{-5} eV^2$ (solar neutrinos) $|\Delta m_{31}^2| \sim 10^{-3} eV^2$ (atmospheric neutrinos) $\Sigma_i m_i > 0.06 eV$ • Cosmology: $\Sigma_i m_i < 0.23 eV (95\% c.l.)$ (Planck 2015)

Neutrinos: linear regime

Neutrinos: non-linear regime

NON-LINEAR MATTER POWER SPECTRUM

Extension of the halo model to account for the presence of massive neutrinos

COSMIC VOIDS

The impact of massive neutrinos on cosmic voids: comprehensive numerical study of statistical properties of voids

A theoretical description of the shape and evolution of void profiles

Modelling the nonlinear matter P(k) in massive neutrino cosmologies

Based on:

The halo model in a massive neutrino cosmology

E.M., F. Villaescusa-Navarro, M. Viel JCAP 1412 (2014) 12, 053

Neutrinos impact on the P(k)

Halo Model

Massive neutrinos case

- All **CDM** particles are in halos
- What about **neutrinos**?

N-body simulations

Neutrino density field

CDM density field

Halo Model

Massive neutrinos case

- All **CDM** is in halos
- A FRACTION of neutrinos is in halos:

$$\begin{split} \delta_{\nu} &= F_h \delta_{\nu}^h + (1 - F_h) \delta_{\nu}^L \\ \text{clustered} & \text{free-streaming} \\ \downarrow & \downarrow \\ \text{described by Halo Model} & \text{described by linear theory} \\ F_h &= \frac{1}{\bar{\rho}_{\nu}} \int_{M_{\text{cut}}}^{\infty} dM_{\text{c}} \, n(M_{\text{c}}) M_{\nu}(M_{\text{c}}) \end{split}$$

Mass function and halo bias

Neutrino linear perturbations do NOT affect the halo formation

Halo Model

Massive neutrinos case

- All **CDM** is in halos
- A **FRACTION of neutrinos** is in halos:

$$\delta_{\nu} = F_h \delta_{\nu}^h + (1 - F_h) \delta_{\nu}^L$$

(Castorina et al. 2013)

- Halo mass function n(M)dM from Рсом(k)
- Halo bias b(M) w.r.t. **CDM** field

Halo Model

Massive neutrinos case

- All **CDM** is in halos
- A FRACTION of neutrinos is in halos:

$$\delta_{\nu} = F_h \delta_{\nu}^h + (1 - F_h) \delta_{\nu}^L$$

- Halo mass function n(M)dM from Pсом(k)
- Halo bias b(M) w.r.t. **CDM** field
- Halo profile: NFW + neutrino profile (Villaescusa-Navarro et al. 2013)

(Castorina et al. 2013)

<u>Results</u>

<u>Results</u>

Halo Model for galaxy clustering

Halo Occupation Distribution (HOD):

1. The probability distribution p(N|M) of having N galaxies inside a halo of mass M \rightarrow 3 parameters

Central galaxy:
$$\langle N_c | M \rangle = \begin{cases} 1 & \text{if } M \ge M_{\min} \\ 0 & \text{if } M < M_{\min} \end{cases}$$

Satellites: $\langle N_s | M \rangle = \begin{cases} (M/M_1)^{\alpha} & \text{if } M \ge M_{\min} \\ 0 & \text{if } M < M_{\min} \end{cases}$

- 2. The way in which galaxies positions and velocities are related to the underlying matter particles:
 - the central galaxies are at the center of the corresponding halo
 - the distribution and velocity of the satellites follow the ones of cold dark matter particles inside the halo ($b_g = b_v = 1$)

Galaxy correlation function

Predictions using:

- HOD parameters (from simulations) to reproduce clustering of galaxies measured in SDSS II Data Release 7
- The extended version of the Halo Model

Galaxy correlation function

Predictions using:

- HOD parameters (from simulations) to reproduce clustering of galaxies measured in SDSS II Data Release 7
- The extended version of the Halo Model

The neutrino Halo Model could be directly used to calibrate the HOD parameters in massive neutrino cosmologies

The impact of massive neutrinos on cosmic voids

Based on: <u>Voids in massive neutrino cosmologies</u> **E.M.**, Villaescusa-Navarro, Viel, Sutter JCAP 1511 (2015) 11, 018

N-body simulations and Void finder

Simulations:

- CDM particles & neutrino particles
- Iow resolution (L = 1 Gpc/h, 256³ particles) \rightarrow <u>CDM-voids</u>
- high resolution (L = 500 Mpc/h, 512³ particles) \rightarrow galaxy-voids
- cosmologies: 0.0 0.15 0.3 0.6 eV
- Galaxies: inserted via HOD
- Void finder: VIDE it uses ZOBOV output

(Sutter et al. 2014) (Neyrinck 2008)

ZOBOV - VIDE at work

b) Voronoi Tessellation density field estimator

c) Zoning

merging of Voronoi cells into zones

d) Watershed merging of zones into voids

(Neyrinck 2008)

Number density of voids

Number density of voids

Number density of voids

<u>CDM / Neutrino profiles</u>

Evolution in time

CDM / Neutrino profiles

Matter profiles in galaxy voids

different matter profiles around galaxy voids

Weak lensing around voids in SDSS

Model the void profiles from a theoretical point of view

Based on: <u>Density profiles around biased tracers of the cosmic web</u> **E.M.**, Ravi Sheth, P. M. Sutter et al. in preparation

What is an enclosed profile?

$$\frac{\Sigma_h \Sigma_{m(r_{hm} < R_q)}}{(\Sigma_h)(\Sigma_m)} = 1 + \xi_{hm} (r < R_q)$$
$$\xi_{hm} (r < R_q) = \Delta (r < R_q)$$

The cross-correlation between the patches and the mass is the enclosed mean density profile

Lagrangian linear field

Eulerian evolved field

Eulerian evolved field

Modelling the evolution

 $\rho_{nl} = \rho_z + \rho_{nl} - \rho_z$

Modelling the evolution

$$\rho_{nl} = \rho_z + \rho_{nl} - \rho_z$$

Void motion

Zel'dovich approach (Desjacques el al. 2010)

Lagrangian approach

1) Relation between today's tracers and the initial field EST tells the connection between the bias and the profile around biased tracers in the Lagrangian space (L)

$$\Delta_L(k) = \left(b_{10}^L + b_{01}^L \frac{s_0^{pp}}{s_1^{pp}} k^2\right) W(kR_p) W(kR_q) P(k)$$

2) Subsequent evolution

The spherical collapse model map the profile from the Lagrangian (L) to the Eulerian (E) space

$$1 + \Delta_E(\langle R_E; t) = \left(1 - \frac{D_t \Delta_L(\langle R_L)}{\delta_c}\right)^{-\delta_c} = \left(\frac{R_L}{R_E(t)}\right)^3$$

$$\frac{\text{Void profiles}}{1 + \Delta_E(< R_E; t) = \left(1 - \frac{D_t \Delta_L(< R_L)}{\delta_c}\right)^{-\delta_c} = \left(\frac{R_L}{R_E(t)}\right)^3$$

$$\frac{\text{Void profiles}}{1 + \Delta_E(< R_E; t) = \left(1 - \frac{D_t \Delta_L(< R_L)}{\delta_c}\right)^{-\delta_c} = \left(\frac{R_L}{R_E(t)}\right)^3$$

$$\frac{\text{Void profiles}}{1 + \Delta_E(< R_E; t) = \left(1 - \frac{D_t \Delta_L(< R_L)}{\delta_c}\right)^{-\delta_c} = \left(\frac{R_L}{R_E(t)}\right)^3$$

$$\frac{\text{Void profiles}}{1 + \Delta_E(< R_E; t) = \left(1 - \frac{D_t \Delta_L(< R_L)}{\delta_c}\right)^{-\delta_c} = \left(\frac{R_L}{R_E(t)}\right)^3$$

$$\frac{\text{Void profiles}}{1 + \Delta_E(< R_E; t) = \left(1 - \frac{D_t \Delta_L(< R_L)}{\delta_c}\right)^{-\delta_c} = \left(\frac{R_L}{R_E(t)}\right)^3$$

Evolution in time

Zel'dovich approach

 Relation between today's tracers and the initial field EST tells the connection between the bias and the profile around biased tracers in the Lagrangian space (L)

$$\Delta_L(k) = \left(b_{10}^L + b_{01}^L \frac{s_0^{pp}}{s_1^{pp}} k^2\right) W(kR_p) W(kR_q) P(k)$$

2) Subsequent evolution

The bias evolves from Lagrangian to Eulerian:

$$\begin{split} \Delta_{E}(k;z) &= \frac{D_{z}}{D_{0}} \left(\frac{D_{z}}{D_{0}} b_{v}(k) + b_{10}^{L} + b_{01}^{L} \frac{s_{0}^{pp}}{s_{1}^{pp}} k^{2} \right) G(k) W(kR_{p}) W(kR_{q}) P(k) \\ & \swarrow \\ b_{v}(k) &= 1 - k^{2} s_{0}^{pp} / s_{1}^{pp} \end{split} \quad \text{peak-trough propagator} \end{split}$$

The void bias evolution

 $P_{vm}(k)/P_{mm}(k) \sim b^E(k)$

On large scales: $b^E(k,z) = b^L_{10} + D_z/D_0 + [b^L_{01} - D_z/D_0](s_0/s_1)k^2$

$\frac{\text{The void bias evolution}}{P_{vm}(k)/P_{mm}(k) \sim b^{E}(k)}$ On large scales: $b^{E}(k,z) = b_{10}^{L} + D_{z}/D_{0} + [b_{01}^{L} - D_{z}/D_{0}](s_{0}/s_{1})k^{2}$ $b_{10}^{E} = b_{10}^{L} + D_{z}/D_{0}$

The void bias evolution $P_{vm}(k)/P_{mm}(k) \sim b^E(k)$ On large scales: $b^E(k,z) = b^L_{10} + D_z/D_0 + [b^L_{01} - D_z/D_0](s_0/s_1)k^2$ $b_{10}^E = b_{10}^L + D_z/D_0$ $z = 99: b_{10}^E = b_{10}^L$ z = 0: $b_{10}^E = b_{10}^L + 1$ SAME EVOLUTION AS THE HALO BIAS

<u>Conclusions</u>

- 1. We performed an extension of the halo model to include massive neutrinos.
 - The key ingredients are:
 - The <u>neutrino field</u> is the sum of a clustered (subdominant) component and a linear one.
 - <u>CDM</u> is the fundamental field responsible for the clustering of matter.
 - The model is able to reproduce the matter power spectrum from simulations within the 20% level on scale k < 10 Mpc/h and the ratio with 2%-5%-10% accuracy for neutrino masses of 0.15-0.3-0.6 eV.
- 2. Voids in massive neutrino cosmologies:
 - <u>CDM-voids</u> appear to be less evolved, i.e. they are smaller, less empty and with a lower wall at the edge.
 - The total matter density profiles around <u>galaxy-voids</u> show differences that could be in principle detected via weak-lensing.
- 3. We proposed a theoretical model for the void density profiles:
 - Their evolution is consistent with the results from N-body simulations.
 - The void bias evolves like the halo bias.

CDM prescription

$$n(M_{\rm c})dM_{\rm c} = \frac{\bar{\rho}_{\rm c}}{M_{\rm c}}f(\nu_{\rm c})d\nu_{\rm c}$$

$$\nu_{\rm c} = \delta_{sc}^2 / \sigma_{\rm c}^2$$

$$\sigma_{\rm c}^2 \equiv \sigma^2(M_{\rm c}) = \int_0^\infty \frac{dk}{2\pi^2} k^2 W^2(kR) P_{\rm c}^L(k)$$

$$M_{\rm c} = \frac{4}{3}\pi\bar{\rho}_{\rm c}R^3$$

Total matter power spectrum

$$P(k) = \left(\frac{\bar{\rho}_{\rm c}}{\bar{\rho}}\right)^2 P_{\rm c}(k) + 2 \frac{\bar{\rho}_{\rm c}\bar{\rho}_{\nu}}{\bar{\rho}^2} P_{\rm c\nu}(k) + \left(\frac{\bar{\rho}_{\nu}}{\bar{\rho}}\right)^2 P_{\nu}(k)$$

CDM power spectrum

$$P_{\rm c}^{1h}(k) = \int_0^\infty d\nu_{\rm c} f(\nu_{\rm c}) \frac{M_{\rm c}}{\bar{\rho}_{\rm c}} |u_{\rm c}(k|M_{\rm c})|^2 ,$$
$$P_{\rm c}^{2h}(k) = \left[\int_0^\infty d\nu_{\rm c} f(\nu_{\rm c}) b_{\rm c}(\nu_{\rm c}) u_{\rm c}(k|M_{\rm c})\right]^2 P_{\rm c}^L(k)$$

$$P_{\rm c}(k) = P_{\rm c}^{1h}(k) + P_{\rm c}^{2h}(k)$$

CDM-neutrino power spectrum

$$P_{c\nu}(k) = F_h P_{c\nu}^h(k) + (1 - F_h) P_{c\nu}^L(k)$$

$$F_h = \frac{1}{\bar{\rho}_{\nu}} \int_{M_{\rm cut}}^{\infty} dM_{\rm c} n(M_{\rm c}) M_{\nu}(M_{\rm c})$$

$$M_{\nu}(M_{\rm cut}) = 0.1 \times \frac{4\pi\bar{\rho}_{\nu}}{3} R_v^3(M_{\rm cut})$$

$$P_{\rm c}^L(k) = \sqrt{P_{\rm c}(k)P_{\nu}^L(k)}$$

$$P^{h}_{c\nu}(k) = P^{1h}_{c\nu}(k) + P^{2h}_{c\nu}(k)$$

$$P_{c\nu}^{1h}(k) = \int_{M_{cut}}^{\infty} d\nu_{c} f(\nu_{c}) \frac{M_{\nu}}{F_{h}\bar{\rho}_{\nu}} u_{c}(k|M_{c}) u_{\nu}(k|M_{c})$$

$$P_{c\nu}^{2h}(k) = \int_{0}^{\infty} d\nu_{c}' f(\nu_{c}') b(\nu_{c}') u_{c}(k|M_{c}')$$

$$\times \int_{M_{cut}}^{\infty} d\nu_{c}'' f(\nu_{c}''c) b(\nu_{c}'') \frac{M_{\nu}}{M_{c}''} \frac{\bar{\rho}_{c}}{F_{h}\bar{\rho}_{\nu}} u_{\nu}(k|M_{c}'') P_{c}^{L}(k)$$

$$P_{\nu}(k) = F_h^2 P_{\nu}^h(k) + 2F_h(1 - F_h) P_{\nu}^{hL}(k) + (1 - F_h)^2 P_{\nu}^L(k)$$

$$P_{\nu}^{hL}(k) = \sqrt{P_{\nu}^h(k)P_{\nu}^L(k)}$$

$$P_{\nu}^{h}(k) = P_{\nu}^{1h}(k) + P_{\nu}^{2h}(k)$$

$$P_{\nu}^{1h}(k) = \int_{M_{\rm cut}}^{\infty} d\nu_{\rm c} f(\nu_{\rm c}) \left(\frac{M_{\nu}}{F_{h}\bar{\rho}_{\nu}}\right)^{2} \frac{\bar{\rho}_{\rm c}}{M_{\rm c}} |u_{\nu}(k|M_{\rm c})|^{2}$$
$$P_{\nu}^{2h}(k) = \left[\int_{M_{\rm cut}}^{\infty} d\nu_{\rm c} f(\nu_{\rm c}) b(\nu_{\rm c}) \frac{M_{\nu}}{M_{\rm c}} \frac{\bar{\rho}_{\rm c}}{F_{h}\bar{\rho}_{\nu}} u_{\nu}(k|M_{\rm c})\right]^{2} P_{\rm c}^{L}(k)$$

