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Physical Sources

[NASA]
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eLISA

Proposed space-based interferometer and successor to the LISA project.

[AEI]

low frequency range of
10−4 Hz ≤ f ≤ 10−1 Hz

Two-arm interferometer with
106 km beam length

Flight in 2028?
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eLISA

[Berry et al.]
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Summary of the EMRI Problem

Solar mass compact object in
orbit about a supermassive
black hole

Mass ratio m/M � 1

System loses energy due to
radiation; inspiral timescale of
∼ M/m orbits
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Why Perturbation Theory?

Linearize the Einstein equations, allowing for point-like particles.

The two length scales in the problem pose difficulties for numerical
relativity.

Strong relativistic fields disallow post-Newtonian analyses close to
merger.

Mature models allow for comparisons between theories...
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Why Perturbation Theory?

Mature models allow for comparisons between theories...

[Leor Barack]

ut comparisons between pN
and PT

IMRI comparisons between NR
and PT
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Special Radiation [Dirac]

Develop a relativistic treatment of accelerated charged particles.
Solve the equations

∂ν∂νAµ = 4πjµ
∂µAµ = 0

Find a general solution for the field,

Fµνact = Fµνadv + Fµνin

= Fµνret + Fµνout

Define the radiation field as

Fµνrad = Fµνout − Fµνin
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Special Radiation [Dirac]

Examine the fields,

FµνS ≡ 1
2 (Fµνret + Fµνadv)

FµνR ≡ Fµνact − FµνS

FµνR is constructed purely from homogeneous
solutions and produces the radiation reaction:

mz̈µ = e żνFR ν
µ
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Electric Radiation in Curved Spacetimes [DeWitt & Brehme]

Solve the equation: ∇2Aµ + R γ
µ Aγ = −4πjµ. Local hyperbolicity of the

field equations allows for a Hadamard expansion of the Green’s function:

G sym
µα (x , z) = 1

8π [uµα(x , z)δ(σ)− vµα(x , z)θ(−σ)] .

Conserving energy-momentum flux through the worldtube provides the
equations of motion:

mz̈α = eF in α
β żβ + 2

3(...z α − żαz̈2) + e2żβ
∫ τ

−∞
(∇βvαγ′ −∇αvβγ′)żγ

′
dτ ′

Standard radiation damping terms
“tail” piece caused by curvature
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Linearize the Einstein Equations

Assume that the physical spacetime may be expanded perturbatively,

gµν = g0
µν + hµν ,

where g0
µν is the Schwarzschild metric and hµν ∼ O(m).

By defining a variation of the Einstein tensor,

G (n)
µν (g , h) ≡ 1

n!

[
dn

dεn Gµν(g + εh)
]
ε=0

,

we may expandGµν(g0 + h) about the background g0:

Gµν(g0 + h) = G (1)
µν (g0, h) + G (2)

µν (g0, h) + · · · ,

with G (n)
µν (g0, h) ∼ O(mn).
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Linearize the Einstein Equations

Given a perturbing stress-energy tensor Tµν ∼ O(m), the Einstein
equations may be written to first-order in m as

G (1)
µν (g0, h) = 8πTµν +O(m2),

with

G (1)
µν (g0, h) = ∇2hµν +∇µ∇νh − 2∇(µ∇αhν)α

+ 2R0 α β
µ ν hαβ + g0

µν(∇α∇βhαβ −∇2h).



Physical Motivation The EMRI System Radiation Background First-Order Theory Second-Order Theory

Gravitational Radiation Reaction [Mino et al.] & [Quinn & Wald]

Goal: extend the work done by DeWitt & Brehme to gravity.

Assumptions:
Point-particle limit is well-defined within the scope of linearized
theory

4-momentum is proportional to 4-velocity,

pα = muα

Particle travels along a geodesic of g0
µν at lowest order
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Gravitational Radiation Reaction [Mino et al.] & [Quinn & Wald]

Goal: extend the work done by DeWitt & Brehme to gravity.

Assumptions:

[Adam Pound]

Particle travels along a geodesic of
g0
µν at lowest order
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Gravitational Radiation Reaction [Mino et al.] & [Quinn & Wald]

Apply the Lorentz gauge to simplify the equations:

∇µh̄µν = 0

∇2hµν − 2R0 α β
µ ν hαβ = −16πTµν +O(m2)

Extensive local Green’s function analysis finds

z̈µ =
(
1
2∇

µhinαβ −∇αhin µβ −
1
2 żµżγ∇γhinαβ

)
żαżβ − 11

3 m(...z µ − z̈2żµ)

+ mżαżβ
∫ τ

−∞

(
1
2∇

µG−αβa′b′ −∇αG−µβ a′b′ −
1
2 żµżγ∇γG−αβa′b′

)
ża′ żb′ dτ ′
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Gravitational Radiation Reaction [Mino et al.] & [Barack et al.]

Proposed metric perturbation decomposition: hµν = hdirµν + htailµν

hdirµν produces a generalization
of the Abraham-Lorentz-Dirac
force.

hdirµν and ∇αhtailµν diverge in the
coincidence limit.

“Regularize” the physical spacetime:

g̃µν = g0
µν + htailµν

⇒ F self
α = F tail

α ≡ mk βγδ
α

〈
∇δh̄tailβγ

〉
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Taking a Step Back

Arbitrary mass renormalization constant

⇒ fix with asymptotic matching

Conflict between point-particle limit and Lorentz gauge:
consistent analysis requires “gauge relaxation”

∇µh̄µν = 0 → ∇µh̄µν = O(m2)

Neither hdir nor htail is “physical,” i.e. neither is independently a
solution to the linearized Einstein equations

⇒ g̃ is not a “physical” background
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Re-Imagining the Background [Detweiler & Whiting]

Green’s function used by Mino et al. is locally unique up to a
homogeneous solution H.

Choice for H motivated by Dirac’s F S
µν field construction:

GS ≡ G sym + H

= 1
8π [u(x , z)δ(σ) + v(x , z)θ(σ)]

Tensor perturbation produced, hSµν , is a local particular solution to
the linearized EEs.

Provides a regular, homogeneous remainder when removed from the
retarded perturbation,

hRµν ≡ hretµν − hSµν
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Re-Imagining the Background [Detweiler & Whiting]

Both hSµν and hRµν are separately solutions to the linearized EEs.

The force results from the regular, differentiable hRµν ,

Fαself = −m
(

gαβ0 − żαżβ
)

żγ żδ
(
∇γhRδβ −

1
2∇βhRγδ

)

The “regularized” physical metric now consists of the combination of
the background and a non-local homogeneous field,

g̃µν = g0
µν + hRµν
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Effectively Sourced [Barack & Goldbourn] & [Vega & Detweiler]

The schematic difference hRµν = hretµν − hSµν belies the complex
regularization techniques required to resolve hRµν .

The standard technique is mode-sum regularization,

hRµν(z) =
∑
`

hR,`µν (z) = lim
x→z

∑
`

[
hret,`µν (x)− hS,`µν (x)

]
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Effectively Sourced [Barack & Goldbourn] & [Vega & Detweiler]

What if we can’t integrate for hretµν?
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Effectively Sourced [Barack & Goldbourn] & [Vega & Detweiler]

Consider the following minimally-coupled scalar charge problem:

∇2ψret = −4πq
∫
γ

δ(4)(x − z(τ)) dτ

The self-force as described by Fα = q∇αψret will require
regularization.

Consider a local expansion of the following singular field:

ψS = q
ρ

+O(ρ3/R4) as ρ→ 0

As an approximation, we truncate the expansion of ψS,

ψP ≡ q
ρ
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Effectively Sourced [Barack & Goldbourn] & [Vega & Detweiler]

Locally, then, we see

∇2ψP = −4πq
∫
γ

δ(4)(x − z(τ)) dτ +O(ρ/R4) as ρ→ 0

Define a “window” function W , such that W = 1 +O(ρ/R4) locally
and vanishes sufficiently far away from the worldline.

We may then define a residual field,

ψR ≡ ψret −WψP ,

and we observe that

∇2ψR = −∇2(WψP)− 4πq
∫
γ

δ(4)(x − z(τ)) dτ

≡ Seff
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Effectively Sourced [Barack & Goldbourn] & [Vega & Detweiler]

So what’s the point?

We are left to solve the following equation:

∇2ψR = Seff

Close to the particle, ψR ≈ ψR

In the wave zone, ψR = ψret
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A Simple Example

Imagine an object of small radius ro with spherically symmetric charge
density ρ(r) and associated potential ϕact .

Place this object inside a conducting box with size R � ro .

Assume also that the object is at rest at the origin, which eliminates
radiation; thusly, the field ϕact will satisfy

∇2ϕact = −4πρ.

Our goal: solve for ϕact

numerically, given ρ(r), and the
force exerted on the object due
to ϕact .

With R � ro , we must utilize
two vastly different length
scales in the computation.
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A Simple Example

Given ρ(r) = const. and total charge q, then we may write the
particular solution as

ϕS(r) =


q
2r3 (3r2o − r2) r < ro

q
r r > ro

and it is clear to see that ∇2ϕS = −4πρ.

Define ϕR ≡ ϕact − ϕS

Thus
∇2ϕR = −∇2ϕS − 4πρ = 0
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A Simple Example

We may re-formulate the problem to solve for the homogeneous field,

∇2ϕR = 0

subject to more complicated boundary conditions,

ϕR = −ϕS on the box.

The force on the object may be found

F = −
∫
ρ(r)∇ϕact d3x

= −
∫
ρ(r)∇ϕR d3x

→ −q∇ϕR|r=0 in the point-particle limit
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A Simple Example: Part 2

Consider again the problem of the charged object in the conducting box.
Here, we wish to solve the problem while maintaining the boundary
conditions.

Define a window function with the following properties:

W (r) = 1 in a region which includes at least the entire source.

W (r) = 0 for r > rW , where ro < rW < R.

W (r) is C∞ and changes only over a large length scale ∼ rW
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A Simple Example: Part 2

The puncture and residual fields are then constructed such that,

∇2ϕP ≈ −4πρ
ϕR = ϕact −WϕP

and we arrive with the following equation,

∇2ϕR = −ϕP∇2W − 2∇W · ∇ϕP

≡ Seff

and the original boundary condition

ϕR = 0 on the box.
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Validity of Assumptions

Recall the assumptions made:
Point-particle limit is well-defined within the scope of linearized
theory

4-momentum is proportional to 4-velocity,

pα = muα

Particle travels along a geodesic of g0
µν at lowest order
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Validity of Assumptions

Is the point-particle limit valid?
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Rigorous Verification [Gralla & Wald]

Utilize a regular expansion of the physical spacetime, chosen to be a
“properly” scaling 1-parameter family of spacetimes.

Regular expansion of the metric:

gµν(x , ε) = g0
µν(x) + εh(1)

µν (x) + ε2h(2)
µν (x) + · · ·

Solve the perturbation equations external to the body:

G (1)
µν (g0, h(1)) = 0

G (1)
µν (g0, h(2)) = −G (2)

µν (g0, h(1))
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Rigorous Verification [Gralla & Wald]

[Adam Pound]

Expand the worldine about a remnant
geodesic in the limit ε→ 0:

zµ(τ, ε) = zµ0 (τ) + εZµ(τ) + · · ·

Derive equations of motion for Zµ at first
order.
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Rigorous Verification [Gralla & Wald]

Makes no assumptions about the body metric.

Involves no gauge relaxation.

Derives the point-particle approximation.

Extendable to arbitrary perturbation order.

However:
Remains only a local solution.

Analysis fails after de-phasing timescale.
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A Self-Consistent Approach [Pound]

A similar approach, taking motivation from Kates’ developed singular
perturbation theory in GR.

Singular expansion of the metric:

gµν(x , ε) = g0
µν(x) + εh(1)

µν (x ; γ) + ε2h(2)
µν (x ; γ) + · · ·

[Adam Pound]

The source moves on zµ, a worldline which
faithfully tracks the body’s bulk motion.

Requires use of coordinates centered on the
unspecified worldline.
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A Self-Consistent Approach [Pound]

Makes no assumptions about the body metric.

Involves no gauge relaxation.

Derives the point-particle approximation.

Extendable to arbitrary perturbation order.

Valid for long timescales.

However:
Remains only a local solution.

At present, no clear implementation method.
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The Final Stretch

The EMRI System

Radiation Background

First-Order Theory

Second-Order Theory
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Motivating the Work

First-order solutions fail to correctly model an EMRI system over the
timescales required for evolution.

The timescale of an inspiral is roughly the radiation-reaction time

tin ∼
M
m

The error incurred in the geodesic deviation vector scales locally as

δZµ ∼
(m

M

)2
t2

After the radiation-reaction time, the deviation to the worldline is no
longer a perturbation!



Physical Motivation The EMRI System Radiation Background First-Order Theory Second-Order Theory

Second-Order Mess

In general, we may write down the second-order equations:
Express the full physical spacetime to second-order,

gµν = g0
µν + h(1)

µν + h(2)
µν ,

where h(n)
µν ∼ O(mn).

The full second-order problem may be expressed as,

Gµν(g0 + h(1) + h(2)) = 8πTµν(γ0 + γ1R) +O(m3).

Now expand completely:

G (1)
µν (g0, h(2)) = 8πTµν(γ0 + γ1R)− 8πTµν(γ0)

− G (2)
µν (g0, h(1)) +O(m3).
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Second-Order Mess

The terms on the RHS introduce several problems to the analysis:

G (1)
µν (g0, h(2)) = 8πTµν(γ0 + γ1R)− 8πTµν(γ0)

− G (2)
µν (g0, h(1)) +O(m3).

Written out explicitely, it is clear that the non-linearities in
G (2)

ab (g , h) pose conceptual difficulties.

2G(2)
ab (g0, h) = hcd∇a∇b hcd +

1

2
(∇ahcd )(∇b hcd ) −

1

2
Cd (2∇(ahb)d −∇d hab ) − 2hcd∇d∇(ahb)c + hcd∇c∇d hab

− hab∇c∇d hcd + hab∇
2h − (∇d hac )(∇c hbd ) + (∇d hac (∇d h c

b ) + gab
[ 1

2
hcd∇c Cd +

1

4
Cd Cd

−
1

2
hcd∇c∇d h − hcd∇2hcd + hcd∇e∇d hce +

1

2
(∇d hce )(∇e hcd ) −

3

4
(∇e hcd )(∇e hcd )

]
Cd ≡ 2∇c hcd −∇d h c

c
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A General Approach to a Solution [Gralla] & [Pound]

Adapt the puncture method to the second-order problem.
Assume we know the singular fields “well enough” within the region
close to m,

h1Sµν = h1Pµν +O(mx4/rR4)
h2Sµν + h2S†µν = h2Pµν +O(m2x4/r2R4)

The non-linearities are then smoothed out within the order of the
approximation,

G (2)
µν (g0, h1S) + G (1)

µν (g0, h2S) ≈ G (2)
µν (g0, h1P) + G (1)

µν (g0, h2P)
→ O(m3)
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A General Approach to a Solution [Gralla] & [Pound]

We may find the approximate solution, given by the residual field

hR ≈ hR.

hR is the desired Detweiler-Whiting field and sources the
second-order self-force:

D2zµ
dτ 2 = 1

2 (gµν + żµżν)
(
g ρ
ν − hR ρν

) (
∇ρhRσλ − 2∇λhRρσ

)
żσ żλ +O(m3)
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Conclusions

Gravitational self-force formalism has a long, stimulating history

Recent developments have overcome certain dubious assumptions

A second-order formalism is established

At present, both UF and Southhampton are working toward circular
orbits in Schwarzschild at second-order.
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