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@ INTRODUCTION



CONTEXT: GW OBSERVATORY AT MHZ FREQUENCY

Gravitational-wave astronomy is emerging )

@ Advanced ground-based GW detectors soon ready to operate
Frequency range: 10-10*Hz

@ Pulsar-timing arrays searching for the radiation of supermassive
black-hole binaries
Frequency range: 107°-10%Hz

@ Space-based observatory planed for 2034
Frequency range: 1073-10"1Hz (?)

“The L3 mission will study the gravitational Universe, searching
for ripples in the very fabric of space—time created by celestial
objects with very strong gravity, such as pairs of merging black
holes.”

ESA announcement (November 28th 2013)



ELISA: A POSSIBLE PROPOSAL

credit: AEI/MM /exozet




EXTREME MASS RATIO INSPIRALS
Small compact object orbiting about a massive BH

< astrophysically relevant
can appear in galactic nuclei

Potential source for eLISA

3 main formation scenarios:
@ Capture of compact stars

e mass segregation
e resonant relaxation
o direct plunge or capture

@ Tidal disruption of binaries

credit: NASA @ Creation of massive stars in the
accretion discs



DyNaMICcS OF EMRIS

o Eccentricity and orbit misalignment depend on the formation scenario

e e very high in the capture scenario
e e can be small for binary disruptions
e in the first two scenario, the orbits are misaligned

e Significant strong field effects at periastron (for eccentric systems)

e Significant bursts of GW emission at periastron
< important for the capture

o Complicated orbits with various timescales

114 days before merger, 36% of light speed

Probe of the strong field region

= o the nature of the central object

e GR in strong field regime




EMRIs AND ELISA

eLISA type mission:

expected rate 1yr_1
mass range my | ~5Mx—-20Mg

m2 ~ 105M®—106M®
horizon =07

m | €e=0.1%

— 0,

measured quantity || 2|~ 0.1%

Sy | 65, =103

e | be=10"3




SPECIFICITY OF EMRI WAVEFORM MODELING

Accurate modeling crucial for
o detection

@ parameter estimation

Failure of approaches normally used for black-hole binaries

o Numerical relativity
< computational time issues

o Post-Newtonian approximation
solution searched as a perturbative series in (Viigh vp./C)>

1PN = 1/c? \

< converge badly for g = my/my — 0




SELF-FORCE APPROACH

Covariant perturbative approach with ¢ = ¢ ]

SF =g PSF= ¢?

Method to obtain the SF equations of motion:

@ Expand the perturbed metric to order ¢

g,(f,/) N guv T € 6g/s,112J

o Describe the point-like objects with some TH = e T/[y*, gas]
@ Solve the perturbed Einstein eqs with some “regular” Green function

highly non-trivial

i N = t truct with
Grega/ﬁ/(x7x ) - GR a’,@’(x X) smga’ﬁ’(x X) J‘/lelcrci,;srmc wi




SELF-FORCE EQUATIONS OF MOTION

o equations of motion = geodesic equations in g, + ¢ g

ut

/ test particle orbit

o (Delicate) numerical integration required in general
o Use of Y‘™-mode-sum regularization in practice

+oo
f'eSZZ[fg—AiL—B—B—CL_l} — D withL=0+1/2
/=0
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CASE OF EXACT CIRCULAR MOTION

small mass particle in circular orbit about a black hole I

Consequences:

o Helical killing vector: k¥ — 0" + Q0! in some class of gauges
@ Presence of incoming waves = conservative system

T+

utoc kM | Kk

light ring




DETWEILER REDSHIFT OBSERVABLE
z = —ktu, l

e Gauge invariance property (for helically-symmetric gauge vectors)

Properties:

z is a physical observable J

@ Simple interpretation for far-away observers along the axis

o W =z Ykt and z71 = 10

= u° can be used for comparison with PN results



COMPARISON WITH PN CALCULATIONS

General motivations:

@ PN and SF perturbative formalisms both fairly delicate

@ Both methods involve non-trivial regularizations
e For PN:

o effective representation of bodies by point-particle = dim-reg
o technical Finite Part regularization to treat the field multipole expansion

e For SF:

o Green function regularization
o mode-sum regularization for dg{3) (or other equivalent reg)

@ Insight provided by each formalism on the other about:

o physical content
e convergence properties

Recent SF computations of u® PN expansion to very high ordersJ




HicH PN ORDERS FROM SF CALCULATIONS I

vhvY-1/2
u = [ — (g + 08 2 ] J

Work of Shah, Friedman & Whiting: 10.5PN order

o Start from Teukolsky radial equation for Vg = Cual,ﬁl“mo‘l”mﬁ:
‘Cslfe)uk(z Remw)[(sg] = Té:‘))qws[ég]

> solutions built from the hom sol of Mano, Suzuki & Tagasuki J

appearance of series of hypergeometric functions

@ Accurate numerical computation with 350 digits!!

Extract the metric angular modes in some “radiation gauge”
e Evaluate the field at particle position by mode-sum regularization

Calculation of u?; reconstruction of some analytic coefficients



HicH PN ORDERS FROM SF CALCULATIONS II

Work of Bini and Damour: 8.5PN order

e Start from the Regge-Wheeler radial equations for the master function:

Egé R(odd) — S(odd)(r)

Cmw Lmw

— solutions at particule position built from Mano, Suzuki & TagasukiJ

e Computation for ¢ < 4 using the hypergeometric series (for “up” sol)
@ PN resolution for arbitrary ¢

@ Results “patched” together motivated by phys/math arguments

= fully analytic expressions



HALF-INTEGRAL PN ORDER TERMS IN 1°

GmgQ)2/3

c3

PN parameter: y = <

uge = —y + Z a y”“+25 y”+1|ny+27 y™n?y

n=-—2 n=4 n=7
13696 13/, . 81077 15, 82561159 5,
55 " T 3e75 " 467775

+ higher half-integral orders + y O(y'!)

Notice the presence of terms oc 1/c29+!

@ Why do they appear for this conservative dynamics?

o Can we compute them using standard PN techniques?
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IS THERE A PARADOX?

m1m2 va I Vva
2\ P
N Z 1/’4 Gm vi, (n12 . v12>q
|nst r]_2C2 C2 C
Jk.p,q

n=2k+2p+qg+2

For circular orbits ni5 - vio =0

What if they were non-"instantaneous” terms? ma(t) - via(t') #0

WELL-KNOWN HEREDITARY EFFECT IN CLASSIC FIELD THEORY

the tail effect




HUYGENS PRINCIPLE

“Il'y a encore a considérer dans I'émanation de ces ondes, que
chaque particule de la matiére, dans laquelle une onde s’étend, ne
doit pas communiquer son mouvement seulement a la particule
prochaine, qui est dans la ligne droite tirée du point lumineux,
mais qu’elle en donne aussi nécessairement a toutes les autres qui
la touchent et qui s’opposent 4 son mouvement.”

C. Huygens, Traité de la lumiére
credit: Caspar Netscher (ca 1639-1684)




VALIDITY OF HUYGENS PRINCIPLE

+oo )
V solution of: OV =0 | V(X, t) = / dI/V(X, V)e—27rlut

—00




HADAMARD REFORMULATION

Past dependence of a wave-type field ®(x*) on C N X,

xt = yH(T)

credit: Ecole polytech-
nique collections



TAIL EFFECTS

Past dependence of a wave-type field ®(x*) inside C

xt = yH(T)

credit: Ecole polytech-
nique collections

zone of X; where the value of ® determines ®(x* = y(71))



GREEN FUNCTION IN (d + 1) DIMENSIONS I

Sourced wave equation: od=p

Retarded solution: d(x) = /d4x'GR(x,x')p(x')

GENERAL FORMULA FOR THE RETARDED GREEN FUNCTION

Gu(x,x') = G(x — X)

=2

G(x) = —0(t) /0 +Oodk<é> " sin(ckt) Ju_a (kr)




GREEN FUNCTION IN (d + 1) DIMENSIONS II

o Reduction for d odd:




GREEN FUNCTION IN CURVED SPACETIME

. 1
Focus on the equation satisfied by v, = dgu, — E(gaﬂéga/g)gw J

: y 167G
Sourced wave equation: 0Oy + 2Ra”6 B = cﬂ T
Retarded solution: Y (x) = d*x'\/—g'GL” (X X ) TP (x')

HADAMARD FORM FOR THE RETARDED GREEN FUNCTION

GE, (%, X) = 0,6, D) UM, 50(0) + VP, 50(—0)]




PERTURBATIVE INTERPRETATION

tail of tail: depends on
the source past

GW scattered on the
curvature of space-time

< corresponds to a M x M,
interaction in the waveform

tail wave scattered on the
curvature of space-time

< associated with the fact that null geodesic # 'straight lines’

EFT point of view:

oYY
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POST-NEWTONIAN APPROXIMATION

SMALL POST-NEWTONIAN PARAMETER:
v/icek1

highest characteristic velocity

For a PN field Q: 0:Q/c ~£0;Q

POST-NEWTONIAN EXPANSION:

expansion in the small parameter e = v/c

For ordinary matter: 790 ~ ¢2 TO ~e TV~



[SOLATED PN SOURCES

Physical assumptions:
o Ordinary matter source TH” with compact support
@ No-incoming wave condition

@ Post-Newtonian approximation v/c < 1 valid within the matter
: Dmatt << A




MULTIPOLAR POST-MINKOWSKIAN APPROXIMATION

SMALL POST-MINKOWSKIAN PARAMETER:

Gm/(Lc?) < 1

m typical mass L typical “size”

.. but for a propagating field Q: 0:Q/c ~ 9;Q

MULTIPOLAR EXPANSION:

expansion in the small parameter (D.e/A)
=
expansion in 1/r at t — r/c =cst

For & satisfying O® = p

+oo —r/c
o= 3 o (1 2009)
£=0




EINSTEIN EQUATIONS IN HARMONIC GAUGE

PM perturbation: A = \/—g g’ — nt¥

HARMONIC GAUGE CONDITION

V'Vuxt=0 & 0, =0

RELAXED EINSTEIN EQUATIONS

Oh h

167G 167G y y
=—a T =4 lg| TH 4+ N (0Oh, Oh)

o A" contain a 2" order derivative: —h?0,,5h*
< produces the non-linear tail effect

o the gauge condition implies the equations of motion



STANDARD PN SCHEME

SMOOTH TH ASSUMED WITH

T ~ 2 TV ~ce Tincl

Iterative computation of hf

@ Assume h[’f:,] known for m" < m (not needed at leading order)

@ Solution for hffn”] taken to be

Bl = 16CL4G { =hy [Tw(haﬁ)} }[m,q

o Go to the next order

ForMAL PN SERIES:




MAIN ISSUE OF PN EXPANSION

What is the iterative PN expansion Oy 7 of

d3x 1
-1
Ox T:/_M Tt 1)

o ~1)kok [ d3 1 Tw(X,t
DRI[T]:Z(k) Cf,“(/ |X_Xl|k1 ()( )

! —4n c”
k>0,n

does not make sense!!

information on the field behavior far from the system required...



MULTIPOLAR PM EXPANSION IN THE VACUUM

KEY IDEA TO STUDY THE FIELD OUTSIDE THE NEAR ZONE

h*" in the exterior zone satisfies the vacuum Einstein equations
< contained in the most general PM asymptotic solution

Principle of the algorithm:

+o0
@ Decompose h*¥ as Z G"hi,y
n=1

e Find iteratively the most general solution of

TR = N (D, Oh<n)

@ Absorb homogeneous solutions by moment redefinitions



FINITE PART (FP) REGULARIZATION

PM solutions expressed in terms of FP integrals J

FP/d3x’F(x’, t) for a smooth function F on R*3:

o Computation of /[F](B) = /d3x’(|x'|/r0)BF(x’)

o Expansion of /[F](B) in a Laurent series of the form

“+oo

> K[F1B¥

k=ko

° FP/d3x’F(x’7 t) = /O[F]J <+ depends on ry




LINEARIZED EXTERIOR FIELD I

Linearized Einstein equations in vacuum:
p pr
Ohyy =0 Ovhyy =0

with the no-incoming wave condition

1
. ll/l’ _ . - u]j —
Jm Wm0 (o o) a) <o
t+r/c—cst t+r/c—cst

distance’to the origin |x|

Form of the most general solutions in Minkowskian-like coordinates:

I(t —
@ in spherical symmetry w
B

/JL(t — F/C)
@ in general 9] (7)
g Z I P
>0
(possible contraction to €,pc for current moments)



LINEARIZED EXTERIOR FIELD II

MOST GENERAL EXTERIOR LINEAR SOLUTION
hizy = b (1.(t"), Ju(t')) + linear gauge transformation term in ¢fy,

can

with Dqﬁﬁ) =0

= h*” entirely parameterized by 6 moments

@ /;= source mass-type moment of order ¢
Jy= source current-type moment of order £

e 4 gauge moments < high-order PN corrections to {/, J; }

Unicity of the multipole parameterization iff the moments are STF

€& II_]_I'[I Iii:()




POST-MINKOWSKIAN ITERATION

@ Search of a particular solution of Oy = Nowray(Bi<nys Pi<my)
Ox ALY, ill-defined... but

O(FPO;'F) = F |

—1pApv
solution under assumption of past stationarity : p(, ;) = FPO. Al

e Determination of the homogeneous solution ¢f,7,, of OA* = ...

a h{f:—l) = zlp,.+1 +8an+1 =0 and an+1 =0 = qéﬁ:—l)

pv pv pv
h(n+1) Plnt1) T Q(ni1) _
(+ homogeneous solution absorbed in a moment redefinition)




PRINCIPLE OF THE MATCHING PROCEDURE

o In the exterior zone D,,.: h* = M(h*") = mult expansion of hA*”
@ In the near zone D,.,: h*" given by the searched PN expression e
o In some buffer zone D,.., N D...

@ stationarity in the remote past

B = M(b) |




EXPANSION OF RETARDED QUANTITIES

Oz '[r] = 07 '[7] + 7]

S R (=1) 3k /d3x' k1 Tw(X 1)
with Ox'[7] = Z FP _47T’X x|

k>0,n k! c”
X (~1) 4 T —r/c)— T r/c
e =3 Y aL{R[ = /e RafAEE ) )H
£=0 '

e H|[r] is a homogeneous solution of the wave equation
< the source “feels” some external-like regular wave

H[7] actually contains the tail efFectJ

e R, depends on M(h)
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STRUCTURE OF TAIL TERMS

Interactions involving ko, ot = 2 non-static moments ignored J

M x ... x M x |p TAIL INTERACTIONS IN A"

GkMkfl R PN\ 42i [t
LA S i oy () / du k8¢, u) 1) (u)
—0o0

1, \6 !

nb = nt __nit # of time der

k,p,L,i

©oa= #of 0y =k+p+{+2i+1
e powerof 1/c: n=3k+p+{+2i+s—2

@ angular momentum selection rules:

o |0 — p| < s [with s(h%) =0, s(h%) =1, s(h¥) = 2]
e s and ¢ — p have same parity

= n=3k+2p+2/—2withjeN



WHAT ARE THE FIRST HALF-INTEGRAL PN ORDERS?

HALF-INTEGRAL PN ORDERS BELOW 7.5PN
n=114+2(p—2)+2j

Only k = 3 contributes: A x M x moment = tail of taiIJ

e 5.5PN, 6.5PN, 7.5PN, ... for the mass quadrupole
@ 6.5PN, 7.5PN, ... for the mass octupole

e 7.5PN, ... for the mass hexadecapole
Orders for current-type interaction: involve €jjzJa1 1
< deduced froma —a—1,p—>p+1

e 6.5PN, 7.5PN, ... for the current quadrupole
e 7.5PN, ... for the current octupole



CONSTRUCTION OF THE CUBIC FIELD

Compute the relevant part of #[7] through that of M(h¥)

o Start from the MPM quadratic field Mxmoment

o Construct the cubic source M x Mxmoment
finite

N(":)XMXML = Z Se(r,t —r/c)nt
4

— contains
o “instantaneous’ terms: S(r,t —r/c) = rB=%F(t —r/c)

o hereditary terms (related to tails):

S(r,t—r/c) = rB* /%O dx Qm(x) F(t—rx/c)J

1

o Apply Ox! on each source piece S(r,t — r/c)it



EXTRACTION OF THE HEREDITARY TAIL PART

e Variant of the previous formula for oz ![...] for r — 0

h:éL(G(t—r/c)—G(t—i—r/c))jL 11544

r |:]inst

. . o ocal-in-time operator
contains all hereditary contributions P

o Analysis of G(u) = Cy¢m x FPp—q (some integral with a kernel 78)

G3 M2

Cn

+o0o
= Gt (U) x Res Ck,gﬂm/ drint Mia)(u —T)
0

@ Ansatz: the conservative part is given by

32 +o0 M(a) _ M(a)
() o &M Rescwm/ i m( N —1)+ M (u+¢))
0

€& 2




PN ITERATION

By matching R0 = p00 4 p00
U
= _4_ +...+ hLO il T o
Likewise for A%, hY
= Insertion into A, and Ag can generate coupling of U, ..., and h*¥

e Gauge transformation to minimize the couplings: terms 0/, ij — 00

@ EE must be iterated with coupling included

e 2 iterations needed for [j;
o 1 iteration needed for /j and J;

e Equations to be solved of the form
AV, = &E2Pg

< systematic use of superpotentials: Aoy = dok



FROM THE METRIC TO u°

STRUCTURE OF THE ﬂPN TYPE GRAV FIELD

~ Y GLMt)R"0e

e Superpotentials obtained by guess work — to be regularized at x = y;
o lij, I, ... replaced by their explicit PN values

o Integrals computed by using
Xio(t £ 7) = cos(Q7) xi,(t) £ sin(Q7) vi,(t)/Q,
V{Q(t +7) = FQsin(Q7) x{2(t) + cos(Q27) V{Q(t)

and

/+Ood' = T (i +7)
A TInTe" = ) n YE

Note that for A = mQ the term oc 7 is invariant for t — —¢



@ ConcLusioN



CONCLUSION

o We find that there is no radial velocity

e We confirmed the origin of the half-integral order conservative terms

e We found full agreement with the SF results

o Generalization beyond linear order in my/my could be interesting
Blanchet, F. & Whiting Phys. Rev. D 89, 064026 (2014)

Blanchet, F. & Whiting Phys. Rev. D 90, 044017 (2014)

and references there in
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