ABOUT THE CURIOUS APPEARANCE OF HALF-INTEGRAL POST-NEWTONIAN TERMS IN THE CONSERVATIVE DYNAMICS OF BLACK-HOLE BINARIES

Guillaume Faye ${ }^{\text {a }}$

a Institut d'Astrophysique de Paris (IAP), UMR 7095 CNRS Université Pierre \& Marie Curie

Luc Blanchet (IAP) \& Bernard Whiting (University of Florida)
November 17, 2014

(1) Introduction
(2) Detweiler redshift \& comparison PN vs SF
(3) Where do the $\frac{n}{2}$ PN conservative terms come from?
(4) Post-Newtonian formalism
(5) PN computation of half-integral PN contributions
© Conclusion

(1) Introduction

(2) DETWEILER REDSHIFT \& COMPARISON PN vS SF
(3) Where do The $\frac{n}{2}$ PN CONSERVATIVE TERMS COME FROM?
(4) Post-NEWTONIAN FORMALISM
(5) PN COMPUTATION OF HALF-INTEGRAL PN CONTRIBUTIONS

6 Conclusion

Context: GW observatory at mHz frequency

Gravitational-wave astronomy is emerging

- Advanced ground-based GW detectors soon ready to operate Frequency range: $10-10^{4} \mathrm{~Hz}$
- Pulsar-timing arrays searching for the radiation of supermassive black-hole binaries
Frequency range: $10^{-9}-10^{-6} \mathrm{~Hz}$
- Space-based observatory planed for 2034 Frequency range: $10^{-3}-10^{-1} \mathrm{~Hz}$ (?)
"The L3 mission will study the gravitational Universe, searching for ripples in the very fabric of space-time created by celestial objects with very strong gravity, such as pairs of merging black holes."

ELISA: A POSSIBLE PROPOSAL

credit: AEI/MM/exozet

Extreme Mass Ratio Inspirals

EMRI

Small compact object orbiting about a massive BH
\hookrightarrow astrophysically relevant can appear in galactic nuclei

Potential source for eLISA
3 main formation scenarios:
(1) Capture of compact stars

- mass segregation
- resonant relaxation
- direct plunge or capture
(2) Tidal disruption of binaries
(3) Creation of massive stars in the accretion discs

DYNAMICS OF EMRIS

- Eccentricity and orbit misalignment depend on the formation scenario
- e very high in the capture scenario
- e can be small for binary disruptions
- in the first two scenario, the orbits are misaligned
- Significant strong field effects at periastron (for eccentric systems)
- Significant bursts of GW emission at periastron \hookleftarrow important for the capture
- Complicated orbits with various timescales

Probe of the strong field region

TEST OF

\Rightarrow

- the nature of the central object
- GR in strong field regime

EMRIs AND ELISA

eLISA type mission:

expected rate	$1 \mathrm{yr}^{-1}$	
mass range	m_{1}	$\sim 5 M_{\odot}-20 M_{\odot}$
	m_{2}	$\sim 10^{5} M_{\odot}-10^{6} M_{\odot}$
horizon		$z=0.7$
	m_{1}	$\varepsilon=0.1 \%$
	m_{2}	$\varepsilon=0.1 \%$
	S_{2}	$\delta S_{2}=10^{-3}$
	e	$\delta e=10^{-3}$

SPECIFICITY OF EMRI WAVEFORM MODELING

Accurate modeling crucial for
 - detection
 - parameter estimation

Failure of approaches normally used for black-hole binaries

- Numerical relativity
\hookrightarrow computational time issues
- Post-Newtonian approximation solution searched as a perturbative series in $\left(v_{\text {high.typ. }} / c\right)^{2}$

$$
\begin{gathered}
\text { PN COUNTING } \\
\hline 1 \mathrm{PN}=1 / c^{2}
\end{gathered}
$$

\hookrightarrow converge badly for $q=m_{1} / m_{2} \rightarrow 0$

SELF-FORCE APPROACH

Covariant perturbative approach with $\varepsilon=q$

$$
\begin{array}{ll}
\text { SELF-FORCE COUNTING } \\
\text { SF }=q & \text { PSF }=q^{2}
\end{array}
$$

Method to obtain the SF equations of motion:

- Expand the perturbed metric to order ε

$$
g_{\mu \nu}^{(\varepsilon)} \approx g_{\mu \nu}+\varepsilon \delta g_{\mu \nu}^{(\mathbf{1})}
$$

- Describe the point-like objects with some $T^{\mu \nu}=\varepsilon T_{(1)}^{\mu \nu}\left[y^{\alpha}, g_{\alpha \beta}\right]$
- Solve the perturbed Einstein eqs with some "regular" Green function

$$
G_{\mathrm{reg} \alpha^{\prime} \beta^{\prime}}^{\mu \nu}\left(x, x^{\prime}\right)=G_{\mathrm{R} \alpha^{\prime} \beta^{\prime}}^{\mu \nu}\left(x, x^{\prime}\right)-G_{\operatorname{sing} \alpha^{\prime} \beta^{\prime}}^{\mu \nu}\left(x, x^{\prime}\right)
$$

highly non-trivial to construct with
full rigor

SELF-FORCE EQUATIONS OF MOTION

- equations of motion $=$ geodesic equations in $g_{\mu \nu}+\varepsilon \delta g_{\mu \nu}^{(1) \text { reg }}$

$$
\frac{\mathrm{D} u^{\mu}}{\mathrm{d} \tau}=f^{\mu}=\mathcal{O}(q)
$$

- (Delicate) numerical integration required in general
- Use of $Y^{\ell m}$-mode-sum regularization in practice

$$
f^{\mathrm{reg}}=\sum_{\ell=0}^{+\infty}\left[f_{\ell}-A_{ \pm} L-B-B-C L^{-1}\right]-D \quad \text { with } L=\ell+1 / 2
$$

(1) Introduction

(2) Detweiler redshift \& comparison PN vs SF
(3) Where do The $\frac{n}{2}$ PN CONSERVATIVE TERMS COME FROM?
(4) Post-Newtonian formalism
(5) PN COMPUTATION OF HALF-INTEGRAL PN CONTRIBUTIONS

6 Conclusion

CASE OF EXACT CIRCULAR MOTION

SYSTEM OF INTEREST

small mass particle in circular orbit about a black hole

Consequences:

- Helical killing vector: $k^{\mu} \rightarrow \partial_{t}^{\mu}+\Omega \partial_{\phi}^{\mu}$ in some class of gauges
- Presence of incoming waves \Rightarrow conservative system

DETWEILER REDSHIFT OBSERVABLE

$$
z=-k^{\mu} u_{\mu}
$$

Properties：

－Gauge invariance property（for helically－symmetric gauge vectors）
z is a physical observable
－Simple interpretation for far－away observers along the axis
－$u^{\mu}=z^{-1} k^{\mu}$ and $z^{-1}=u^{0}$
$\Rightarrow u^{0}$ can be used for comparison with PN results

Comparison with PN calculations

General motivations:

- PN and SF perturbative formalisms both fairly delicate
- Both methods involve non-trivial regularizations
- For PN:
- effective representation of bodies by point-particle \Rightarrow dim-reg
- technical Finite Part regularization to treat the field multipole expansion
- For SF:
- Green function regularization
- mode-sum regularization for $\delta g_{\mu \nu}^{(\mathbf{1})}$ (or other equivalent reg)
- Insight provided by each formalism on the other about:
- physical content
- convergence properties

$$
\text { Recent SF computations of } u^{0} \text { PN expansion to very high orders }
$$

High PN orders from SF calculations I

$$
u^{0}=\left[-\left(g_{\mu \nu}+\delta g_{\mu \nu}^{\text {reg }}\right) \frac{v^{\mu} v^{\nu}}{c^{2}}\right]^{-1 / 2}
$$

Work of Shah, Friedman \& Whiting: 10.5PN order

- Start from Teukolsky radial equation for $\Psi_{0}=C_{\mu \alpha \nu \beta} I^{\mu} m^{\alpha} I^{\nu} m^{\beta}$:

$$
\mathcal{L}_{\text {Teuk }}^{(r)}\left(2 R_{\ell m \omega}\right)[\delta g]=\tau_{\ell m \omega}^{(r)} S[\delta g]
$$

\hookrightarrow solutions built from the hom sol of Mano, Suzuki \& Tagasuki appearance of series of hypergeometric functions

- Accurate numerical computation with 350 digits!!
- Extract the metric angular modes in some "radiation gauge"
- Evaluate the field at particle position by mode-sum regularization
- Calculation of u^{0}; reconstruction of some analytic coefficients

High PN orders from SF calculations II

Work of Bini and Damour: 8.5PN order

- Start from the Regge-Wheeler radial equations for the master function:

$$
\mathcal{L}_{R G}^{(r)} R_{\ell m \omega}^{(\text {odd })}=S_{\ell m \omega}^{(\text {odd })}(r)
$$

\hookrightarrow solutions at particule position built from Mano, Suzuki \& Tagasuki

- Computation for $\ell \leq 4$ using the hypergeometric series (for "up" sol)
- PN resolution for arbitrary ℓ
- Results "patched" together motivated by phys/math arguments \Rightarrow fully analytic expressions

HALF-INTEGRAL PN ORDER TERMS IN u^{0}

> DEFINITION
> $u^{0}=\frac{1}{\sqrt{1-3 y}}+q u_{\mathrm{SF}}^{0}+\mathcal{O}\left(q^{2}\right)$

PN parameter: $y=\left(\frac{G m_{2} \Omega}{c^{3}}\right)^{2 / 3}$

$$
\begin{aligned}
u_{\mathrm{SF}}^{0} & =-y+\sum_{n=-2}^{10} \alpha_{n} y^{n+1}+\sum_{n=4}^{10} \beta_{n} y^{n+1} \ln y+\sum_{n=7}^{10} \gamma_{n} y^{n+1} \ln ^{2} y \\
& -\frac{13696}{525} \pi y^{13 / 2}+\frac{81077}{3675} \pi y^{15 / 2}+\frac{82561159}{467775} \pi y^{17 / 2} \\
& + \text { higher half-integral orders }+y \mathcal{O}\left(y^{11}\right)
\end{aligned}
$$

Notice the presence of terms $\propto 1 / c^{2 q+1}$

- Why do they appear for this conservative dynamics?
- Can we compute them using standard PN techniques?

(1) Introduction

(2) Detweiler redshift \& comparison PN vs SF

(3) Where do the $\frac{n}{2} \mathrm{PN}$ conservative terms come from?
(4) Post-Newtonian formalism
(5) PN Computation of half-integral PN contributions
(6) Conclusion

Is THERE A PARADOX?

$$
\left(u^{0}\right)_{\text {inst }} \sim \sum_{j, k, p, q} \nu^{\frac{m_{1} m_{2}}{m^{2}}}\left(\frac{G m}{r_{12} c^{2}}\right)^{k}\left(\frac{v_{12}^{2}}{c^{2}}\right)^{p}\left(\frac{n_{12} \cdot \dot{v}_{12}}{c}\right)^{q}
$$

$$
n=2 k+2 p+q+2
$$

For circular orbits $\boldsymbol{n}_{12} \cdot \boldsymbol{v}_{12}=0$
What if they were non-"instantaneous" terms?

$$
\boldsymbol{n}_{12}(t) \cdot \boldsymbol{v}_{12}\left(t^{\prime}\right) \neq 0
$$

WELL-KNOWN HEREDITARY EFFECT IN CLASSIC FIELD THEORY

the tail effect

HuYgens PRINCIPLE

"Il y a encore à considérer dans l'émanation de ces ondes, que chaque particule de la matière, dans laquelle une onde s'étend, ne doit pas communiquer son mouvement seulement à la particule prochaine, qui est dans la ligne droite tirée du point lumineux, mais qu'elle en donne aussi nécessairement à toutes les autres qui la touchent et qui s'opposent à son mouvement."
C. Huygens, Traité de la lumière
credit: Caspar Netscher (ca 1639-1684)

Fig. 6.

Validity of Huygens principle

V solution of: $\square V=0$

$$
V(x, t)=\int_{-\infty}^{+\infty} \mathrm{d} \nu \tilde{V}(x, \nu) e^{-2 \pi \mathrm{i} \nu t}
$$

HADAMARD REFORMULATION

Past dependence of a wave－type field $\Phi\left(x^{\mu}\right)$ on $\mathcal{C} \cap \Sigma_{t}$

TAIL EFFECTS

Past dependence of a wave-type field $\Phi\left(x^{\mu}\right)$ inside \mathcal{C}

Green function in $(d+1)$ dimensions I

Sourced wave equation:

$$
\square \Phi=\rho
$$

Retarded solution:

$$
\Phi(x)=\int \mathrm{d}^{4} x^{\prime} G_{\mathrm{R}}\left(x, x^{\prime}\right) \rho\left(x^{\prime}\right)
$$

General formula for the retarded Green function $G_{\mathrm{R}}\left(x, x^{\prime}\right) \equiv G\left(x-x^{\prime}\right)$

$$
G(x)=-\theta(t) \int_{0}^{+\infty} d k\left(\frac{k}{r}\right)^{\frac{d-2}{2}} \sin (c k t) J_{\frac{d-2}{2}}(k r)
$$

Green function in $(d+1)$ dimensions II

- Reduction for d odd:

$$
G(x)=\frac{(-1)^{\frac{d-1}{2}}}{4 \pi^{\frac{d-1}{2}}}\left(\frac{\mathrm{~d}}{\mathrm{~d} r^{2}}\right)^{\frac{d-3}{2}} \frac{\delta\left(x^{0}-r\right)}{r}
$$

- Reduction for d even:

$$
G(x)=\frac{(-1)^{\frac{d}{2}}}{2 \pi^{\frac{d}{2}}}\left(\frac{\mathrm{~d}}{\mathrm{~d} r^{2}}\right)^{\frac{(d-2)}{2}} \int_{r}^{+\infty} \mathrm{d} s \frac{\delta\left(x^{0}-s\right)}{\sqrt{s^{2}-r^{2}}}
$$

Green function in curved spacetime

Focus on the equation satisfied by $\gamma_{\mu \nu}=\delta g_{\mu \nu}-\frac{1}{2}\left(g^{\alpha \beta} \delta g_{\alpha \beta}\right) g_{\mu \nu}$

Sourced wave equation: $\quad \square \gamma^{\mu \nu}+2 R_{\alpha}^{\mu \nu} \gamma^{\alpha \beta}=\frac{16 \pi G}{c^{4}} T^{\mu \nu}$
Retarded solution:

$$
\gamma^{\mu \nu}(x)=\frac{4 G}{c^{4}} \int \mathrm{~d}^{4} x^{\prime} \sqrt{-g^{\prime}} G_{\mathrm{R} \alpha^{\prime} \beta^{\prime}}^{\mu \nu}\left(x, x^{\prime}\right) T^{\alpha^{\prime} \beta^{\prime}}\left(x^{\prime}\right)
$$

Hadamard form for the retarded Green function

$$
G_{R \alpha^{\prime} \beta^{\prime}}^{\mu \nu}\left(x, x^{\prime}\right)=\theta_{+}(x, \Sigma)\left[U_{\alpha^{\prime} \beta^{\prime}}^{\mu \nu} \delta(\sigma)+V_{\alpha^{\prime} \beta^{\prime}}^{\mu \nu} \theta(-\sigma)\right]
$$

Perturbative interpretation

TAIL WAVE

GW scattered on the curvature of space-time
\hookrightarrow corresponds to a $M \times M_{L}$ interaction in the waveform

TAIL-OF-TAIL WAVE

tail wave scattered on the curvature of space-time

\hookrightarrow associated with the fact that null geodesic \neq 'straight lines'
EFT point of view:

(1) Introduction

(2) DETWEILER REDSHIFT \& COMPARISON PN vS SF
(3) Where do The $\frac{n}{2}$ PN CONSERVATIVE TERMS COME FROM?
(4) Post-Newtonian formalism
(5) PN COMPUTATION OF HALF-INTEGRAL PN CONTRIBUTIONS

6 Conclusion

Post-Newtonian approximation

Small post-Newtonian parameter:

$$
v / c \ll 1
$$

highest characteristic velocity
For a PN field $Q: \partial_{t} Q / c \sim \varepsilon \partial_{i} Q$

POST-NEWTONIAN EXPANSION:

expansion in the small parameter $\varepsilon=v / c$

For ordinary matter: $T^{00} \sim c^{2} \quad T^{0 i} \sim c \quad T^{i j} \sim c^{0}$

Isolated PN sources

Physical assumptions:

- Ordinary matter source $T^{\mu \nu}$ with compact support
- No-incoming wave condition
- Post-Newtonian approximation $v / c \ll 1$ valid within the matter $\Rightarrow D_{\text {matt }} \ll \lambda$

Multipolar post-Minkowskian approximation

Small post-Minkowskian parameter:

... but for a propagating field $Q: \partial_{t} Q / c \sim \partial_{i} Q$

MULTIPOLAR EXPANSION:

expansion in the small parameter $\left(D_{\text {matt }} / \lambda\right)$

$$
\Rightarrow
$$

expansion in $1 / r$ at $t-r / c=c s t$
For Φ satisfying $\square \Phi=\rho$

$$
\Phi_{\text {ext }}=\sum_{\ell=0}^{+\infty} \frac{(-1)^{\ell}}{\ell!} \partial_{L}\left(\frac{M_{L}(t-r / c)}{r}\right)
$$

Einstein equations in harmonic gauge

PM perturbation: $h^{\mu \nu}=\sqrt{-g} g^{\mu \nu}-\eta^{\mu \nu}$

HARMONIC GAUGE CONDITION

$$
\nabla^{\nu} \nabla_{\nu} x^{\mu}=0 \quad \Leftrightarrow \quad \partial_{\nu} h^{\mu \nu}=0
$$

Relaxed Einstein equations

$$
\square h^{\mu \nu}=\frac{16 \pi G}{c^{4}} \tau^{\mu \nu} \equiv \frac{16 \pi G}{c^{4}}|g| T^{\mu \nu}+\Lambda^{\mu \nu}(\partial h, \partial h)
$$

- $\Lambda^{\mu \nu}$ contain a $2^{\text {nd }}$ order derivative: $-h^{\alpha \beta} \partial_{\alpha \beta} h^{\mu \nu}$ \hookrightarrow produces the non-linear tail effect
- the gauge condition implies the equations of motion

STANDARD PN SCHEME

Smooth $T^{\mu \nu}$ Assumed WITH

$T^{00} \sim c^{2} \quad T^{0 i} \sim c \quad T^{i j} \sim c^{0}$

Iterative computation of $h_{[m]}^{\mu \nu}$

- Assume $h_{\left[m^{\prime}\right]}^{\mu \nu}$ known for $m^{\prime}<m$ (not needed at leading order)
- Solution for $h_{[m]}^{\mu \nu}$ taken to be

$$
h_{[m]}^{\mu \nu}=\frac{16 \pi G}{c^{4}}\left\{\square_{\mathrm{R}}^{-1}\left[\tau^{\mu \nu}\left(h^{\alpha \beta}\right)\right]\right\}_{[m-4]}
$$

- Go to the next order

Formal PN series:

$$
\overline{h^{\mu \nu}}=\sum_{m=m_{\min }}^{+\infty} \frac{1}{c^{m}} h_{(m)}^{\mu \nu}
$$

Main issue of PN expansion

$$
\begin{aligned}
& \text { What is the iterative PN expansion } \overline{\square_{\mathrm{R}}^{-1} \tau} \text { of } \\
& \square_{\mathrm{R}}^{-1} \tau=\int \frac{d^{3} \mathbf{x}^{\prime}}{-4 \pi} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \tau\left(\mathbf{x}^{\prime}, t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right| / c\right) \text { ? }
\end{aligned}
$$

$$
\overline{\square_{\mathrm{R}}^{-1}[\tau]}=\sum_{k \geq 0, n} \frac{(-1)^{k}}{k!} \frac{\partial_{t}^{k}}{c^{k}} \int \frac{d^{3} \mathbf{x}^{\prime}}{-4 \pi}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{k-1} \frac{\bar{\tau}_{(n)}\left(\mathbf{x}^{\prime}, t\right)}{c^{n}}
$$

does not make sense!!
information on the field behavior far from the system required...

Multipolar PM expansion in the vacuum

KEY IDEA TO STUDY THE FIELD OUTSIDE THE NEAR ZONE

$h^{\mu \nu}$ in the exterior zone satisfies the vacuum Einstein equations
\hookrightarrow contained in the most general PM asymptotic solution

Principle of the algorithm:

- Decompose $h^{\mu \nu}$ as $\sum_{n=1}^{+\infty} G^{n} h_{(n)}^{\mu \nu}$
- Find iteratively the most general solution of

$$
\square h_{(n+1)}^{\mu \nu}=\Lambda_{(n)}^{\mu \nu}\left(\partial h_{(\leq n)}, \partial h_{(\leq n)}\right)
$$

- Absorb homogeneous solutions by moment redefinitions

Finite Part (FP) regularization

PM solutions expressed in terms of FP integrals

FP $\int \mathrm{d}^{3} \boldsymbol{x}^{\prime} F\left(\boldsymbol{x}^{\prime}, t\right)$ for a smooth function F on $\mathbb{R}^{* 3}$:

- Computation of $I[F](B) \equiv \int \mathrm{d}^{3} \boldsymbol{x}^{\prime}\left(\left|\boldsymbol{x}^{\prime}\right| / r_{0}\right)^{B} F\left(\boldsymbol{x}^{\prime}\right)$
- Expansion of $I[F](B)$ in a Laurent series of the form

$$
\sum_{k=k_{0}}^{+\infty} I_{k}[F] B^{k}
$$

- FP $\int \mathrm{d}^{3} x^{\prime} F\left(x^{\prime}, t\right)=I_{0}[F]$
\leftarrow depends on r_{0}

LINEARIZED EXTERIOR FIELD I

Linearized Einstein equations in vacuum:

$$
\square h_{(1)}^{\mu \nu}=0 \quad \partial_{\nu} h_{(1)}^{\mu \nu}=0
$$

with the no-incoming wave condition

$$
\lim _{\substack{r \rightarrow+\infty \\ t+r / c \rightarrow c s t}} h_{(m)}^{\mu \nu}=0 \quad \lim _{\substack{r \rightarrow+\infty \\ t+r / c \rightarrow c s t}}\left[\left(\partial_{r}+\frac{1}{c} \partial_{t}\right)\left(r_{\nmid c}^{r} h_{(m)}^{\mu \nu}\right)\right]=0
$$

Form of the most general solutions in Minkowskian-like coordinates:

- in spherical symmetry $\frac{l(t-r / c)}{r}$
- in general $\sum_{\ell \geq 0} \partial_{I L}\left(\frac{l_{J L}(t-r / c)}{r}\right)$
(possible contraction to $\varepsilon_{a b c}$ for current moments)

Linearized exterior field II

Most general exterior Linear solution

$$
\begin{gathered}
h_{(1)}^{\mu \nu}=h_{\text {can }}^{\mu \nu}\left(I_{L}\left(t^{\prime}\right), J_{L}\left(t^{\prime}\right)\right)+\begin{array}{l}
\text { linear gauge transformation term in } \phi_{(1)}^{\mu} \\
\quad \text { with } \square \phi_{(1)}^{\mu}=0
\end{array} \\
\Rightarrow h^{\mu \nu} \text { entirely parameterized by } 6 \text { moments }
\end{gathered}
$$

- $I_{L}=$ source mass-type moment of order ℓ $J_{L}=$ source current-type moment of order ℓ
- 4 gauge moments \Leftrightarrow high-order PN corrections to $\left\{I_{L}, J_{L}\right\}$

Unicity of the multipole parameterization iff the moments are STF

$$
\text { e.g. } I_{i j}=l_{j i}, l_{i i}=0
$$

Post-Minkowskian iteration

- Search of a particular solution of $\square h_{(n+1)}^{\mu \nu}=\Lambda_{(n+1)}^{\mu \nu}\left(h_{(\leq n)}, h_{(\leq n)}\right)$ $\square_{\mathrm{R}}^{-1} \Lambda_{(n+1)}^{\mu \nu}$ ill-defined... but

$$
\square\left(\mathrm{FP} \square_{\mathrm{R}}^{-1} F\right)=F
$$

solution under assumption of past stationarity : $p_{(n+1)}^{\mu \nu}=\mathrm{FP} \square_{\mathrm{R}}^{-1} \Lambda_{(n+1)}^{\mu \nu}$

- Determination of the homogeneous solution $q_{(n+1)}^{\mu \nu}$ of $\square h^{\mu \nu}=\ldots$

$$
\partial_{\nu} h_{(n+1)}^{\mu \nu}=\partial_{\nu} p_{(n+1)}^{\mu \nu}+\partial_{\nu} q_{(n+1)}^{\mu \nu}=0 \quad \text { and } \quad \square q_{(n+1)}^{\mu \nu}=0 \quad \Rightarrow \quad q_{(n+1)}^{\mu \nu}
$$

GEnERAL solution

$$
h_{(n+1)}^{\mu \nu}=p_{(n+1)}^{\mu \nu}+q_{(n+1)}^{\mu \nu}
$$

(+ homogeneous solution absorbed in a moment redefinition)

Principle of The matching procedure

- In the exterior zone $D_{\text {ext }}: h^{\mu \nu}=\mathcal{M}\left(h^{\mu \nu}\right) \equiv$ mult expansion of $h^{\mu \nu}$
- In the near zone $D_{\text {near }}$: $h^{\mu \nu}$ given by the searched PN expression $\bar{h}^{\mu \nu}$
- In some buffer zone $D_{\text {near }} \cap D_{\text {ext }}$
- stationarity in the remote past

EXPANSION OF RETARDED QUANTITIES

Result of matching

$$
\overline{\square_{\mathrm{R}}^{-1}[\tau]}=\overline{\square_{\mathrm{R}}^{-1}}[\tau]+\mathcal{H}[\tau]
$$

with $\overline{\square_{\mathrm{R}}^{-1}}[\tau]=\sum_{k \geq 0, n} \frac{(-1)^{k}}{k!} \frac{\partial_{t}^{k}}{c^{k}} \mathrm{FP} \int \frac{d^{3} \mathbf{x}^{\prime}}{-4 \pi}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{k-1} \frac{\bar{\tau}_{(n)}\left(\mathbf{x}^{\prime}, t\right)}{c^{n}}$

$$
\left.\mathcal{H}[\tau]=\sum_{\ell=0}^{+\infty} \frac{(-1)^{\ell}}{\ell!} \hat{\partial}_{L}\left\{\frac{\overline{\mathcal{R}[\tau]_{L}(t-r / c)-\mathcal{R}_{L}[\tau](t+r / c)}}{2 r}\right\}\right]
$$

- $\mathcal{H}[\tau]$ is a homogeneous solution of the wave equation \hookrightarrow the source "feels" some external-like regular wave

$$
\mathcal{H}[\tau] \text { actually contains the tail effect }
$$

- \mathcal{R}_{L} depends on $\mathcal{M}(h)$

（1）Introduction

（2）Detweiler redshift \＆comparison PN vs SF
（3）Where do The $\frac{n}{2}$ PN conservative Terms come from？
（4）Post－NEWTONIAN FORMALISM
（5）PN COMPUTATION OF HALF－INTEGRAL PN CONTRIBUTIONS

6 Conclusion

Structure of Tail Terms

Interactions involving $k_{\text {non stat }} \geq 2$ non-static moments ignored
$M \times \ldots \times M \times I_{P}$ TAIL INTERACTIONS IN $h^{\mu \nu}$

$$
h_{M \times \cdots \times M \times I_{P}}^{\alpha \beta} \sim \sum_{k, p, \ell, i} \frac{G^{k} M^{k-1}}{c^{3 k+p}} \hat{n}_{\substack{4 \\ n^{L}=n^{i_{1}} \ldots n^{i} \ell}}^{L}\left(\frac{r}{c}\right)^{\ell+2 i} \int_{-\infty}^{+\infty} \mathrm{d} u \kappa_{L P}^{\alpha \beta}(t, u) I_{P \uparrow}^{(a)}(u)
$$

- $\mathrm{a}=\#$ of $\partial_{t}=k+p+\ell+2 i+1$
- power of $1 / c: n=3 k+p+\ell+2 i+s-2$
- angular momentum selection rules:
- $|\ell-p| \leq s$ [with $\left.s\left(h^{00}\right)=0, s\left(h^{0 i}\right)=1, s\left(h^{i j}\right)=2\right]$
- s and $\ell-p$ have same parity

$$
\Rightarrow n=3 k+2 p+2 j-2 \text { with } j \in \mathbb{N}
$$

What are the first half-integral PN orders?

$$
\begin{aligned}
& \text { HALF-INTEGRAL PN ORDERS BELOW 7.5PN } \\
& \qquad n=11+2(p-2)+2 j
\end{aligned}
$$

Only $k=3$ contributes: $\quad M \times M \times$ moment $=$ tail of tail

- 5.5PN, 6.5PN, 7.5PN, ... for the mass quadrupole
- 6.5PN, 7.5PN, ... for the mass octupole
- 7.5PN, ... for the mass hexadecapole

Orders for current-type interaction: involve $\varepsilon_{i j a} J_{a L-1}$
\hookrightarrow deduced from $a \rightarrow a-1, p \rightarrow p+1$

- 6.5PN, 7.5PN, ... for the current quadrupole
- 7.5PN, ... for the current octupole

Construction of The cubic field

Strategy

Compute the relevant part of $\mathcal{H}[\tau]$ through that of $\overline{\mathcal{M}\left(h^{\mu \nu}\right)}$

- Start from the MPM quadratic field $M \times$ moment
- Construct the cubic source $M \times M \times$ moment

$$
N_{(3)}^{M \times M \times M_{L}}=\sum_{\ell}^{\text {finite }} S_{\ell}(r, t-r / c) \hat{n}^{L}
$$

\hookrightarrow contains

- "instantaneous" terms: $S(r, t-r / c)=r^{B-k} F(t-r / c)$
- hereditary terms (related to tails):

$$
S(r, t-r / c)=r^{B-k} \int_{1}^{+\infty} \mathrm{d} x Q_{m}(x) F(t-r x / c)
$$

- Apply $\square_{\mathrm{R}}^{-1}$ on each source piece $S(r, t-r / c) \hat{n}^{L}$

EXTRACTION OF THE HEREDITARY TAIL PART

- Variant of the previous formula for $\overline{\square_{R}^{-1}[\ldots]}$ for $r \rightarrow 0$

$$
h=\underbrace{\overline{\hat{\partial}_{L}\left(\frac{G(t-r / c)-G(t+r / c)}{r}\right)}}_{\text {contains all hereditary contributions }}+\underbrace{\square_{\text {inst }}^{-1}\left[\bar{S} \hat{n}^{L}\right]}_{\text {local-in-time operator }}
$$

- Analysis of $G(u)=C_{k, \ell, m} \times \mathrm{FP}_{B=0}$ (some integral with a kernel τ^{B})

$$
\Rightarrow \quad G_{\text {tail-tail }}(u) \propto \frac{G^{3} M^{2}}{c^{n}} \operatorname{Res} C_{k, \ell, m} \int_{0}^{+\infty} \mathrm{d} \tau \ln \tau M_{L}^{(a)}(u-\tau)
$$

- Ansatz: the conservative part is given by

$$
G_{\text {cons }}(u) \propto \frac{G^{3} M^{2}}{c^{n}} \operatorname{Res} C_{k, \ell, m} \int_{0}^{+\infty} \mathrm{d} \tau \ln \tau\left(\frac{M_{L}^{(a)}(u-\tau)+M_{L}^{(a)}(u+\tau)}{2}\right)
$$

PN iteration

By matching

$$
\begin{aligned}
h^{00} & =h_{\text {naive }}^{00}+h_{\text {tail }}^{00} \\
& =-4 \frac{U}{c^{2}}+\ldots+h_{\text {LO tail }}^{00}+\ldots
\end{aligned}
$$

Likewise for $h^{0 i}, h^{i j}$
\Rightarrow Insertion into $\Lambda_{(2)}$ and $\Lambda_{(3)}$ can generate coupling of U, \ldots, and $h^{\mu \nu}$

- Gauge transformation to minimize the couplings: terms $0 i, i j \rightarrow 00$
- EE must be iterated with coupling included
- 2 iterations needed for $I_{i j}$
- 1 iteration needed for $I_{i j k}$ and $J_{i j}$
- Equations to be solved of the form

$$
\Delta \Psi_{L}=\hat{x}^{L} r^{2 p} \phi
$$

\hookleftarrow systematic use of superpotentials: $\Delta \phi_{2 k+2}=\phi_{2 k}$

FROM THE METRIC TO u^{0}

Structure of the $\frac{n}{2}$ PN TYPE GRAV FIELD

$$
h^{\mu \nu} \sim \sum G_{\text {cons }}^{(a)}(t) \hat{x}^{L} \partial \phi
$$

- Superpotentials obtained by guess work \rightarrow to be regularized at $x=y_{1}$
- $I_{i j}, l_{i j k}, \ldots$ replaced by their explicit PN values
- Integrals computed by using

$$
\begin{aligned}
x_{12}^{i}(t \pm \tau) & =\cos (\Omega \tau) x_{12}^{i}(t) \pm \sin (\Omega \tau) v_{12}^{i}(t) / \Omega \\
v_{12}^{i}(t \pm \tau) & =\mp \Omega \sin (\Omega \tau) x_{12}^{i}(t)+\cos (\Omega \tau) v_{12}^{i}(t)
\end{aligned}
$$

and

$$
\int_{0}^{+\infty} \mathrm{d} \tau \ln \tau \mathrm{e}^{\mathrm{i} \lambda \tau}=-\frac{\pi}{2|\lambda|}-\frac{\mathrm{i}}{\lambda}\left(\ln |\lambda|+\gamma_{\mathrm{E}}\right)
$$

Note that for $\lambda=m \Omega$ the term $\propto \pi$ is invariant for $t \rightarrow-t$

(1) Introduction

(2) Detweiler redshift \& comparison PN vs SF
(3) Where do The $\frac{n}{2}$ PN CONSERVATIVE TERMS COME FROM?
(4) Post-NEWTONIAN FORMALISM
(5) PN COMPUTATION OF HALF-INTEGRAL PN CONTRIBUTIONS
(6) Conclusion

Conclusion

- We find that there is no radial velocity
- We confirmed the origin of the half-integral order conservative terms
- We found full agreement with the SF results
- Generalization beyond linear order in m_{1} / m_{2} could be interesting

$$
\begin{aligned}
& \text { Blanchet, F. \& Whiting Phys. Rev. D 89, } 064026 \text { (2014) } \\
& \text { Blanchet, F. \& Whiting Phys. Rev. D 90, } 044017 \text { (2014) }
\end{aligned}
$$

