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Context: GW observatory at mHz frequency

Gravitational-wave astronomy is emerging

Advanced ground-based GW detectors soon ready to operate
Frequency range: 10�104Hz

Pulsar-timing arrays searching for the radiation of supermassive
black-hole binaries
Frequency range: 10−9�10−6Hz

Space-based observatory planed for 2034
Frequency range: 10−3�10−1Hz (?)

�The L3 mission will study the gravitational Universe, searching

for ripples in the very fabric of space�time created by celestial

objects with very strong gravity, such as pairs of merging black

holes.�

ESA announcement (November 28th 2013)



eLISA: a possible proposal

credit: AEI/MM/exozet



Extreme Mass Ratio Inspirals

EMRI

Small compact object orbiting about a massive BH

credit: NASA

↪→ astrophysically relevant
can appear in galactic nuclei

Potential source for eLISA

3 main formation scenarios:

1 Capture of compact stars

mass segregation
resonant relaxation
direct plunge or capture

2 Tidal disruption of binaries

3 Creation of massive stars in the
accretion discs



Dynamics of EMRIs

Eccentricity and orbit misalignment depend on the formation scenario

e very high in the capture scenario
e can be small for binary disruptions
in the �rst two scenario, the orbits are misaligned

Signi�cant strong �eld e�ects at periastron (for eccentric systems)

Signi�cant bursts of GW emission at periastron
←↩ important for the capture

Complicated orbits with various timescales

credit: S. Drasco & C. Cutler

Probe of the strong �eld region

⇒
test of

the nature of the central object

GR in strong �eld regime



EMRIs and eLISA

eLISA type mission:

expected rate 1yr−1

mass range
m1 ∼ 5M��20M�

m2 ∼ 105M��10
6M�

horizon z = 0.7

measured quantity

m1 ε = 0.1%

m2 ε = 0.1%

S2 δS2 = 10−3

e δe = 10−3



Specificity of EMRI waveform modeling

Accurate modeling crucial for

detection

parameter estimation

Failure of approaches normally used for black-hole binaries

Numerical relativity
↪→ computational time issues

Post-Newtonian approximation
solution searched as a perturbative series in (vhigh. typ./c)2

PN counting

1PN = 1/c2

↪→ converge badly for q = m1/m2 → 0



Self-force approach

Covariant perturbative approach with ε = q

Self-force counting

SF = q PSF= q2

Method to obtain the SF equations of motion:

Expand the perturbed metric to order ε

g (ε)
µν ≈ gµν + ε δg (1)

µν

Describe the point-like objects with some Tµν = εTµν
(1) [yα, gαβ]

Solve the perturbed Einstein eqs with some �regular� Green function

G
µν
regα′β′(x , x

′) = G
µν
R α′β′(x , x

′)− G
µν
singα′β′(x , x

′)
highly non-trivial
to construct with
full rigor



Self-force equations of motion

equations of motion = geodesic equations in gµν + ε δg (1) reg
µν

Duµ

dτ
= f µ = O(q)

u
µ

f
µ

test particle orbit

SF orbit

(Delicate) numerical integration required in general

Use of Y `m-mode-sum regularization in practice

f reg =
+∞∑
`=0

[
f` − A±L− B − B − CL−1

]
− D with L = `+ 1/2
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Case of exact circular motion

System of interest

small mass particle in circular orbit about a black hole

Consequences:

Helical killing vector: kµ → ∂µt + Ω ∂µφ in some class of gauges
Presence of incoming waves ⇒ conservative system

k
µ

u
µ∝ k

µ

light ring

I−

I+



Detweiler redshift observable

gravitational redshift

z = −kµuµ

Properties:

Gauge invariance property (for helically-symmetric gauge vectors)

z is a physical observable

Simple interpretation for far-away observers along the axis

uµ = z−1kµ and z−1 = u0

⇒ u0 can be used for comparison with PN results



Comparison with PN calculations

General motivations:

PN and SF perturbative formalisms both fairly delicate

Both methods involve non-trivial regularizations

For PN:

e�ective representation of bodies by point-particle ⇒ dim-reg
technical Finite Part regularization to treat the �eld multipole expansion

For SF:

Green function regularization
mode-sum regularization for δg (1)

µν (or other equivalent reg)

Insight provided by each formalism on the other about:

physical content
convergence properties

Recent SF computations of u0 PN expansion to very high orders



High PN orders from SF calculations I

u0 =
[
− (gµν + δg reg

µν )
vµvν

c2

]−1/2
Work of Shah, Friedman & Whiting: 10.5PN order

Start from Teukolsky radial equation for Ψ0 = Cµανβ l
µmαlνmβ :

L(r)

Teuk(2R`mω)[δg ] = τ (r)

`mωS [δg ]

↪→ solutions built from the hom sol of Mano, Suzuki & Tagasuki

appearance of series of hypergeometric functions

Accurate numerical computation with 350 digits!!

Extract the metric angular modes in some �radiation gauge�

Evaluate the �eld at particle position by mode-sum regularization

Calculation of u0; reconstruction of some analytic coe�cients



High PN orders from SF calculations II

Work of Bini and Damour: 8.5PN order

Start from the Regge-Wheeler radial equations for the master function:

L(r)
RGR

(odd)

`mω = S
(odd)

`mω (r)

↪→ solutions at particule position built from Mano, Suzuki & Tagasuki

Computation for ` ≤ 4 using the hypergeometric series (for �up� sol)

PN resolution for arbitrary `

Results �patched� together motivated by phys/math arguments

⇒ fully analytic expressions



Half-integral PN order terms in u
0

Definition

u0 =
1√

1− 3y
+q u0SF+O(q2)

PN parameter: y =
(Gm2Ω

c3

)2/3

u0SF = −y +
10∑

n=−2
αny

n+1 +
10∑
n=4

βny
n+1 ln y +

10∑
n=7

γny
n+1 ln2 y

− 13696

525
πy13/2 +

81077

3675
πy15/2 +

82561159

467775
πy17/2

+ higher half-integral orders + y O(y11)

Notice the presence of terms ∝ 1/c2q+1

Why do they appear for this conservative dynamics?

Can we compute them using standard PN techniques?
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Is there a paradox?

v1

y
1

v2

y
2

r12

m1m2

m2
v1 − v2(

u0
)
inst
∼
∑

j ,k,p,q

ν j
(

Gm

r12c2

)k (
v212
c2

)p (n12 · v12
c

)q

n = 2k + 2p + q + 2

For circular orbits n12 · v12 = 0

What if they were non-�instantaneous� terms? n12(t) · v12(t ′) 6= 0

Well-known hereditary effect in classic field theory

the tail e�ect



Huygens principle

�Il y a encore à considérer dans l'émanation de ces ondes, que

chaque particule de la matière, dans laquelle une onde s'étend, ne

doit pas communiquer son mouvement seulement à la particule

prochaine, qui est dans la ligne droite tirée du point lumineux,

mais qu'elle en donne aussi nécessairement à toutes les autres qui

la touchent et qui s'opposent à son mouvement.�

C. Huygens, Traité de la lumière
credit: Caspar Netscher (ca 1639�1684)



Validity of Huygens principle

V solution of: 2V = 0 V (x , t) =

∫ +∞

−∞
dνṼ (x , ν)e−2πiνt

Ṽ (x , ν) =

∫
Σ

d
2S ′i

−4π

[
Ṽ (x ′, ν) ∂′i

(e ik|x−x ′|

|x − x ′|

)
− e ik|x−x ′|

|x − x ′|
∂′i Ṽ (x ′, ν)

]
x

dS ′ Σ



Hadamard reformulation

credit: École polytech-
nique collections

xµ = yµ(τ)

C

C ∩ Σt

Σt

yµ(τt)

Past dependence of a wave-type �eld Φ(xµ) on C ∩ Σt



Tail effects

credit: École polytech-
nique collections

xµ = yµ(τ)

J−(xµ)

Σt

yµ(τt)

zone of Σt where the value of Φ determines Φ(xµ = y(τ))

Past dependence of a wave-type �eld Φ(xµ) inside C



Green function in (d + 1) dimensions I

Sourced wave equation: 2Φ = ρ

Retarded solution: Φ(x) =

∫
d
4x ′GR(x , x ′)ρ(x ′)

General formula for the retarded Green function

GR(x , x
′) ≡ G (x − x ′)

G (x) = −θ(t)

∫ +∞

0
dk

(
k

r

)d−2
2

sin(ckt)J d−2
2

(kr)



Green function in (d + 1) dimensions II

Reduction for d odd:

G (x) =
(−1)

d−1
2

4π
d−1
2

(
d

dr2

)d−3
2 δ(x0 − r)

r

Reduction for d even:

G (x) =
(−1)

d

2

2π
d

2

(
d

dr2

)(d−2)
2
∫ +∞

r

ds
δ(x0 − s)√
s2 − r2



Green function in curved spacetime

Focus on the equation satis�ed by γµν = δgµν −
1

2
(gαβδgαβ)gµν

Sourced wave equation: 2γµν + 2R µ ν
α β γ

αβ =
16πG

c4
Tµν

Retarded solution: γµν(x) =
4G

c4

∫
d
4x ′
√
−g ′Gµν

R α′β′(x , x
′)Tα′β′(x ′)

Hadamard form for the retarded Green function

G
µν
R α′β′(x , x

′) = θ+(x ,Σ)
[
U
µν
α′β′δ(σ) + V

µν
α′β′θ(−σ)

]



Perturbative interpretation

Tail wave

GW scattered on the
curvature of space-time

↪→ corresponds to a M ×ML

interaction in the waveform

Tail-of-tail wave

tail wave scattered on the
curvature of space-time

tail of tail: depends on
the source past

I+

I−

i+

i−

i0

↪→ associated with the fact that null geodesic 6= 'straight lines'

EFT point of view:

ML ML M ML M M ML M M M
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Post-Newtonian approximation

Small post-Newtonian parameter:

v/c � 1
highest characteristic velocity

For a PN �eld Q: ∂tQ/c ∼ ε ∂iQ

post-Newtonian expansion:

expansion in the small parameter ε = v/c

For ordinary matter: T 00 ∼ c2 T 0i ∼ c T ij ∼ c0



Isolated PN sources

Physical assumptions:

Ordinary matter source Tµν with compact support

No-incoming wave condition

Post-Newtonian approximation v/c � 1 valid within the matter
⇒ Dmatt � λ

source

exterior zone

near zone
λ



Multipolar post-Minkowskian approximation

Small post-Minkowskian parameter:

Gm/(Lc2)� 1
L typical �size�m typical mass

... but for a propagating �eld Q: ∂tQ/c ∼ ∂iQ

Multipolar expansion:

expansion in the small parameter (Dmatt/λ)
⇒

expansion in 1/r at t − r/c =cst

For Φ satisfying 2Φ = ρ

Φext =
+∞∑
`=0

(−1)`

`!
∂L

(ML(t − r/c)

r

)



Einstein equations in harmonic gauge

PM perturbation: hµν =
√
−g gµν − ηµν

Harmonic gauge condition

∇ν∇νxµ = 0 ⇔ ∂νh
µν = 0

Relaxed Einstein equations

2hµν =
16πG

c4
τµν ≡ 16πG

c4
|g |Tµν + Λµν(∂h, ∂h)

Λµν contain a 2nd order derivative: −hαβ∂αβhµν
↪→ produces the non-linear tail e�ect

the gauge condition implies the equations of motion



Standard PN scheme

Smooth T µν assumed with

T 00 ∼ c2 T 0i ∼ c T ij ∼ c0

Iterative computation of hµν[m]

Assume h
µν
[m′] known for m′ < m (not needed at leading order)

Solution for hµν[m] taken to be

h
µν
[m] =

16πG

c4

{
2−1
R

[
τµν(hαβ)

]}
[m−4]

Go to the next order

Formal PN series:

hµν =
+∞∑

m=mmin

1

cm
h
µν
(m)



Main issue of PN expansion

What is the iterative PN expansion 2−1R τ of

2−1
R
τ =

∫
d3x′

−4π
1

|x− x
′|
τ(x′, t − |x− x

′|/c) ?

2−1R [τ ] =
∑
k≥0,n

(−1)k

k!

∂kt
ck

∫
d3x′

−4π
|x− x

′|k−1 τ (n)(x
′, t)

cn

does not make sense!!

information on the �eld behavior far from the system required...



Multipolar PM expansion in the vacuum

Key idea to study the field outside the near zone

hµν in the exterior zone satis�es the vacuum Einstein equations
↪→ contained in the most general PM asymptotic solution

Principle of the algorithm:

Decompose hµν as
+∞∑
n=1

Gnh
µν
(n)

Find iteratively the most general solution of

2h
µν
(n+1) = Λµν(n) (∂h(≤n), ∂h(≤n))

Absorb homogeneous solutions by moment rede�nitions



Finite Part (FP) regularization

PM solutions expressed in terms of FP integrals

FP

∫
d
3x ′F (x ′, t) for a smooth function F on R∗3:

Computation of I [F ](B) ≡
∫

d
3x ′(|x ′|/r0)BF (x ′)

Expansion of I [F ](B) in a Laurent series of the form

+∞∑
k=k0

Ik [F ]Bk

FP

∫
d
3x ′F (x ′, t) = I0[F ] ← depends on r0



Linearized exterior field I

Linearized Einstein equations in vacuum:

2h
µν
(1) = 0 ∂νh

µν
(1) = 0

with the no-incoming wave condition

lim
r→+∞

t+r/c→cst

h
µν
(m) = 0 lim

r→+∞
t+r/c→cst

[(
∂r +

1

c
∂t

)
(r hµν(m))

]
= 0

distance to the origin |x|

Form of the most general solutions in Minkowskian-like coordinates:

in spherical symmetry
I (t − r/c)

r

in general
∑
`≥0

∂IL

( IJL(t − r/c)

r

)
(possible contraction to εabc for current moments)



Linearized exterior field II

Most general exterior linear solution

h
µν
(1) = hµνcan(IL(t ′), JL(t ′)) + linear gauge transformation term in φµ(1)

with 2φµ(1) = 0

⇒ hµν entirely parameterized by 6 moments

IL= source mass-type moment of order `
JL= source current-type moment of order `

4 gauge moments ⇔ high-order PN corrections to {IL, JL}

Unicity of the multipole parameterization i� the moments are STF

e.g. Iij = Iji , Iii = 0



Post-Minkowskian iteration

Search of a particular solution of 2h
µν
(n+1) = Λµν(n+1)(h(≤n), h(≤n))

2−1
R

Λµν(n+1) ill-de�ned... but

2(FP2−1
R

F ) = F

solution under assumption of past stationarity : p
µν
(n+1) = FP2−1

R
Λµν(n+1)

Determination of the homogeneous solution q
µν
(n+1) of 2hµν = ...

∂νh
µν
(n+1) = ∂νp

µν
(n+1) + ∂νq

µν
(n+1) = 0 and 2q

µν
(n+1) = 0 ⇒ q

µν
(n+1)

General solution

h
µν
(n+1) = p

µν
(n+1) + q

µν
(n+1)

(+ homogeneous solution absorbed in a moment rede�nition)



Principle of the matching procedure

In the exterior zone Dext: h
µν =M(hµν) ≡ mult expansion of hµν

In the near zone Dnear: h
µν given by the searched PN expression h

µν

In some bu�er zone Dnear ∩ Dext

stationarity in the remote past

h
µν

=M(hµν)

source

exterior zone

near zone
λ



Expansion of retarded quantities

Result of matching

2−1R [τ ] = 2−1R [τ ] +H[τ ]

with 2−1R [τ ] =
∑
k≥0,n

(−1)k

k!

∂kt
ck

FP

∫
d3x′

−4π
|x− x

′|k−1 τ (n)(x
′, t)

cn

H[τ ] =
+∞∑
`=0

(−1)`

`!
∂̂L

{
R[τ ]L(t − r/c)−RL[τ ](t + r/c)

2r

}]

H[τ ] is a homogeneous solution of the wave equation
↪→ the source �feels� some external-like regular wave

H[τ ] actually contains the tail e�ect

RL depends onM(h)
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Structure of tail terms

Interactions involving knon stat ≥ 2 non-static moments ignored

M × ...×M × IP tail interactions in hµν

h
αβ
M×···×M×IP

∼
∑
k,p,`,i

G kMk−1

c3k+p
n̂L
( r
c

)`+2i
∫ +∞

−∞
du καβLP(t, u) I

(a)
P (u)

n
L = n

i1 ...ni` # of time der

a= # of ∂t = k + p + `+ 2i + 1

power of 1/c : n = 3k + p + `+ 2i + s − 2

angular momentum selection rules:

|`− p| ≤ s [with s(h00) = 0, s(h0i ) = 1, s(hij) = 2]
s and `− p have same parity

⇒ n = 3k + 2p + 2j − 2 with j ∈ N



What are the first half-integral PN orders?

Half-integral PN orders below 7.5PN

n = 11 + 2(p − 2) + 2j

Only k = 3 contributes: M ×M ×moment = tail of tail

5.5PN, 6.5PN, 7.5PN, ... for the mass quadrupole

6.5PN, 7.5PN, ... for the mass octupole

7.5PN, ... for the mass hexadecapole

Orders for current-type interaction: involve εijaJaL−1
↪→ deduced from a→ a − 1, p → p + 1

6.5PN, 7.5PN, ... for the current quadrupole

7.5PN, ... for the current octupole



Construction of the cubic field

Strategy

Compute the relevant part of H[τ ] through that ofM(hµν)

Start from the MPM quadratic �eld M×moment

Construct the cubic source M ×M×moment

N
M×M×ML

(3) =
�nite∑
`

S`(r , t − r/c)n̂L

↪→ contains
�instantaneous� terms: S(r , t − r/c) = rB−k F (t − r/c)

hereditary terms (related to tails):

S(r , t−r/c) = rB−k
∫ +∞

1

dx Qm(x)F (t−r x/c)

Apply 2−1R on each source piece S(r , t − r/c)n̂L



Extraction of the hereditary tail part

Variant of the previous formula for 2−1R [...] for r → 0

h = ∂̂L

(G (t − r/c)− G (t + r/c)

r

)
︸ ︷︷ ︸
contains all hereditary contributions

+ 2−1inst[S n̂L]︸ ︷︷ ︸
local-in-time operator

Analysis of G (u) = Ck,`,m × FPB=0 (some integral with a kernel τB)

⇒ Gtail-tail(u) ∝ G 3M2

cn
ResCk,`,m

∫ +∞

0
dτ ln τ M

(a)
L (u − τ)

Ansatz: the conservative part is given by

Gcons(u) ∝ G 3M2

cn
ResCk,`,m

∫ +∞

0
dτ ln τ

(M(a)
L (u − τ) + M

(a)
L (u + τ)

2

)



PN iteration

By matching h00 = h00naive + h00tail

= −4 U
c2

+ ...+ h00LO tail + ...

Likewise for h0i , hij

⇒ Insertion into Λ(2) and Λ(3) can generate coupling of U, ..., and hµν

Gauge transformation to minimize the couplings: terms 0i , ij → 00

EE must be iterated with coupling included

2 iterations needed for Iij
1 iteration needed for Iijk and Jij

Equations to be solved of the form

∆ΨL = x̂Lr2pφ

←↩ systematic use of superpotentials: ∆φ2k+2 = φ2k



From the metric to u
0

Structure of the n
2
PN type grav field

hµν ∼
∑

G (a)
cons(t) x̂L∂φ

Superpotentials obtained by guess work → to be regularized at x = y1

Iij , Iijk , ... replaced by their explicit PN values

Integrals computed by using

x i12(t ± τ) = cos(Ωτ) x i12(t)± sin(Ωτ) v i12(t)/Ω ,

v i12(t ± τ) = ∓Ω sin(Ωτ) x i12(t) + cos(Ωτ) v i12(t)

and ∫ +∞

0
dτ ln τe iλτ = − π

2|λ|
− i

λ
(ln |λ|+γE)

Note that for λ = mΩ the term ∝ π is invariant for t → −t
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Conclusion

We �nd that there is no radial velocity

We con�rmed the origin of the half-integral order conservative terms

We found full agreement with the SF results

Generalization beyond linear order in m1/m2 could be interesting

Blanchet, F. & Whiting Phys. Rev. D 89, 064026 (2014)

Blanchet, F. & Whiting Phys. Rev. D 90, 044017 (2014)

and references there in
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