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Physical Motivation

Physical Sources

Quantum fluctuations in early universe

Binary Supermassive Black
Holes in galactic nuclei
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Physical Motivation

eLISA

Proposed space-based interferometer and successor to the LISA project.

o low frequency range of
107* Hz < f < 107! Hz

@ Two-arm interferometer with
10% km beam length

@ Flight in 20287

[AEI]



Physical Motivation
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The EMRI System

Summary of the EMRI Problem

@ Solar mass compact object in
orbit about a supermassive
black hole

@ Mass ratio m/M <1

@ System loses energy due to
radiation; inspiral timescale of
~ M/m orbits



Why Perturbation Theory?

o Linearize the Einstein equations, allowing for point-like particles.
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Why Perturbation Theory?

o Linearize the Einstein equations, allowing for point-like particles.

The two length scales in the problem pose difficulties for numerical
relativity.

Strong relativistic fields disallow post-Newtonian analyses close to
merger.

@ Mature models allow for comparisons between theories...



The EMRI System

Why Perturbation Theory?

@ Mature models allow for comparisons between theories...

Binary parameter space
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Radiation Background

Special Radiation [Dirac]

Develop a relativistic treatment of accelerated charged particles.

@ Solve the equations
0”0, A, = 4rj,
0'A, =0

e Find a general solution for the field,

FHlv _ phv + /_—i/nux

act adv

Ry nuv
- Fret + Fout
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Radiation Background

Special Radiation [Dirac]

Develop a relativistic treatment of accelerated charged particles.

@ Solve the equations
0”0, A, = 4rj,
0'A, =0

e Find a general solution for the field,

FHlv _ phv + /_—i/nux

act adv

Ry nuv
- Fret + Fout

@ Define the radiation field as

WY puv  ppv
Fli = Fli — Fl

rad — 7 out



Radiation Background

Special Radiation [Dirac]

@ Examine the fields,

adv

nwY __ pv 2
Fi = FlY — FL

act

LV 1 LV ns
Fé EE(Fr/et + Fla)

e FL" is constructed purely from homogeneous
solutions and produces the radiation reaction:

= _ . rRuv
mzﬂfez,,Fﬂ




Radiation Background

Electric Radiation in Curved Spacetimes [DeWitt & Brehme]

Solve the equation: V2A,,, + R,"A, = —4mj,. Local hyperbolicity of the
field equations allows for a Hadamard expansion of the Green’s function:

G (x,2) = o [t1a(%,2)0(0) — vy (3, 2B ~0)]

et
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Radiation Background

Electric Radiation in Curved Spacetimes [DeWitt & Brehme]

Solve the equation: V2A,,, + R,"A, = —4mj,. Local hyperbolicity of the
field equations allows for a Hadamard expansion of the Green’s function:

1
G (%:2) = o [Upa(x, 2)0(0) = via(x, 2)0(~0)].
Conserving energy-momentum flux through the worldtube provides the
equations of motion:
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Radiation Background

Electric Radiation in Curved Spacetimes [DeWitt & Brehme]

Solve the equation: V2A,,, + R,"A, = —4mj,. Local hyperbolicity of the
field equations allows for a Hadamard expansion of the Green’s function:

G (.2) = = [t 2)3(0) — Vo, ()]

Conserving energy-momentum flux through the worldtube provides the
equations of motion:

; 2 .. ’ ’
mz® = eF" aﬁiﬁ 4 g(za - 727?) + e22ﬂ/ (Vv — Vvs,)27 dr'’

— 00

e Standard radiatiok damping terms

o “tail” piece caused by curvature
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First-Order Theory
Linearize the Einstein Equations

@ Assume that the physical spacetime may be expanded perturbatively,
Buv = g,SV + h;u/a

where gB,, is the Schwarzschild metric and h,,,, ~ O(m).
@ By defining a variation of the Einstein tensor,
n

11d
e = |

24 den

Gule + eh>]
e=0

we may expandG,,,(g° + h) about the background g°:
G#'/(go + h) - G;(J]I-/)(go” h) + G/(121/)(g07 h) e

with G(7 (g% h) ~ O(m").

[0



First-Order Theory
Linearize the Einstein Equations

Given a perturbing stress-energy tensor T, ~ O(m), the Einstein
equations may be written to first-order in m as

G(l)(go., h) =8nT,., + (’)(mz),

v
with

GM(g° h) = V2, + V.,V h = 2V, VA,
+2R5,% Phag + 80,(V*VP hag — V2h).

nov



First-Order Theory

Gravitational Radiation Reaction [Mino et al] & [Quinn & Wald]

Goal: extend the work done by DeWitt & Brehme to gravity.

Assumptions:

@ Point-particle limit is well-defined within the scope of linearized
theory

@ 4-momentum is proportional to 4-velocity,

p(JI — mu(\/

@ Particle travels along a geodesic of gﬁy at lowest order
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First-Order Theory

Gravitational Radiation Reaction [Mino et al] & [Quinn & Wald]

Goal: extend the work done by DeWitt & Brehme to gravity.

Assumptions:

[Adam Pound]

Particle travels along a geodesic of
ggy at lowest order



First-Order Theory

Gravitational Radiation Reaction [Mino et al] & [Quinn & Wald]

@ Apply the Lorentz gauge to simplify the equations:
V*h,, =0
V2h —2R%% Phag = =167 T, + O(m?)

nov

o Extensive local Green's function analysis finds



First-Order Theory

Gravitational Radiation Reaction [Mino et al] & [Quinn & Wald]

@ Apply the Lorentz gauge to simplify the equations:
V*h,, =0
V2h —2R%% Phag = =167 T, + O(m?)

nov

o Extensive local Green's function analysis finds

P = (%V“hgjﬁ — Vo h" o= AT i ) HE = (o = 2



First-Order Theory

Gravitational Radiation Reaction [Mino et al] & [Quinn & Wald]

@ Apply the Lorentz gauge to simplify the equations:
V*h,, =0
V2h —2R%% Phag = =167 T, + O(m?)

7z

o Extensive local Green's function analysis finds

T (1 L 1 'y
+ mzazﬁ/ <2v“G;ﬂa,b, ~VaGg" —221‘27%6;53%,) 77z ar



First-Order Theory

Gravitational Radiation Reaction [Mino et al.] & [Barack et al]

Proposed metric perturbation decomposition: h,,, = hii; + h;f'y”

° hfli{, produces a generalization

2 of the Abraham-Lorentz-Dirac
force.

o o hi" and V,h?! diverge in the

nv v

coincidence limit.
“Regularize” the physical spacetime:

~ 0 tail
Euv = g,uu + huu

= F" = F2' = mk, /70 (VshED)



First-Order Theory

Taking a Step Back

@ Arbitrary mass renormalization constant



First-Order Theory

Taking a Step Back

@ Arbitrary mass renormalization constant

= fix with asymptotic matching



First-Order Theory

Taking a Step Back

o Conflict between point-particle limit and Lorentz gauge:



First-Order Theory

Taking a Step Back

o Conflict between point-particle limit and Lorentz gauge:

consistent analysis requires “gauge relaxation”

VP, =0 —  VFh,, =O(m?)



First-Order Theory

Taking a Step Back

o Neither /%" nor A" is “physical,” i.e. neither is independently a
solution to the linearized Einstein equations



First-Order Theory

Taking a Step Back

o Neither /%" nor A" is “physical,” i.e. neither is independently a
solution to the linearized Einstein equations

= g is not a “physical” background



First-Order Theory

Re-Imagining the Background [Detweiler & Whiting]

@ Green's function used by Mino et al. is locally unique up to a
homogeneous solution H.

e Choice for H motivated by Dirac’s F°> field construction:

nv

GP=GY"+H
1

= g [u(x. 2)3(0) + v(x, 2)0(0)]

S

pv

@ Tensor perturbation produced, h
the linearized EEs.

is a local particular solution to

@ Provides a regular, homogeneous remainder when removed from the
retarded perturbation,

R _— pret S
h,u,u = h;w - h;w



First-Order Theory

Re-Imagining the Background [Detweiler & Whiting]

e Both />, and h? are separately solutions to the linearized EEs.

nv 2

@ The force results from the regular, differentiable hﬁy,

8\ ines 1
Fs%lf =—-m (ggéﬁ - Zaz‘d) 2/20 (V,yh?ﬁ — 2V/3h55>

@ The “regularized” physical metric now consists of the combination of
the background and a non-local homogeneous field,

gﬂl/ - ggy + hEy



First-Order Theory

Eff&CthG'y SOU rced [Barack & Goldbourn] & [Vega & Detweiler]

The schematic difference h?, = A"t — 1> belies the complex

nv nv %

regularization techniques required to resolve hEV

The standard technique is mode-sum regularization,

Hiule) = A E) = fim ST 00 — A5

14



First-Order Theory

Eff&CthG'y SOU rced [Barack & Goldbourn] & [Vega & Detweiler]

What if we can't integrate for h/5?



First-Order Theory

Eff&CthG'y SOU rced [Barack & Goldbourn] & [Vega & Detweiler]

Consider the following minimally-coupled scalar charge problem:

VYt = —4nq / §W(x = z(r)) dr
y

@ The self-force as described by F,, = qV " will require
regularization.

o Consider a local expansion of the following singular field:
YS = 94 O(p*/R*) as p—0
p

As an approximation, we truncate the expansion of ¢/°,

WP 4q
p



First-Order Theory

EffeCtlve|y SOU rced [Barack & Goldbourn] & [Vega & Detweiler]

@ Locally, then, we see
ViYP = 747rq/ S (x — z(7)) dT + O(p/R*) as p—0
Jy

o Define a “window” function W, such that W =1+ O(p/R") locally
and vanishes sufficiently far away from the worldline.

@ We may then define a residual field,
/‘Z}R = wret o WUP
and we observe that

V2R = — V2 (WyT) — 47rq/ & (x — z(7)) dr
Iy

= Oeff



First-Order Theory

Eff&CthG'y SOU rced [Barack & Goldbourn] & [Vega & Detweiler]

So what's the point?

@ We are left to solve the following equation:

V2R = See

o Close to the particle, 1) ~ ¢}

@ In the wave zone, 9% = ¢



First-Order Theory

A Simple Example

Imagine an object of small radius r, with spherically symmetric charge
density p(r) and associated potential 7.

@ Place this object inside a conducting box with size R > r,.

@ Assume also that the object is at rest at the origin, which eliminates
radiation; thusly, the field " will satisfy

V20t = —4np.

@ Our goal: solve for ¢
numerically, given p(r), and the
force exerted on the object due

© o

e With R > r,, we must utilize
two vastly different length
scales in the computation.




First-Order Theory

A Simple Example

@ Given p(r) = const. and total charge g, then we may write the
particular solution as

LR r<n
¢>(r) =
q

r>r,
r
and it is clear to see that V2p° = —47p.
o Define R = % — °
@ Thus
VzgaR = fvznps —4rp =0



First-Order Theory

A Simple Example

@ We may re-formulate the problem to solve for the homogeneous field,
V2R =0
subject to more complicated boundary conditions,

oR = —¢>  on the box.

@ The force on the object may be found
F=— [ p(ve

=— / p(r)\VeR d®x

— —qV@R\r:o in the point-particle limit



First-Order Theory

A Simple Example: Part 2

Consider again the problem of the charged object in the conducting box.
Here, we wish to solve the problem while maintaining the boundary
conditions.

Define a window function with the following properties:
e W(r) =1 in a region which includes at least the entire source.
o W(r)=0 for r> ry, where r, < ry < R.

e W(r)is C* and changes only over a large length scale ~ ry



First-Order Theory

A Simple Example: Part 2

The puncture and residual fields are then constructed such that,

V2P ~ —4mp
(PR _ L,OaCt _ WQOP

and we arrive with the following equation,

V2R = —pPV2W — 2VW - V"
= Seff

and the original boundary condition

©® =0 on the box.



First-Order Theory

Validity of Assumptions

Recall the assumptions made:

@ Point-particle limit is well-defined within the scope of linearized
theory

@ 4-momentum is proportional to 4-velocity,

pQ — mua

o Particle travels along a geodesic of ggy at lowest order



First-Order Theory
Validity of Assumptions

Is the point-particle limit valid?



First-Order Theory

Rigorous Verification [Gralla & Wald]

Utilize a regular expansion of the physical spacetime, chosen to be a
“properly” scaling 1-parameter family of spacetimes.

@ Regular expansion of the metric:

guv(x,€) = g0, (x) + eh)(x) + €h(x) + - --

@ Solve the perturbation equations external to the body:
1)7.0 (1
GH(g°% n) =0
G(l)(goa h(z)) = _G(2)(g07 h(l))

pv g



First-Order Theory

Rigorous Verification [Gralla & Wald]

@ Expand the worldine about a remnant
geodesic in the limit ¢ — 0:

ZM(1,€) = i (1) + eZM(T) + - -

@ Derive equations of motion for Z" at first
order.

[Adam Pound]



First-Order Theory

Rigorous Verification [Gralla & Wald]

@ Makes no assumptions about the body metric.

Involves no gauge relaxation.

@ Derives the point-particle approximation.

(]

Extendable to arbitrary perturbation order.

However:

@ Remains only a local solution.

@ Analysis fails after de-phasing timescale.



First-Order Theory

A Self-Consistent Approach [Pound]

A similar approach, taking motivation from Kates' developed singular
perturbation theory in GR.

@ Singular expansion of the metric:

guv(x,€) = g0, (x) + ehD(x;7) + EhD(x;7) + -

@ The source moves on z*, a worldline which
faithfully tracks the body’s bulk motion.

@ Requires use of coordinates centered on the
unspecified worldline.

[Adam Pound]



First-Order Theory

A Self-Consistent Approach [Pound]

@ Makes no assumptions about the body metric.

Involves no gauge relaxation.

@ Derives the point-particle approximation.

Extendable to arbitrary perturbation order.

Valid for long timescales.

However:

@ Remains only a /local solution.

@ At present, no clear implementation method.



Second-Order Theory
The Final Stretch

@ The EMRI System

Radiation Background

First-Order Theory

Second-Order Theory



Second-Order Theory

Motivating the Work

First-order solutions fail to correctly model an EMRI system over the
timescales required for evolution.

@ The timescale of an inspiral is roughly the radiation-reaction time

M

tin ~ —
@ The error incurred in the geodesic deviation vector scales locally as
mh 2
20~ (M)}
M

o After the radiation-reaction time, the deviation to the worldline is no
longer a perturbation!



Second-Order Theory
Second-Order Mess

In general, we may write down the second-order equations:

@ Express the full physical spacetime to second-order,
8w = 8L + hG) + h(),
where hﬁ[’,} ~ O(m").
@ The full second-order problem may be expressed as,

G (g° + Y + h®) = 87T, (0 + mr) + O(m?).

@ Now expand completely:

G;(l}/)(goﬂ h(2)) =8 TMV(A/O + ’7’1R) —8r TMV(’YO)
— G2)(g% hM) + O(m?).

ny



Second-Order Theory

Second-Order Mess

@ The terms on the RHS introduce several problems to the analysis:

G/(J,lll)(goa h(2)) =8 T;u/("/O + ’YlR) —8m T;w(/YO)
2 0 1 3
— G2(g% hM) + O(m?).

@ Written out explicitely, it is clear that the non-linearities in
Ggi)(g, h) pose conceptual difficulties.

2), .0 d 1 d Lod d d
ZGib)(g o0 = IV a T pheg + (Vah (T pheg) — ~ U0V by — Tahap) = 2TV by +hT T ghap
1 1
— by VeV gh™ VP h — (Y hac) (Y hpg) + (V9 hac(V by ©) + gap [Ehc’jvccd + chcd

1 1 3
—;h‘dvcvdnf W42 hey + hITEV Jhee ;(thce)(vehc'j) . Z(Vehcd)(vehc‘{)}

- c
Cy =2V hey — Vghe



Second-Order Theory

A General Approach to a Solution [Gralla] & [Pound]

Adapt the puncture method to the second-order problem.

@ Assume we know the singular fields “well enough™ within the region
close to m,

1S _ 1P 4 4
hgy =h,, + O(mx*/rR™)
h2, + Wt = 20+ O(m*x* /PR

Qv

@ The non-linearities are then smoothed out within the order of the
approximation,

G(2)(g07 hlS) + G(l)(gO7 hZS) ~ G(2)(g0, hlP) + G(l)(g07 h273)

nv nv v nv

— O(m?)



Second-Order Theory

A General Approach to a Solution [Gralla] & [Pound]

o We may find the approximate solution, given by the residual field

AR ~ KR,

~

o AR is the desired Detweiler-Whiting field and sources the
second-order self-force:

D2z+ 1
= (" +2'2") (g,” — h3?) (V,h3y — 2V hY

W 5 /)(7) ZUZ)‘ + O(m3)



Second-Order Theory

Conclusions

@ Gravitational self-force formalism has a long, stimulating history

@ Recent developments have overcome certain dubious assumptions

@ A second-order formalism is established

At present, both UF and Southhampton are working toward circular
orbits in Schwarzschild at second-order.
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