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       Searching for the power source

- what is the source that powers jets 
   in disks accreting onto black holes?

  * binding energy of the accreting gas
  * rotational energy of the BH

- Crab Nebula powered by the rotational
   energy of a Neutron Star through
   relativistic particles and EM fluxes.

   
- Is there a similar process for Black Holes? How general it is?  



 I. Magnetized plasma interacting with black holes:
      The standard Blandford-Znajek process 

 II. Generalizing the Blandford-Znajek process:
      misaligned, boosted and binary BHs     

 III. Magnetized plasma interacting with
       regular spacetimes

 IV. Summary



      I. Magnetized plasma interacting
                with a black hole:
      
           the standard Blandford-Znajek process



    Magnetized spinning neutron stars   

- Pulsar : highly magnetized,  rotating NS emitting a beam of 
electromagnetic radiation
- easy solution assuming electrovacuum exterior
- E•B≠ 0 outside the star,  so the electric force
 pulls out electrons from the NS surface and
 fills the magnetosphere with low density
 plasma (Goldreich & Julian 1969)

- the magnetosphere is magnetically dominated, so it is forced to  
 co-rotate with the star (up to the Light Cylinder)

           EM luminosity (Spitkovsky 2006)

              (Poynting flux)         
                   L~ B2 R6 Ω4 ( 1   +  sin2θ )
                               

                                     plasma      vacuum



      BH immersed in external EM field
- BH : stationary axisymmetric solution of the EE in vacuum, 
described by mass M and angular momentum a=J/M2

  “radius” = Apparent Horizon (AH)       r
H
 = M + (M2 - a2)1/2

 

 “angular velocity” = ZAMOS at the AH      Ω
H
 = a/(2 M r

H
)  

- Study the possible extraction of rotational energy from a 
spinning BH through the EM fields sourced by an accretion disk



Modelling the BH magnetosphere: 
electrovacuum
•Kerr BH immersed in magnetic fields (i.e., without the 
disk) such that far from the BH      B ≈ B0 ž  ,  E = 0

Maxwell equations  without neither charges nor currents
                                  in a curved background 

▼a  Fab  = -Ib = 0     Maxwell tensor  Fab = na Eb – nb Ea + εabc B
c

 ▼a  *Fab  = 0          current 4-vector    Ia = na q + Ja

  ▼a Ia = 0                           q  : charge,  Ja: 3-current
  



    I. Kerr+B = unstable to pair production !
- Assuming stationarity  (∂

t
 →  0) axisymmetry (∂

φ
 → 0) and J=q=0, 

there is a solution for a BH immersed in a external magnetic field 
aligned with the spin in terms of the Killing vectors (Wald 1974)

                                                      
-                                                           F = ½ B0 (dΨ + 2J/M dη)
                                                    
                                                     - Total Poynting flux = 0
                                                        (the EM fields can not extract
                                                         energy from the BH)

                                                     - there is an induced E field with 
                                                                     E ∙ B ≠ 0

                                                       unstable to pair production!!           
                        magnetized tenuous plasma surrounding the BHs 



       Modelling the magnetosphere: 
       ideal MHD

• Coupling between EM fields and the plasma (perfect fluid)

•  If p>>B2  the EM will follow the fluid motion
•  If p<<B2 the fluid will move according to the EM dynamics     
              

       Tab = [ρ(1 + ε) + p] u
a
u

b
 + p g

ab
 +  Fac Fc

b – (FcdFcd)gab/4

        ▼aTab=0  for the fluid  + Maxwell for the EM fields
           

                ∂
t
 B + ▼ x E = 0          E = -v x B

           Magnetic fields anchored in the plasma



      Modelling the magnetosphere:
      the force-free approximation

• For very tenuous highly-magnetized plasma 

  
• the plasma only supplies charges and determines the current of 
the EM fields, but it does not appear directly in the equations
                              

   ▼aTab=0         ▼aTab
(fluid) = -▼aTab(em) = -FabJa

 if   ρ,P << B2   then    ▼aTab(fluid) <<  FabJa ≈ 0

        E∙J = 0    ,    q E + J x B = 0 →        E∙B=0
                                                            J

┴
 = q ExB / B2



    The Blandford-Znajek mechanism

•  Under these conditions, we can compute the EM energy flux 
(F

E
~-T r

t
~ExB) around a BH

Ω
F
 = F

tr
/F

rФ
 constant along B   

• At the AH, Δ=0 and we can use that the rotation frequency of 
the BH is Ω

H
 = a/(2 M r

H
)

• if 0<Ω
F
<Ω

H 
(for Br≠0) there will always be an outward energy 

flux at the AH!!        



 EM energy extraction from a single BH
• Wald's solution is force-free for a Schwarzschild BH.
• A solution was found analytically by expanding the EM fields 
around a<<1, obtaining Ω

F
 ~ ½ Ω

H 
(Blandford & Znajek,1977) :  

magnetic fields in force-free environments can extract rotational 
energy of the BH!!
                                                           dE/dt ~ B2 a2    a=J/M2<<1

- membrane paradigm (Damour 1978,Znajek 1978,Thorne, Price & 

MacDonald 1986) endows a charge density to the horizon



 III. Generalizing the Blandford-Znajek process:

               misaligned, boosted and binary BHs



        Detectors of GW
● Detect the GWs produced during the

coalescence of binary compact objects
by measuring changes in the relative
distances between perpendicular arms

                     h ~ ∆L/L 

VIRGO
GEO600

LIGO

KAGRA

 LIGO-india

Sensitive band M~1-100 M
Θ
  

Adva
nce

d LI
GO



        Detectors of GW in the space (I)

 - NGO/eLISA : satellites following the earth around the Sun 
and measuring distance by interferometry between two  arms. 
Continued by the ESA and expected to be launch at 20XX?.

                                      (Amaro-Seoane et al, 2012)

Sensitive band M~104-107 M
Θ
  

 



      Detectors of GW in the space (II)
● Pulsar Timing Array : GW affects the propagation of radio 

signal from pulsars to the Earth. IPTA collects data from an 
array of  millisecond pulsars in 10-9-10-6Hz. 
-Distinguish individual source and possible EM 

 counterparts for z ≤1.5 (Tanaka,Menou,Haiman 2011)

-Improve sensitivity with future FAST and SKA

    Sensitive to 108-1010 M
Θ
          



      Multi-messenger
          astronomy

● Correlate  information from 
different channels; electromagnetic
waves,  gravitational waves and
(possibly) neutrinos

         EM waves

-Tell us about particles
   -Often modified in transit

-Hard to determine distance
-Easy to determine sky location
-Easy to measure redshift

 

      Gravitational waves

-Tell us about large masses
-Travel directly to us
-Easy to determine distance
-Hard to determine sky location
-Impossible to measure redshift

 



     Electromagnetic counterparts
● GWs would allow to study GR in the strong field regime 

(alternative theories of gravity, population studies, test models 
of galaxy mergers, formation channels, determine the EoS at 
high densities ↔ nuclear interactions...)

● EM counterpart would allow to extract more information from 
the system (progenitor, environment) and the physical processes 
involved (plasma physics, accretion,...)

•    Standard sirens (Schutz 1986, Holz&Hughes 2005)

     - analogous to the standard candles SNe
 GW luminosity distance~1-10% (limited by gravitational lensing)
 EM counterpart to localize the source in the sky and redshift
     study the distribution of dark energy 



  Systems emitting in multiple bands
- observations indicate the presence of supermassive BHs in the 
center of galaxies, surrounded by gas and an accretion disk
- in the Active Galactic Nuclei (AGN), the BHs are surrounded 
by a disc of matter likely magnetized. For a M=108M

Θ

* bounded by the jets the : B0 < 104-106 G  (near the BH)
* Eddington magnetic field : B

0
 ~ 105 G 



        Motivation : merger of galaxies
- the galaxies has undergone some mergers 
- during the merger, the binary BH hollows
 the surrounding gas while their orbit shrinks,
 forming a circumbinary disk 
 (Milosavljevic & Phinney, Astrophys. J. 622)

- eventually, the dynamics of the BH binary is
 dominated by GW, opening the gap



       Motivation : merger of galaxies

- General Relativity for the 
evolution of the spacetime 
- Maxwell equations for the 
evolution of the EM fields
- Hydrodynamics for the 
evolution of the disk
- Radiation processes due to 
the accretion, disk dynamic..

- the luminosity of the disk is modified by the binary BH dynamics
- the merger can triger/enhanced the Blandford-Znajeck mechanism
          study the correlations between GW & EM radiation  !!



       Zooming in on the black holes

- General Relativity for the 
evolution of the spacetime
- Force-free to describe the 
magnetically dominated 
plasma
Einstein-Maxwell equations 
+ Force-free condition
          Fab J

b
 =  0

- sub-domain with the BHs,
  excluding the disk

Near the BHs the density in the cavity is so low that even 
moderate magnetic  fields may dominate the fluid dynamics

         ▼
a
Tab

(fluid) << ▼
a
Tab

(EM)        →      FabJ
a
 ≈ 0

→ force-free environment influenced by BH dynamics
  (CP et al 2010, Neilsen & CP et al 2011,  Moesta & CP et al 2012)
 



         The numerical algorithm
• Many scales in the problem → parallelization and AMR via “had”

• Method of Lines for the evolution

         *  3rd order RK for the time integration
       *  4th order space discretization

Formulation GH BSSN

Infrastructure Had Had

Singularity Excision Puncture approach

Gauge Harmonic 1+log lapse
Gamma freezing



Single BHs  in force-free environments : 
        misaligned spinning case

• Consider first a single BH and vary the spin orientation wrt the 
asymptotic value of the magnetic field
• There is rotation of the EM field lines and net extraction
 of BH rotational energy → Blandford-Znajek mechanism

    
•a = 0.99, angle =0                            a = 0.99, angle = 90 o                    

                                                 M = 108M
Θ
  , B = 104 G



• Radiated power as a function of:                                             
 -the spin   (Mckinney 2010)                    -the inclination angle (new!)

               L~ B2Ω
H

2                                      L ~ B2 Ω
H

2 (1 + cos2θ)

• In the case of pulsars, L ~  B2 R6 Ω4 ( 1 + sin2θ ) 

Single BHs  in force-free environments : 
        misaligned spinning case



• Consider a BH with a relative motion wrt the magnetic field.
• The resulting radiated power is a function of:
                                     

-the boost velocity    L~ B2v2 (new?)          
                                                            propulsion of satellites in
                                                            the ionosphere       
                                                            (Drell,Foley,Rudderman 1965) 
                                                                          L ~B2(v/v

alf
)2 

Single BHs  in force-free environments : 
        boosted spinning case



    Single BH in force-free environments

      L ~ B2 a2       a ≤ 1

      (McKinney 2010)

    L~ (1 + cos2θ) B2 a2 

      (CP et al. 2010)

      L
boost

 ~ B2 v2 

      L
total

 ~ L
spin

 + L
boost

   (Neilsen,CP et al.2011)



       Binary black holes : head on

• Consider a head-on binary BH. Radiation is collimated 



• Consider a binary during coalescence

 Binary BHs in force-free environment



 Binary BHs in force-free environment

  The EM power ~ (B v)2 ~ 1/r  , while that the GW power goes 
  like ~ 1/r5. A significant amount of EM energy is radiated 
  days/weeks before the merger, while most of the GW is emitted
  during the last day (CP et al, 2010)

    - dual jet structure during inspiral,
      join into a single jet after merge 
    - diffuse quadrupolar luminosity



         Note 1: Membrane paradigm

 - simple model based on the membrane paradigm

Ω

 * there is a induced charge separation that can sustain a current 
and dissipate energy in the force-free medium



     Note 2 : comparison with full MHD

• Inspiral during the decoupling phase with full relativistic 
spacetime and MHD with radiation for the thick disk (H/R~0.3) 
via ''consistent'' cooling  (Farris et al, 2012, Gold et al 2013)

    
    - accretion through two spiral arms
    - dual jet structure!!



     
 IV. Magnetized plasma interacting with
       regular spacetimes
  



   Power sourcing the BZ mechanism

• Where is the energy coming from?
     - AH casually disconnected..

 -Apparent Horizon (AH) : light surfaces 
  are trapped
                            r

H
 = M + (M2 - a2)1/2

 

- Ergosphere: region where all the 
  physical observers are forced to rotate 
  (frame-dragging) 
 

                        r
ergo

= M + (M2 -a2 cos2θ)1/2

particles can have negative energy!!



      Regular “spinning” spacetimes

• Where is the energy coming from?
   - study regular spacetimes with and without ergosphere,
     generated by solving rotating NS with constant density.

     a) highly compact solutions  M/R < 0.44
     b) may present ergospheres

    - we will assume that a “dark” fluid is deforming the space-
time, and will only consider the evolution of the force-free fields in 
this curved background (i.e., without any direct coupling between 
the EM and the “dark ”fluid of the star)



         BZ in regular spacetimes

• Generalize the BZ power formula to any stationary and 
axisymmetric spacetimes, described by the Lewis-Papapetrou metric

The EM energy flux density for this metric is



                BZ in regular spacetimes



            BZ in regular spacetimes



                   Summary 

•  A force-free environment can extract both the rotational and the 
translational kinetic energy of a BH
•  In the case of a binary, it will produce a dual jet with some 
features that could be detectable
•  The key ingredient seems to be the ergosphere





   Supermassive black hole  mergers
• observations indicate the presence of supermassive BHs in the 

center of galaxies (Kormendy & Richstone 95),
surrounded by gas and  an accretion disk 

• in the Active Galactic Nuclei (AGN), the
    BHs are surrounded by a disc of matter
    likely magnetized

• galaxies has undergone some merger during their lifetimes

• Galaxy mergers involves a very large range of scales, going 
from galaxy merger ~ 102 (M/106M

Θ
) kpc to binary BH 

dynamics dominated by GW emission  ~ 10-3 (M/106M
Θ
) pc 



    The gas surrounding the binary BHs
● The stellar and gaseous environment extracts the angular 

momentum from the binary until gravitational radiation 
becomes important and induces the coalescence (Begelman et al 

80, Roos 81, Merrit & Milosavljevic 95) 

● Depending on the balance between heating and cooling 
mechanism in the accretion disk (Bogdanovic et al 2009)

      -   radiative inefficient accretion flows (RIAF) → hot gas cloud
-   efficient cooling → circumbinary disk

Study numerically the EM
(from the environment)
and GWs (from the binary)
emitted during coalescence

    in these two scenarios!!



              The circumbinary disk
● If the gas is not so tenuous the ions and electrons are thermally 

coupled → can cool efficiently through the electrons

● Gas settles into a geometrically
    thin circumbinary disk,
    rotationally supported radially,
    and  pressure supported vertically
    in the central part

•   The binary torques can evacuate most of the gas near the binary, 
producing a hollowed region with a surface density much smaller 
than in the disk (Armitage and Natarajan 2002; Milosavljevic and Phinney 

2005; MacFadyen and Milosavljevic 2008; Cuadra et al. 2009)



         Circumbinary disk dynamics
   For r<<a the gas accretes into the BH, creating a hollowed 
region. The disk is truncated at the inner edge, where the binary 
torques ~ viscous stresses (Milosavljevic and Phinney 2005 and references 

therein)

- early inspiral t
GW

>> t
visc

 → disk's edge follows the binary

●                                                with r
edge

~ few  a   (Newtonian)

- decoupling time t
GW

 ~ t
visc    

(Relativistic fluid)

- late inspiral t
GW

<< t
visc

 → disk radius frozen (Fully relativistic)
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