Hawking radiation in acoustic black and white holes

Antonin Coutant

Albert Einstein Institute (Potsdam)

14 April, 2014

Collaborations with R. Parentani, S. Finazzi, A. Fabbri

Introduction

Introduction

Hawking Radiation context

Bardeen, Carter, Hawking (C.M.P. 73)
 "Black holes mechanics analogous to the laws of thermodynamics"

Introduction

- Bardeen, Carter, Hawking (C.M.P. 73)
 "Black holes mechanics analogous to the laws of thermodynamics"
- Bekenstein (P.R.D. 73) "Black hole entropy is thermodynamical and $\propto {\cal A}$ "

Introduction

- Bardeen, Carter, Hawking (C.M.P. 73)
 "Black holes mechanics analogous to the laws of thermodynamics"
- Bekenstein (P.R.D. 73) "Black hole entropy is thermodynamical and $\propto {\cal A}$ "
- Hawking, (Nature 74, C.M.P. 75)
 "Black holes radiate a black body spectrum"

Introduction

4

- Bardeen, Carter, Hawking (C.M.P. 73)
 "Black holes mechanics analogous to the laws of thermodynamics"
- Bekenstein (P.R.D. 73) "Black hole entropy is thermodynamical and $\propto {\cal A}$ "
- Hawking, (Nature 74, C.M.P. 75)
 "Black holes radiate a black body spectrum"
 - Asymptotic observers measure a steady flux
 - Spectrum is thermal

$$ar{n}_{\omega}^{\mathrm{out}} = \left| eta_{\omega}
ight|^2 = rac{1}{e^{rac{2\pi\omega}{\kappa}} - 1}$$

Temperature $T_H = \kappa/2\pi$, κ the surface gravity

Introduction

Hawking Radiation context

- Bardeen, Carter, Hawking (C.M.P. 73)
 "Black holes mechanics analogous to the laws of thermodynamics"
- Bekenstein (P.R.D. 73) "Black hole entropy is thermodynamical and $\propto {\cal A}$ "
- Hawking, (Nature 74, C.M.P. 75)
 "Black holes radiate a black body spectrum"
 - Asymptotic observers measure a steady flux
 - Spectrum is thermal

$$ar{n}_{\omega}^{ ext{out}} = \left|eta_{\omega}
ight|^2 = rac{1}{e^{rac{2\pi\omega}{\kappa}}-1}$$

• Temperature $T_H = \kappa/2\pi$, κ the surface gravity

• Unruh, Wald (P.R.D. 82)

Necessary for consistency of generalized second law

Transplanckian question

• Free Fall frequency $\Omega = \Omega_0 e^{-\kappa t}$

Transplanckian question

- Free Fall frequency $\Omega = \Omega_0 e^{-\kappa t}$
- 1985 't Hooft large contributions from UV interactions

Transplanckian question

- Free Fall frequency $\Omega = \Omega_0 e^{-\kappa t}$
- 1985 't Hooft large contributions from UV interactions
- but UV structure of gravity unknown

Transplanckian question

- Free Fall frequency $\Omega = \Omega_0 e^{-\kappa t}$
- 1985 't Hooft large contributions from UV interactions
- but UV structure of gravity unknown

Acoustic black holes

• 1981, Unruh (PRL) Analogy discovered

Transplanckian question

- Free Fall frequency $\Omega = \Omega_0 e^{-\kappa t}$
- 1985 't Hooft large contributions from UV interactions
- but UV structure of gravity unknown

Acoustic black holes

- 1981, Unruh (PRL) Analogy discovered
- 1991, Jacobson (PRD) Short wavelength physics **always** induces dispersion

Transplanckian question

- Free Fall frequency $\Omega = \Omega_0 e^{-\kappa t}$
- 1985 't Hooft large contributions from UV interactions
- but UV structure of gravity unknown

Acoustic black holes

- 1981, Unruh (PRL) Analogy discovered
- 1991, Jacobson (PRD) Short wavelength physics **always** induces dispersion
- 1995, Unruh (PRD)
 Dispersive wave equation and robustness of Hawking effect

Transplanckian question

- Free Fall frequency $\Omega = \Omega_0 e^{-\kappa t}$
- 1985 't Hooft large contributions from UV interactions
- but UV structure of gravity unknown

Acoustic black holes

- 1981, Unruh (PRL) Analogy discovered
- 1991, Jacobson (PRD)
 Short wavelength physics always induces dispersion
- 1995, Unruh (PRD)
 Dispersive wave equation and robustness of Hawking effect
- Since 1995

Analytical and numerical confirmations of robustness

Transplanckian question

- Free Fall frequency $\Omega = \Omega_0 e^{-\kappa t}$
- 1985 't Hooft large contributions from UV interactions
- but UV structure of gravity unknown

Acoustic black holes

- 1981, Unruh (PRL) Analogy discovered
- 1991, Jacobson (PRD)
 Short wavelength physics always induces dispersion
- 1995, Unruh (PRD)
 Dispersive wave equation and robustness of Hawking effect
- Since 1995

Analytical and numerical confirmations of robustness

- $\bullet\,$ Since \sim 2010, first experiments (Water, BEC, optical fibers)
 - Water (Weinfurtner, Tedford, Penrice, Unruh, Lawrence, PRL 2010)

Plan of the talk

1 Analog gravity

2 Robustness of Black Hole radiation

- Characteritics
- Mode mixing

Ondulations in White Holes

- Zero-mode
- Classical scattering
- Quantum and thermal noise

4 Conclusion

Outline

1 Analog gravity

- 2 Robustness of Black Hole radiation
 - Characteritics
 - Mode mixing

Ondulations in White Holes

- Zero-mode
- Classical scattering
- Quantum and thermal noise

4 Conclusion

Hydrodynamical regime

- Sound waves of celerity c_S on moving fluid
- Current velocity v(x)

Hydrodynamical regime

- Sound waves of celerity c_S on moving fluid
- Current velocity v(x)
- Propagation

$$\left[(\partial_t + \partial_x v)(\partial_t + v \partial_x) - c_5^2 \partial_x^2 \right] \phi(x, t) = 0$$

Hydrodynamical regime

- Sound waves of celerity c_S on moving fluid
- Current velocity v(x)
- Propagation

$$\left[(\partial_t + \partial_x v)(\partial_t + v \partial_x) - c_5^2 \partial_x^2 \right] \phi(x, t) = 0$$

• Geometry $ds^2 = c_S^2 dt^2 - (dx - v(x)dt)^2$

(Convention: $c_S = 1$)

Near horizon physics

- Horizon where $v(x)^2 = 1$ (Convention: at x = 0)
- $v(x) \sim -1 + \kappa x$ with κ the surface gravity

Near horizon physics

- Horizon where $v(x)^2 = 1$ (Convention: at x = 0)
- $v(x) \sim -1 + \kappa x$ with κ the surface gravity
- Redshift

$$\Omega \sim \frac{\omega}{\kappa x}$$

• Killing ω (conserved)

• Co-moving
$$\Omega = \omega - v(x)k$$

Near horizon physics

- Horizon where $v(x)^2 = 1$ (Convention: at x = 0)
- $v(x) \sim -1 + \kappa x$ with κ the surface gravity
- Redshift

$$\Omega \sim \frac{\omega}{\kappa x}$$

- Killing ω (conserved)
- Co-moving $\Omega = \omega v(x)k$

Short distance physics \rightarrow dispersion (Jacobson, PRD 1991)

$$\Omega^2 = k^2 \pm k^4 / \Lambda^2 + O(k^6)$$

Near horizon physics

- Horizon where $v(x)^2 = 1$ (Convention: at x = 0)
- $v(x) \sim -1 + \kappa x$ with κ the surface gravity
- Redshift

$$\Omega \sim \frac{\omega}{\kappa x}$$

- Killing ω (conserved)
- Co-moving $\Omega = \omega v(x)k$

Short distance physics \rightarrow dispersion (Jacobson, PRD 1991)

$$\Omega^2 = k^2 \pm k^4 / \Lambda^2 + O(k^6)$$

group velocity increase (+) or decrease (-) with k

Several motivations to consider dispersion:

Several motivations to consider dispersion:

Gravitational physics, sign of transplanckian physics ?

- Einstein-Aether theory
- Horava-Lifshitz gravity
- Dynamical symmetry breaking ? (Parentani IJThP 07)

Several motivations to consider dispersion:

Gravitational physics, sign of transplanckian physics ?

- Einstein-Aether theory
- Horava-Lifshitz gravity
- Dynamical symmetry breaking ? (Parentani IJThP 07)
- Analog gravity, dispersion always present
 - BEC
 - Water surface waves
 - Optical fibers
 - ...

Several motivations to consider dispersion:

Gravitational physics, sign of transplanckian physics ?

- Einstein-Aether theory
- Horava-Lifshitz gravity
- Dynamical symmetry breaking ? (Parentani IJThP 07)
- Analog gravity, dispersion always present
 - BEC
 - Water surface waves
 - Optical fibers
 - ...
- Onderstand Lorentz invariance better !

Outline

Analog gravity

2 Robustness of Black Hole radiation

- Characteritics
- Mode mixing

Ondulations in White Holes

- Zero-mode
- Classical scattering
- Quantum and thermal noise

4 Conclusion

Outline

1 Analog gravity

Robustness of Black Hole radiation Characteritics

Mode mixing

3 Undulations in White Holes

- Zero-mode
- Classical scattering
- Quantum and thermal noise

4 Conclusion

• Infinite focusing on the horizon

$$x = x_0 e^{\kappa t}$$
$$p = p_0 e^{-\kappa t}$$

• v-modes fall in and are regular (Hence ignored)

• Finite time redshift $\Delta t = \ln(p_{in}/p_{out})$

$$x = x_0 e^{\kappa t} + \frac{p_0^3}{2\Lambda^2 \kappa} e^{-3\kappa t}$$
$$p = p_0 e^{-\kappa t}$$

Outline

1 Analog gravity

- 2 Robustness of Black Hole radiation
 - Characteritics
 - Mode mixing

Ondulations in White Holes

- Zero-mode
- Classical scattering
- Quantum and thermal noise

4 Conclusion

 $\omega = vk_{\omega} \pm \sqrt{k\Lambda \tanh(k/\Lambda)}$

$$\omega = v k_{\omega} \pm \sqrt{k \Lambda \tanh(k/\Lambda)}$$

 $\bullet~2$ branches $\rightarrow~2$ signs of norm

- 2 branches \rightarrow 2 signs of norm
- k_v follow the current \rightarrow plays no role

$$\omega = v k_{\omega} \pm \sqrt{k \Lambda \tanh(k/\Lambda)}$$

- 2 branches \rightarrow 2 signs of norm
- k_v follow the current \rightarrow plays no role
- k_{+}^{in} , k_{-}^{in} and k_{+}^{out} propagate against the flow

$$\omega = v k_{\omega} \pm \sqrt{k \Lambda \tanh(k/\Lambda)}$$

- 2 branches \rightarrow 2 signs of norm
- k_v follow the current \rightarrow plays no role
- k_{+}^{in} , k_{-}^{in} and k_{+}^{out} propagate against the flow
- k_{-}^{out} is dragged by the flow

• 2 in modes converted into 2 out modes

- 2 in modes converted into 2 out modes
- Modes of **opposite** sign of norm (and energy)

$$|\alpha_{\omega}|^2 - |\beta_{\omega}|^2 = 1$$

- 2 in modes converted into 2 out modes
- Modes of **opposite** sign of norm (and energy)

$$|\alpha_{\omega}|^2 - |\beta_{\omega}|^2 = 1$$

• $|\alpha_{\omega}| > 1$ amplification process

- 2 in modes converted into 2 out modes
- Modes of **opposite** sign of norm (and energy)

$$|\alpha_{\omega}|^2 - |\beta_{\omega}|^2 = 1$$

• $|\alpha_{\omega}| > 1$ amplification process

Everything here is **classical**

Everything here is classical

• Mixing of positive and negative energy modes

Everything here is classical

- Mixing of positive and negative energy modes
- This is Hawking radiation

$$|eta_{\omega}|^2=(e^{rac{2\pi\omega}{\kappa}}-1)^{-1}$$

Everything here is classical

- Mixing of positive and negative energy modes
- This is Hawking radiation

$$|eta_{\omega}|^2 = (e^{rac{2\pi\omega}{\kappa}}-1)^{-1}$$

• Experimentally observed in water tank (Weinfurtner, Tedford, Penrice, Unruh, Lawrence, *PRL* 2010)

Everything here is classical

- Mixing of positive and negative energy modes
- This is Hawking radiation

$$|eta_{\omega}|^2 = (e^{rac{2\pi\omega}{\kappa}}-1)^{-1}$$

• Experimentally observed in water tank (Weinfurtner, Tedford, Penrice, Unruh, Lawrence, *PRL* 2010)

2nd quantization:

• Mixing of \hat{a}_{ω} and $\hat{a}_{\omega}^{\dagger}$

$$\langle 0_{\textit{in}} | \hat{a}^{\dagger}_{\omega} \hat{a}_{\omega} | 0_{\textit{in}}
angle = |eta_{\omega}|^2
eq 0$$

Everything here is classical

- Mixing of positive and negative energy modes
- This is Hawking radiation

$$|eta_{\omega}|^2 = (e^{rac{2\pi\omega}{\kappa}}-1)^{-1}$$

• Experimentally observed in water tank (Weinfurtner, Tedford, Penrice, Unruh, Lawrence, *PRL* 2010)

2nd quantization:

• Mixing of \hat{a}_{ω} and $\hat{a}_{\omega}^{\dagger}$

$$\langle 0_{\textit{in}} | \hat{a}^{\dagger}_{\omega} \hat{a}_{\omega} | 0_{\textit{in}}
angle = | eta_{\omega} |^2
eq 0$$

• Spontaneous emission

Everything here is classical

- Mixing of positive and negative energy modes
- This is Hawking radiation

$$|eta_{\omega}|^2 = (e^{rac{2\pi\omega}{\kappa}}-1)^{-1}$$

• Experimentally observed in water tank (Weinfurtner, Tedford, Penrice, Unruh, Lawrence, *PRL* 2010)

2nd quantization:

• Mixing of \hat{a}_{ω} and $\hat{a}_{\omega}^{\dagger}$

$$\langle 0_{in} | \hat{a}^{\dagger}_{\omega} \hat{a}_{\omega} | 0_{in}
angle = |eta_{\omega}|^2
eq 0$$

- Spontaneous emission
- Direct and necessary consequence of the classical field equation

• Near horizon region: $v(x) = -1 + \kappa x$

- Near horizon region: $v(x) = -1 + \kappa x$
- De Sitter space, valid for $|x| \lesssim L_{
 m lin}$

- Near horizon region: $v(x) = -1 + \kappa x$
- De Sitter space, valid for $|x| \lesssim L_{
 m lin}$
- Momentum space WKB approximation

- Near horizon region: $v(x) = -1 + \kappa x$
- De Sitter space, valid for $|x| \lesssim L_{
 m lin}$
- Momentum space WKB approximation

Mode mixing occurs on a finite region around horizon

$$d_{\rm br} = \kappa^{-1/3} \Lambda^{-2/3}$$

Condition to recover HR

$$d_{\rm br} \ll L_{\rm lin}$$
 (3)

$${
m x_{tp}}(\omega) \ll {
m L_{lin}}$$

(AC, R.Parentani, S.Finazzi PRD 2012)

(4)

Condition to recover HR

$$d_{
m br} \ll L_{
m lin}$$
 (3)

$$K_{
m tp}(\omega) \ll L_{
m lin}$$
 (4)

(AC, R.Parentani, S.Finazzi PRD 2012)

Total S-matrix

Outside NHR, UV-modes decouple

$$S = S_{\mathrm{int}} \cdot S_{\mathrm{ext}} \cdot S_{\mathrm{NHR}}$$

- $S_{\rm NHR}$: HR, involve UV modes
- S_{int} and S_{ext} : relativistic scattering with k_{ω}^{ν} (greybody factors)

Is the turning point location relevant ? (dispersive horizon ?)

Is the turning point location relevant ? (dispersive horizon ?)

Is the turning point location relevant ? (dispersive horizon ?)

$$x_{
m tp}(\omega)/d_{
m br}\sim (\omega/\kappa)^{1/3}$$

• $\omega \ll \kappa$: HR regime, $x_{\rm tp}$ and $x_{\rm hor}$ are **undistinguishable**

Characteritics Mode mixing

Is the turning point location relevant ? (dispersive horizon ?)

$$x_{
m tp}(\omega)/d_{
m br}\sim (\omega/\kappa)^{1/3}$$

- $\omega \ll \kappa$: HR regime, $x_{\rm tp}$ and $x_{\rm hor}$ are undistinguishable
- $\omega \gg \kappa :$ HR is turned ${\rm off} \rightarrow {\rm total}$ reflection governed by Airy function

Characteritics Mode mixing

Is the turning point location relevant ? (dispersive horizon ?)

$$x_{
m tp}(\omega)/d_{
m br}\sim (\omega/\kappa)^{1/3}$$

- $\omega \ll \kappa$: HR regime, $x_{\rm tp}$ and $x_{\rm hor}$ are undistinguishable
- $\omega \gg \kappa :$ HR is turned ${\rm off} \rightarrow {\rm total}$ reflection governed by Airy function

Is there an **improved** value of κ ?

Characteritics Mode mixing

Is the turning point location relevant ? (dispersive horizon ?)

- $\omega \ll \kappa$: HR regime, $x_{\rm tp}$ and $x_{\rm hor}$ are **undistinguishable**
- $\omega \gg \kappa :$ HR is turned ${\rm off} \rightarrow {\rm total}$ reflection governed by Airy function
- Is there an **improved** value of κ ?
 - Modes have finite resolution $d_{
 m br}
 ightarrow$ smaller details are washed out

Characteritics Mode mixing

Is the turning point location relevant ? (dispersive horizon ?)

- $\omega \ll \kappa$: HR regime, $x_{\rm tp}$ and $x_{\rm hor}$ are **undistinguishable**
- $\omega \gg \kappa :$ HR is turned ${\rm off} \rightarrow {\rm total}$ reflection governed by Airy function
- Is there an **improved** value of κ ?
 - Modes have finite resolution $d_{
 m br}
 ightarrow$ smaller details are washed out
 - $\kappa_{tp} = (\partial_x v)_{tp}$ irrelevant

Characteritics Mode mixing

Is the turning point location relevant ? (dispersive horizon ?)

- $\omega \ll \kappa$: HR regime, $x_{\rm tp}$ and $x_{\rm hor}$ are **undistinguishable**
- $\omega \gg \kappa :$ HR is turned ${\rm off} \rightarrow {\rm total}$ reflection governed by Airy function
- Is there an **improved** value of κ ?
 - Modes have finite resolution $d_{
 m br}
 ightarrow$ smaller details are washed out
 - $\kappa_{tp} = (\partial_x v)_{tp}$ irrelevant
 - $\kappa \sim \langle \partial_x v \rangle_{d_{\mathrm{br}}}$ averaged

Characteritics Mode mixing

Is the turning point location relevant ? (dispersive horizon ?)

 $x_{
m tp}(\omega)/d_{
m br}\sim (\omega/\kappa)^{1/3}$

- $\omega \ll \kappa$: HR regime, $x_{\rm tp}$ and $x_{\rm hor}$ are undistinguishable
- $\omega \gg \kappa :$ HR is turned ${\rm off} \rightarrow {\rm total}$ reflection governed by Airy function
- Is there an **improved** value of κ ?
 - Modes have finite resolution $d_{
 m br}
 ightarrow$ smaller details are washed out
 - $\kappa_{tp} = (\partial_x v)_{tp}$ irrelevant
 - $\kappa \sim \langle \partial_x v \rangle_{d_{\mathrm{br}}}$ averaged

Correct interpretation: Broadened horizon

(AC, R.Parentani, preprint arXiv:1402.2514)

Zero-mode Classical scattering Quantum and thermal noise

Outline

Analog gravity

2 Robustness of Black Hole radiation

- Characteritics
- Mode mixing

Ondulations in White Holes

- Zero-mode
- Classical scattering
- Quantum and thermal noise

Conclusion

Zero-mode

Classical scattering Quantum and thermal noise

Outline

1 Analog gravity

2 Robustness of Black Hole radiation

- Characteritics
- Mode mixing

Ondulations in White Holes

Zero-mode

- Classical scattering
- Quantum and thermal noise

4 Conclusion

Zero-mode Classical scattering Quantum and thermal nois

• Ultra-low frequencies: Zero-mode

$$k_{\omega \to 0} = \pm k_Z \neq 0$$

Zero-mode Classical scattering Quantum and thermal nois

• Ultra-low frequencies: Zero-mode

$$k_{\omega \to 0} = \pm k_Z \neq 0$$

• This modes can be produced at **0-energy cost**

Zero-mode Classical scattering Quantum and thermal nois

• Ultra-low frequencies: Zero-mode

$$k_{\omega \to 0} = \pm k_Z \neq 0$$

- This modes can be produced at 0-energy cost
- But high momentum

Zero-mode Classical scattering Quantum and thermal nois

• Ultra-low frequencies: Zero-mode

$$k_{\omega \to 0} = \pm k_Z \neq 0$$

- This modes can be produced at **0-energy cost**
- But high momentum
- Instability ?

Zero-mode Classical scattering Quantum and thermal noise

• Homogeneous flow \rightarrow momentum conservation
Zero-mode Classical scattering Quantum and thermal noise

- \bullet Homogeneous flow \rightarrow momentum conservation
- Horizon \rightarrow low frequencies ($\omega \rightarrow 0$) are highly amplified, i.e.,

$$n_{\omega} \sim \frac{T_H}{\omega} \gg 1$$
 (Planck law)

Zero-mode Classical scattering Quantum and thermal noise

- \bullet Homogeneous flow \rightarrow momentum conservation
- Horizon \rightarrow low frequencies ($\omega \rightarrow 0$) are highly amplified, i.e.,

$$n_{\omega} \sim \frac{T_H}{\omega} \gg 1$$
 (Planck law)

 $\bullet~$ Black hole $\rightarrow~$ redshift $\rightarrow~$ no problem

Zero-mode Classical scattering Quantum and thermal noise

- \bullet Homogeneous flow \rightarrow momentum conservation
- Horizon \rightarrow low frequencies ($\omega \rightarrow 0$) are highly amplified, i.e.,

$$n_{\omega} \sim \frac{T_H}{\omega} \gg 1$$
 (Planck law)

- $\bullet~$ Black hole $\rightarrow~$ redshift $\rightarrow~$ no problem
- \bullet White holes \rightarrow low momenta amplified and converted into high momenta

Zero-mode Classical scattering Quantum and thermal noise

- \bullet Homogeneous flow \rightarrow momentum conservation
- Horizon \rightarrow low frequencies ($\omega \rightarrow$ 0) are highly amplified, i.e.,

$$n_{\omega} \sim \frac{T_H}{\omega} \gg 1$$
 (Planck law)

- $\bullet~$ Black hole $\rightarrow~$ redshift $\rightarrow~$ no problem
- \bullet White holes \rightarrow low momenta amplified and converted into high momenta

Aparte

- White holes very relevant for analog experiment
- White holes (acoustic) stability has been **debated** (Leonhardt, Ohberg, 02 Macher, Parentani, 09)

Zero-mode Classical scattering Quantum and thermal noise

Outline

1 Analog gravity

2 Robustness of Black Hole radiation

- Characteritics
- Mode mixing

Ondulations in White Holes

- Zero-mode
- Classical scattering
- Quantum and thermal noise

4 Conclusion

• Scattering is known (WH is BH time-reversed)

- Scattering is known (WH is BH time-reversed)
- Investigate $\omega \rightarrow 0$ limit
 - AC, R. Parentani, P.o.F. 2014

Zero-mode Classical scattering Quantum and thermal noise

Gaussian wave packets, of mean frequency $\omega \rightarrow 0$

Zero-mode Classical scattering Quantum and thermal noise

Gaussian wave packets, of mean frequency $\omega \rightarrow 0$

• Incoming wave

$$\phi^{\mathrm{in}}(t,x) = \omega A_0 e^{i(\omega t - k_{\omega}^{\mathrm{in}} x + \delta)} e^{-\frac{\sigma_0^2 \omega^2}{2} (t - x/v_g^{\mathrm{in}})^2}$$

Zero-mode Classical scattering Quantum and thermal noise

Gaussian wave packets, of mean frequency $\omega \rightarrow 0$

• Incoming wave

$$\phi^{\mathrm{in}}(t,x) = \omega A_0 e^{i(\omega t - k_\omega^{\mathrm{in}} x + \delta)} e^{-rac{\sigma_0^2 \omega^2}{2} (t - x/v_g^{\mathrm{in}})^2}$$

• Incoming amplitude $\propto \omega$

Gaussian wave packets, of mean frequency $\omega \rightarrow 0$

Incoming wave

$$\phi^{\mathrm{in}}(t,x) = \omega A_0 e^{i(\omega t - k_{\omega}^{\mathrm{in}} x + \delta)} e^{-\frac{\sigma_0^2 \omega^2}{2} (t - x/v_g^{\mathrm{in}})^2}$$

- Incoming amplitude $\propto \omega$
- Very low frequency and wave number

Gaussian wave packets, of mean frequency $\omega \rightarrow 0$

Incoming wave

$$\phi^{\mathrm{in}}(t,x) = \omega A_0 e^{i(\omega t - k_\omega^{\mathrm{in}} x + \delta)} e^{-rac{\sigma_0^2 \omega^2}{2} (t - x/v_g^{\mathrm{in}})^2}$$

- Incoming amplitude $\propto \omega$
- Very low frequency and wave number
- Scattering \rightarrow converted into 2 out-going waves

Gaussian wave packets, of mean frequency $\omega \rightarrow 0$

Incoming wave

$$\phi^{\mathrm{in}}(t,x) = \omega A_0 e^{i(\omega t - k_{\omega}^{\mathrm{in}} x + \delta)} e^{-\frac{\sigma_0^2 \omega^2}{2} (t - x/v_g^{\mathrm{in}})^2}$$

- Incoming amplitude $\propto \omega$
- Very low frequency and wave number
- Scattering \rightarrow converted into 2 out-going waves
- Limit $\omega \to 0$

$$egin{array}{cc} k_{\omega}^{ ext{out}}
ightarrow & \pm k_Z \ |lpha_{\omega}|^2 \sim |eta_{\omega}|^2 \sim & rac{T_H}{\omega} \end{array} \} \Rightarrow ext{Merging}$$

Gaussian wave packets, of mean frequency $\omega \rightarrow 0$

Incoming wave

$$\phi^{\mathrm{in}}(t,x) = \omega A_0 e^{i(\omega t - k_{\omega}^{\mathrm{in}} x + \delta)} e^{-\frac{\sigma_0^2 \omega^2}{2} (t - x/v_g^{\mathrm{in}})^2}$$

- Incoming amplitude $\propto \omega$
- Very low frequency and wave number
- Scattering \rightarrow converted into 2 out-going waves
- Limit $\omega \rightarrow 0$

$$\begin{cases} k_{\omega}^{\text{out}} \to \pm k_Z \\ |\alpha_{\omega}|^2 \sim |\beta_{\omega}|^2 \sim \frac{T_H}{\omega} \end{cases} \Rightarrow \text{Merging}$$

Merging of 2 out-going waves

$$\alpha_{\omega} e^{-i(\omega t - k_{\omega}^{\text{out}} x)} + \beta_{\omega} e^{-i(\omega t + k_{-\omega}^{\text{out}} x)} \underset{\omega \to 0}{\sim} 2 |\alpha_{\omega}| \underbrace{\operatorname{Re}\left\{e^{i(k_{Z} x + \theta)}\right\}}_{\text{Undulation}} \underbrace{e^{-i\omega(t - x/v_{g}^{Z})}}_{\text{modulation}}$$

Zero-mode Classical scattering Quantum and thermal noise

• Outgoing wave packets (modulation neglected)

$$\phi^{\text{out}}(x) \sim A_0 \Phi_U(x) \times \cos(\delta) e^{-\frac{\sigma_0^2 \omega^2}{2} (t - x/v_g^Z)^2}.$$

Zero-mode Classical scattering Quantum and thermal noise

• Outgoing wave packets (modulation neglected)

$$\phi^{\text{out}}(x) \sim A_0 \Phi_U(x) \times \cos(\delta) e^{-\frac{\sigma_0^2 \omega^2}{2} (t-x/v_g^Z)^2}$$

$$\Phi_U(x) = \operatorname{Re}\left\{e^{i\theta}\phi_0^{\mathrm{in}}(x)\right\}$$

Zero-mode Classical scattering Quantum and thermal noise

• Outgoing wave packets (modulation neglected)

$$\phi^{\mathrm{out}}(x) \sim A_0 \Phi_U(x) \times \cos(\delta) e^{-\frac{\sigma_0^2 \omega^2}{2} (t-x/v_g^Z)^2}$$

• **Definite** and **real** profile

$$\Phi_U(x) = \operatorname{Re}\left\{e^{i\theta}\phi_0^{\mathrm{in}}(x)\right\}$$

• Extreme sensitivity to initial conditions

Zero-mode Classical scattering Quantum and thermal noise

• Outgoing wave packets (modulation neglected)

$$\phi^{\mathrm{out}}(x) \sim A_0 \Phi_U(x) \times \cos(\delta) e^{-rac{\sigma_0^2 \omega^2}{2}(t-x/v_g^Z)^2}$$

$$\Phi_U(x) = \operatorname{Re}\left\{e^{i\theta}\phi_0^{\mathrm{in}}(x)\right\}$$

- Extreme sensitivity to initial conditions
 - Amplitude ω -independent (while incoming $\propto \omega$)

Zero-mode Classical scattering Quantum and thermal noise

Outgoing wave packets (modulation neglected)

$$\phi^{\mathrm{out}}(x) \sim A_0 \Phi_U(x) \times \cos(\delta) e^{-rac{\sigma_0^2 \omega^2}{2}(t-x/v_g^Z)^2}$$

$$\Phi_U(x) = \operatorname{Re}\left\{e^{i\theta}\phi_0^{\mathrm{in}}(x)\right\}$$

- Extreme sensitivity to initial conditions
 - Amplitude $\omega\text{-independent}$ (while incoming $\propto\omega)$
 - Amplitude governed by $\cos(\delta) \rightarrow$ randomness ?

Zero-mode Classical scattering Quantum and thermal noise

• Outgoing wave packets (modulation neglected)

$$\phi^{\mathrm{out}}(x) \sim A_0 \Phi_U(x) \times \cos(\delta) e^{-rac{\sigma_0^2 \omega^2}{2} (t-x/v_g^Z)^2}$$

$$\Phi_U(x) = \operatorname{Re}\left\{e^{i\theta}\phi_0^{\mathrm{in}}(x)\right\}$$

- Extreme sensitivity to initial conditions
 - Amplitude ω -independent (while incoming $\propto \omega$)
 - Amplitude governed by $\cos(\delta) \rightarrow$ randomness ?
- Incoming noise, easily excite $\omega \rightarrow 0$ waves

Zero-mode Classical scattering Quantum and thermal noise

Outline

1 Analog gravity

2 Robustness of Black Hole radiation

- Characteritics
- Mode mixing

Ondulations in White Holes

- Zero-mode
- Classical scattering
- Quantum and thermal noise

4 Conclusion

Zero-mode Classical scattering Quantum and thermal noise

Quantum in-vacuum

Zero-mode Classical scattering Quantum and thermal noise

Quantum *in*-vacuum

• Equal-time 2-point function $G^{\mathrm{WH}}(t;x,x') = \langle \hat{\phi}(t,x) \hat{\phi}(t,x') \rangle$

Zero-mode Classical scattering Quantum and thermal noise

Quantum in-vacuum

- Equal-time 2-point function $G^{\mathrm{WH}}(t;x,x') = \langle \hat{\phi}(t,x) \hat{\phi}(t,x')
 angle$
- Contribution of 0-mode

$$G^{
m WH}_{\omega}(x,x') \mathop{\sim}\limits_{\omega
ightarrow 0} rac{4\kappa}{\pi \omega} \Phi_U(x) \Phi_U(x')$$

Zero-mode Classical scattering Quantum and thermal noise

Quantum *in*-vacuum

- Equal-time 2-point function $G^{\mathrm{WH}}(t;x,x') = \langle \hat{\phi}(t,x) \hat{\phi}(t,x')
 angle$
- Contribution of 0-mode

$$G^{\mathrm{WH}}_{\omega}(x,x') \underset{\omega o 0}{\sim} rac{4\kappa}{\pi \omega} \Phi_U(x) \Phi_U(x')$$

• After a time t after WH formation

$$\int_{1/t} \frac{\kappa}{\omega} d\omega \sim \kappa \ln(t),$$

growing in time behavior

Zero-mode Classical scattering Quantum and thermal noise

Quantum *in*-vacuum

- Equal-time 2-point function $G^{\mathrm{WH}}(t;x,x') = \langle \hat{\phi}(t,x) \hat{\phi}(t,x')
 angle$
- Contribution of 0-mode

$$G^{\mathrm{WH}}_{\omega}(x,x') \underset{\omega o 0}{\sim} rac{4\kappa}{\pi \omega} \Phi_U(x) \Phi_U(x')$$

• After a time t after WH formation

$$\int_{1/t} \frac{\kappa}{\omega} d\omega \sim \kappa \ln(t),$$

growing in time behavior

• Correlations appear like a coherent state

Zero-mode Classical scattering Quantum and thermal noise

Quantum in-vacuum

- Equal-time 2-point function $G^{\mathrm{WH}}(t;x,x') = \langle \hat{\phi}(t,x) \hat{\phi}(t,x')
 angle$
- Contribution of 0-mode

$$G^{\mathrm{WH}}_{\omega}(x,x') \underset{\omega o 0}{\sim} rac{4\kappa}{\pi \omega} \Phi_U(x) \Phi_U(x')$$

• After a time t after WH formation

$$\int_{1/t} \frac{\kappa}{\omega} d\omega \sim \kappa \ln(t),$$

growing in time behavior

- Correlations appear like a coherent state
- Undulation is a classical and real wave

Zero-mode Classical scattering Quantum and thermal noise

Quantum in-vacuum

- Equal-time 2-point function $G^{\mathrm{WH}}(t;x,x') = \langle \hat{\phi}(t,x) \hat{\phi}(t,x') \rangle$
- Contribution of 0-mode

$$G^{\mathrm{WH}}_{\omega}(x,x') \underset{\omega o 0}{\sim} rac{4\kappa}{\pi \omega} \Phi_U(x) \Phi_U(x')$$

• After a time t after WH formation

$$\int_{1/t} \frac{\kappa}{\omega} d\omega \sim \kappa \ln(t),$$

growing in time behavior

- Correlations appear like a coherent state
- Undulation is a classical and real wave
- Thermal state: same phenomenon, with different growing law ($\propto t$)

Zero-mode Classical scattering Quantum and thermal noise

Main properties:

• Known and **real** profile $\Phi_U(x)$

Zero-mode Classical scattering Quantum and thermal noise

- Known and **real** profile $\Phi_U(x)$
- Phase, *i.e.* position is fixed (nodes are fixed)

Zero-mode Classical scattering Quantum and thermal noise

- Known and **real** profile $\Phi_U(x)$
- Phase, *i.e.* position is fixed (nodes are fixed)
- Amplitude not fixed

Zero-mode Classical scattering Quantum and thermal noise

- Known and **real** profile $\Phi_U(x)$
- Phase, *i.e.* position is fixed (nodes are fixed)
- Amplitude not fixed
- Coherent state

Zero-mode Classical scattering Quantum and thermal noise

- Known and **real** profile $\Phi_U(x)$
- Phase, *i.e.* position is fixed (nodes are fixed)
- Amplitude not fixed
- Coherent state
- If one takes into account non linear effects (or dissipation) it **should saturate**
 - $A \rightarrow -A$ symmetry breaking ?

Zero-mode Classical scattering Quantum and thermal noise

- Known and **real** profile $\Phi_U(x)$
- Phase, *i.e.* position is fixed (nodes are fixed)
- Amplitude not fixed
- Coherent state
- If one takes into account non linear effects (or dissipation) it **should saturate**
 - $A \rightarrow -A$ symmetry breaking ?
- This undulation has been **Observed**
 - Experimentally in water (Weinfurtner et al. PRL 2011)
 - Numerically in BEC (Mayoral et al. NJP 2011)

Near horizon region \rightarrow **analytical control** of the profile (Airy-like)

- Nodes at definite locations
- Wavelength $\sim d_{
 m br}^{-1}$
- Could be confirm/infirm experimentally

Zero-mode Classical scattering Quantum and thermal noise

• Modification by transverse momentum k_{\perp}

$$\Omega^2 = k_\perp^2 + k^2 \pm k^4 / \Lambda^2$$
Zero-mode Classical scattering Quantum and thermal noise

• Modification by transverse momentum k_{\perp}

$$\Omega^2 = k_\perp^2 + k^2 \pm k^4 / \Lambda^2$$

• Bogoliubov coefficients regulated

Zero-mode Classical scattering Quantum and thermal noise

• Modification by transverse momentum k_{\perp}

$$\Omega^2 = k_\perp^2 + k^2 \pm k^4 / \Lambda^2$$

- Bogoliubov coefficients regulated
- Small k_{\perp} , β_{ω} still large but finite

$$|\beta_{\omega}|^2 \sim \frac{T_H}{\sqrt{\omega^2 + \omega_{\perp}^2}}$$

Zero-mode Classical scattering Quantum and thermal noise

• Modification by transverse momentum k_{\perp}

$$\Omega^2 = k_\perp^2 + k^2 \pm k^4 / \Lambda^2$$

- Bogoliubov coefficients regulated
- Small k_{\perp} , β_{ω} still large but finite

$$|\beta_{\omega}|^2 \sim \frac{T_H}{\sqrt{\omega^2 + \omega_{\perp}^2}}$$

• Change of behavior at $\omega = \omega_\perp \propto k_\perp$

Zero-mode Classical scattering Quantum and thermal noise

• Modification by transverse momentum k_{\perp}

$$\Omega^2 = k_\perp^2 + k^2 \pm k^4 / \Lambda^2$$

- Bogoliubov coefficients regulated
- Small k_{\perp} , β_{ω} still large but finite

$$|\beta_{\omega}|^2 \sim \frac{T_H}{\sqrt{\omega^2 + \omega_{\perp}^2}}$$

- Change of behavior at $\omega = \omega_\perp \propto k_\perp$
- Time dependent picture

•
$$t \lesssim \omega_{\perp}^{-1}$$
 growing

•
$$t\gtrsim \omega_{\perp}^{-1}$$
 saturates

Zero-mode Classical scattering Quantum and thermal noise

• Modification by transverse momentum k_{\perp}

$$\Omega^2 = k_\perp^2 + k^2 \pm k^4 / \Lambda^2$$

- Bogoliubov coefficients regulated
- Small k_{\perp} , β_{ω} still large but finite

$$|\beta_{\omega}|^2 \sim \frac{T_H}{\sqrt{\omega^2 + \omega_{\perp}^2}}$$

- Change of behavior at $\omega = \omega_\perp \propto k_\perp$
- Time dependent picture
 - $t \lesssim \omega_{\perp}^{-1}$ growing
 - $t \gtrsim \omega_{\perp}^{-1}$ saturates
- Saturation at the linear level

(A.C., A.Fabbri, R.Parentani, R.Balbinot, P.R.Anderson PRD 2012)

Outline

Analog gravity

2 Robustness of Black Hole radiation

- Characteritics
- Mode mixing

Ondulations in White Holes

- Zero-mode
- Classical scattering
- Quantum and thermal noise

4 Conclusion

Conclusion

Results

- Dispersion → **broadened horizon** paradigm
- In WH, Zero-mode spontaneously emitted

Conclusion

Results

- Dispersion → **broadened horizon** paradigm
- In WH, Zero-mode spontaneously emitted

Remarks and perspectives

•
$$d_{\rm br} \gg \Lambda^{-1} \rightarrow$$
 Sub-planckian observables ?

Conclusion

Results

- Dispersion → **broadened horizon** paradigm
- In WH, Zero-mode spontaneously emitted

Remarks and perspectives

• $d_{
m br} \gg \Lambda^{-1} \rightarrow$ Sub-planckian observables ?

Undulation

- Experimental confrontation ?
- Saturation mechanism ?
- "Dressed" background ?

Conclusion

Results

- Dispersion → **broadened horizon** paradigm
- In WH, Zero-mode spontaneously emitted

Remarks and perspectives

• $d_{
m br} \gg \Lambda^{-1} \rightarrow$ Sub-planckian observables ?

Undulation

- Experimental confrontation ?
- Saturation mechanism ?
- "Dressed" background ?

Acoustic BH evaporation

 \bullet Backreaction in BEC \rightarrow unitarity restoration

Thank you.