Eddington inspired Born-Infeld gravity

prospects, problems, and extensions

Térence Delsate Jan Steinhoff (speaker)

Centro Multidisciplinar de Astrofísica (CENTRA) Instituto Superior Técnico (IST) Lisbon

May 26th, 2014

Séminaires du GReCO, Institut d'Astrophysique de Paris

Jan Steinhoff (CENTRA, IST)

- 2 EiBI and some of its properties
- 8 EiBI as realization of modified coupling
- Problems and extensions

- 2 EiBI and some of its properties
- 3 EiBI as realization of modified coupling
- Problems and extensions
- 5 Conclusions

Motivation

• Born-Infeld (BI) nonlinear electrodynamics:

$$\mathcal{S} = rac{1}{\kappa^2} \int d^4x \Big[\sqrt{-\det(g_{ab}+\kappa F_{ab})} - \sqrt{-\det(g_{ab})} \Big]$$

[M. Born and L. Infeld, Proc. R. Soc. A 144 (1934) 425-451]

- Arises as low-energy effective theory from certain string theories. [E. Fradkin and A. A. Tseytlin, *Phys. Lett. B* **163** (1985) 123]
- Born-Infeld-Einstein gravity actions, e.g.:

$$\mathcal{S} = rac{2}{\gamma\kappa} \int d^4x \Big[\sqrt{-\det(g_{ab} + \kappa R_{ab})} - \lambda \sqrt{-\det(g_{ab})} \Big]$$

[S. Deser and G. W. Gibbons, Class. Quant. Grav. 15 (1998) L35–L39]

- Eddington inspired Born-Infeld (EiBI) gravity: Palatini variation [M. Bañados and P. G. Ferreira, *Phys. Rev. Lett.* **105** (2010) 011101]
- Many similarities to Palatini f(R)!
 [T. P. Sotiriou and V. Faraoni, *Rev. Mod. Phys.* 82 (2010) 451–497]
- Can be formulated as a bimetric theory. (explained later on)

Classification of gauge theories of gravity

from book: M. Blagojević, F.W. Hehl, "Gauge Theories of Gravitation", arXiv:1210.3775

Palatini variation: more fundamental than metric formalism?

[see Figure in arXiv:1210.3775]

Literature

- D. N. Vollick, Phys. Rev. D 69 (2004) 064030
- M. Bañados and P. G. Ferreira, Phys. Rev. Lett. 105 (2010) 011101
- P. Pani, V. Cardoso, and T. Delsate, Phys. Rev. Lett. 107 (2011) 031101
- J. Casanellas, P. Pani, I. Lopes, and V. Cardoso, Astrophys. J. 745 (2012) 15
- P. P. Avelino, *Phys. Rev. D* 85 (2012) 104053
- P. Pani, T. Delsate, and V. Cardoso, *Phys. Rev. D* 85 (2012) 084020
- T. Delsate and J. Steinhoff, Phys. Rev. Lett. 109 (2012) 021101
- Y.-X. Liu, K. Yang, H. Guo, and Y. Zhong, Phys. Rev. D 85 (2012) 124053
- C. Escamilla-Rivera, M. Banados, and P. G. Ferreira, Phys. Rev. D 85 (2012) 087302
- A. De Felice, B. Gumjudpai, and S. Jhingan, Phys. Rev. D 86 (2012) 043525
- P. Avelino and R. Ferreira, Phys. Rev. D 86 (2012) 041501
- P. Avelino, JCAP 1211 (2012) 022
- I. Cho, H.-C. Kim, and T. Moon, Phys. Rev. D 86 (2012) 084018
- P. Pani and T. P. Sotiriou, Phys. Rev. Lett. 109 (2012) 251102
- J. H. Scargill, M. Banados, and P. G. Ferreira, Phys. Rev. D 86 (2012) 103533

... and many more in 2013-present

2 EiBI and some of its properties

3 EiBl as realization of modified coupling

- Problems and extensions
- 5 Conclusions

Field Equations D. N. Vollick, *Phys. Rev. D* 69 (2004) 064030

• Action of EiBI coupled to matter Ψ : $\Lambda = \frac{\lambda - 1}{\kappa}$, $g = \det(g_{ab})$ $S[g, \Gamma, \Psi] = \frac{2}{\gamma \kappa} \int d^4x \Big[\sqrt{-\det(g_{ab} + \kappa R_{ab}[\Gamma])} - \lambda \sqrt{-g} \Big] + S_M[g, \Psi]$

Define auxiliary metric q_{ab} such that:

$$\Gamma^{c}_{ab} = rac{1}{2} q^{cd} \left(\partial_a q_{bd} + \partial_b q_{ad} - \partial_d q_{ab}
ight)$$

• Algebraic field equation:

$$au \left(g^{ab} - rac{\gamma\kappa}{\lambda} T^{ab}
ight) = q^{ab}$$
 $au := \sqrt{rac{g}{q}}, \qquad q = \det(q_{ab}), \qquad T^{ab} := rac{1}{\sqrt{-g}} rac{\delta S_M}{\delta g_{ab}}$

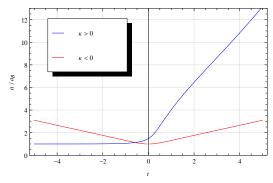
Differential field equation:

$$g_{ab} = \lambda q_{ab} - \kappa R_{ab}$$

• In the following, we set $\lambda = 1$ (i.e. $\Lambda = 0$) and $\gamma = 8\pi G$

Cosmology M. Bañados and P. G. Ferreira, *Phys. Rev. Lett.* **105** (2010) 011101

- For κ > 0:
 - no big bang singularity!
 - loitering phase at early times
 - similar to Einstein universe
- For κ < 0:</p>
 - no singularity!
 - bounce

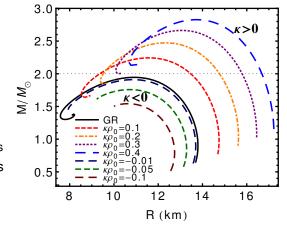


- Maximal density ρ_B , depends on sign(κ) and EOS
- Leads to minimal scale factor a_B
- How generic is the singularity avoidance in this theory?
- Similar singularity avoidance in Palatini f(R)

Compact Stars

P. Pani, V. Cardoso, and T. Delsate, Phys. Rev. Lett. 107 (2011) 031101

- For κ > 0:
 - repulsive effect
 - maximal mass increases
 - may save excluded EOS
- For κ < 0:
 - attractive effect
 - maximal mass decreases
- For κ > 0 the theory admits dust stars with EOS P = 0!



- Still a maximum mass exists: collapse to black hole not avoided
- At the surface the auxiliary metric *q*_{ab} is smooth
- But the "true" metric g_{ab} is maybe not even continuous!

2 EiBI and some of its properties

EiBI as realization of modified coupling

4 Problems and extensions

5 Conclusions

$$au(m{g}^{ab}-8\pi G\kappa T^{ab})=m{q}^{ab}$$

$$g_{ab} = q_{ab} - \kappa R_{ab}$$

Einstein equation for auxiliary metric

$$R^{a}{}_{b} = 8\pi G \left[\mathcal{T}^{a}{}_{b} - \frac{1}{2} \delta^{a}{}_{b} \mathcal{T}^{c}{}_{c} \right]$$

$$\mathcal{T}^{a}{}_{b} = \tau T^{a}{}_{b} + \frac{\delta^{a}{}_{b}}{8\pi G} [\tau - 1 - 4\pi G \kappa \tau T]$$
$$\tau = \sqrt{\frac{g}{q}} = \frac{1}{\sqrt{\det(\delta^{a}{}_{b} - 8\pi G \kappa T^{a}{}_{b})}}$$

$$\tau(\delta^{a}{}_{b} - 8\pi G\kappa T^{a}{}_{b}) = q^{ac}g_{cb} \qquad q^{ac}g_{cb} = \delta^{a}{}_{b} - \kappa R^{a}{}_{b}$$

Einstein equation for auxiliary metric

$$R^{a}{}_{b} = 8\pi G \left[\mathcal{T}^{a}{}_{b} - \frac{1}{2} \delta^{a}{}_{b} \mathcal{T}^{c}{}_{c} \right]$$

$$\mathcal{T}^{a}{}_{b} = \tau T^{a}{}_{b} + \frac{\delta^{a}{}_{b}}{8\pi G} [\tau - 1 - 4\pi G \kappa \tau T]$$
$$\tau = \sqrt{\frac{g}{q}} = \frac{1}{\sqrt{\det(\delta^{a}{}_{b} - 8\pi G \kappa T^{a}{}_{b})}}$$

$$\tau(\delta^{a}{}_{b} - 8\pi G\kappa T^{a}{}_{b}) = q^{ac}g_{cb} = q^{ac}g_{cb} = \delta^{a}{}_{b} - \kappa R^{a}{}_{b}$$

Einstein equation for auxiliary metric

$$R^{a}{}_{b} = 8\pi G \left[\mathcal{T}^{a}{}_{b} - \frac{1}{2} \delta^{a}{}_{b} \mathcal{T}^{c}{}_{c} \right]$$

$$\mathcal{T}^{a}{}_{b} = \tau T^{a}{}_{b} + \frac{\delta^{a}{}_{b}}{8\pi G} [\tau - 1 - 4\pi G \kappa \tau T]$$
$$\tau = \sqrt{\frac{g}{q}} = \frac{1}{\sqrt{\det(\delta^{a}{}_{b} - 8\pi G \kappa T^{a}{}_{b})}}$$

$$\tau(\delta^{a}{}_{b} - 8\pi G\kappa T^{a}{}_{b}) = q^{ac}g_{cb} = q^{ac}g_{cb} = \delta^{a}{}_{b} - \kappa R^{a}{}_{b}$$

Einstein equation for auxiliary metric

$$R^{a}{}_{b} = 8\pi G \left[\mathcal{T}^{a}{}_{b} - \frac{1}{2} \delta^{a}{}_{b} \mathcal{T}^{c}{}_{c} \right]$$

$$\mathcal{T}^{a}{}_{b} = \tau T^{a}{}_{b} + \frac{\delta^{a}{}_{b}}{8\pi G} [\tau - 1 - 4\pi G \kappa \tau T]$$
$$\tau = \sqrt{\frac{g}{q}} = \frac{1}{\sqrt{\det(\delta^{a}{}_{b} - 8\pi G \kappa T^{a}{}_{b})}}$$

Fluid: Modified EOS

$$\mathcal{T}^{a}{}_{b} = \tau T^{a}{}_{b} + \frac{\delta^{a}{}_{b}}{8\pi G} [\tau - 1 - 4\pi G \kappa \tau T]$$
$$\tau = \sqrt{\frac{g}{q}} = \frac{1}{\sqrt{\det(\delta^{a}{}_{b} - 8\pi G \kappa T^{a}{}_{b})}}$$

Interesting result for ideal fluid:

$$T^{a}{}_{b} = (\rho + P) u^{a} u_{b} + P \delta^{a}{}_{b}, \qquad u^{a} u^{b} g_{ab} = -1$$

$$\Rightarrow T^{a}{}_{b} = (\rho_{q} + P_{q}) v^{a} v_{b} + P_{q} \delta^{a}_{b}, \qquad v_{a} v_{b} q^{ab} = -1$$

$$egin{split} \mathcal{P}_q &= rac{ au}{2}(
ho-\mathcal{P}) + rac{ au-1}{8\pi G\kappa}, \quad
ho_q &= rac{ au}{2}(
ho+3\mathcal{P}) - rac{ au-1}{8\pi G\kappa} \ au &= \left[(1+8\pi G\kappa
ho)(1-8\pi G\kappa\mathcal{P})^3
ight]^{-rac{1}{2}}, \quad
ho_q+\mathcal{P}_q &= au(
ho+\mathcal{P}) \end{split}$$

- Similar: baryon number density, entropy, temperature
- For dust *P* = 0:

$$P_q = \pi G \kappa \rho_q^2 + \mathcal{O}(\rho_q^3)$$

Viability, Phenomenology, and Constraints

- Coupling between gravity and matter less explored \rightarrow less constrained
- Theory is equivalent to general relativity in vacuum
- In vacuum EiBI can not be distinguished from GR with source T^a_b
- Phenomenologically q_{ab} , \mathcal{T}^{a}_{b} , ρ_{q} , and P_{q} can be qualified as "apparent"
- Interesting: constraint on κ from observations of the sun (acoustic oscillation modes, neutrinos)

$$|\kappa| < 3 \cdot 10^5 \frac{\mathrm{m}^5}{\mathrm{s}^2 \mathrm{kg}}$$

[J. Casanellas, P. Pani, I. Lopes, and V. Cardoso, Astrophys. J. 745 (2012) 15]

Energy Conditions (EC)

• EC used in the literature:

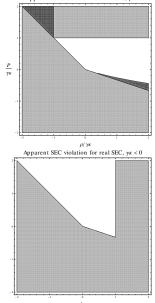
- Most important: Null EC Null EC violation associated with pathologies like traversable worm holes, warp drives, etc.
- Is Null EC fulfilled in apparent sector if it holds for the real EOS?

$$\rho_q + P_q = \tau(\rho + P), \qquad \tau \ge 0$$

 \Rightarrow Yes, it is!

• Plots: illustrate Strong EC $(\gamma = 8\pi G)$

Apparent SEC violation for real SEC, $\gamma \kappa > 0$

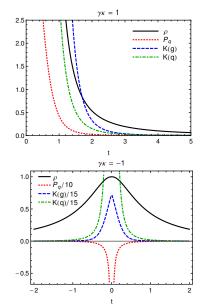


Analysis of Singularity Avoidance

• τ has poles for finite values of ρ and *P*:

$$au = \sqrt{rac{g}{q}} = rac{1}{\sqrt{(1+8\pi G\kappa
ho)(1-8\pi G\kappa P)^3}}$$

- Pole for $8\pi G\kappa P \rightarrow 1$:
 - Can happen for $\kappa > 0$
 - Maximal pressure $P_{max} = 1/8\pi G\kappa$ (corresponding to singular $\rho_q \propto \tau \rho \dots$)
 - EOS is considerably softened
- Pole for $8\pi G\kappa \rho \rightarrow -1$:
 - Can happen for $\kappa < 0$
 - Max. energy density $\rho_{max} = 1/8\pi G |\kappa|$
 - EOS is considerably hardened
- Counterexample: dust universe (plots)
- "Usual" EOS should avoid singularities!



- 2 EiBI and some of its properties
- 3 EiBI as realization of modified coupling
- Problems and extensions
- 5 Conclusions

- Theory is well behaved in q_{ab} sector
- But Ricci scalar R[g] at surface of stars is singular if (near the surface)

$$P = K
ho_0^{\Gamma}$$
 with $\Gamma > 3/2$

- Generic problem, differential structure of theory in terms of *g*_{ab}: higher order derivatives of matter in source
- The metric g_{ab} is too sensitive to sharp matter profiles
- Same problem appears for Palatini f(R)
- But implications are discussed controversially in Palatini f(R) gravity
- Can probably be cured by adding further degrees of freedom: torsion, nonmetricity, ...

Extensions from bimetric action approach?

• A bimetric linearization of the action reads:

$$S_G = rac{1}{8\pi G}\int\!d^4x \sqrt{-q}\left[R[q]-2rac{\lambda}{\kappa}+rac{1}{\kappa}\left(q^{ab}g_{ab}-2\sqrt{rac{g}{q}}
ight)
ight]+S_M[g]$$

- Stringy anlogon: from Nambu-Goto to Polyakov action
- Only the metric coupling to matter is measurable
- "Cutoff" $1/8\pi G\kappa$ appears as coupling parameter
- Starting point to modify the gravity-matter coupling?
- Similar bimetric action used in asymptotic safety scenario
 E. Manrique, M. Reuter, and F. Saueressig, *Annals Phys.* 326 (2011) 440–462
- More complicated bimetric actions appear in New Massive Gravity S. Hassan and R. A. Rosen, *JHEP* 1107 (2011) 009
 S. Hassan and R. A. Rosen, *JHEP* 1202 (2012) 126

- 2 EiBl and some of its properties
- 3 EiBI as realization of modified coupling
- Problems and extensions

- Exiting features of EiBI:
 - BI structure may originate from quantized gravity
 - Palatini variation is very natural
 - Some singularities are avoided
 - Dust stars (pressureless) for $\kappa > 0$
 - Coupling between gravity and matter less explored/constrained
 - Interesting phenomenology, as it deviates from GR only inside matter
- Problems:
 - Maximum NS mass vs. singularity avoidance
 - Similar to Palatini *f*(*R*), same problems, e.g.:
 - Problems at surface/phase transitions, like singular curvature
- Possible extensions:
 - Modification using bimetric action
 - Modification by relaxing conditions on connection: torsion, nonmetricity

Thank you for your attention

Advertisement: Mons Meeting 2014 on Multidisciplinary aspects of Compact Object Physics 26–29 of August, 2014