About the curious appearance of half-integral post-Newtonian terms in the conservative dynamics of black-hole binaries

Guillaume Faye^a

^a Institut d'Astrophysique de Paris (IAP), UMR 7095 CNRS Université Pierre & Marie Curie

Luc Blanchet (IAP) & Bernard Whiting (University of Florida)

November 17, 2014

・ロト ・御ト ・ヨト ・ヨト 三田

- 2 Detweiler redshift & comparison PN vs SF
- 3 Where do the $\frac{n}{2}$ PN conservative terms come from?
- POST-NEWTONIAN FORMALISM
- **6** PN COMPUTATION OF HALF-INTEGRAL PN CONTRIBUTIONS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

6 CONCLUSION

- 2 Detweiler redshift & comparison PN vs SF
- (3) Where do the $\frac{n}{2}$ PN conservative terms come from?
- Post-Newtonian formalism
- 5 PN COMPUTATION OF HALF-INTEGRAL PN CONTRIBUTIONS
- 6 CONCLUSION

CONTEXT: GW OBSERVATORY AT MHZ FREQUENCY

Gravitational-wave astronomy is emerging

- Advanced ground-based GW detectors soon ready to operate Frequency range: 10–10⁴Hz
- Pulsar-timing arrays searching for the radiation of supermassive black-hole binaries
 Frequency range: 10⁻⁹-10⁻⁶ Hz
- Space-based observatory planed for 2034 Frequency range: 10⁻³-10⁻¹Hz (?)

"The L3 mission will study the gravitational Universe, searching for ripples in the very fabric of space-time created by celestial objects with very strong gravity, such as pairs of merging black holes."

ESA announcement (November 28th 2013)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

ELISA: A POSSIBLE PROPOSAL

credit: AEI/MM/exozet

EXTREME MASS RATIO INSPIRALS

EMRI

Small compact object orbiting about a massive BH

credit: NASA

→ astrophysically relevant
 can appear in galactic nuclei

Potential source for eLISA

- 3 main formation scenarios:
 - Capture of compact stars
 - mass segregation
 - resonant relaxation
 - direct plunge or capture
 - 2 Tidal disruption of binaries
 - Creation of massive stars in the accretion discs

DYNAMICS OF EMRIS

• Eccentricity and orbit misalignment depend on the formation scenario

- e very high in the capture scenario
- e can be small for binary disruptions
- in the first two scenario, the orbits are misaligned
- Significant strong field effects at periastron (for eccentric systems)
- Significant bursts of GW emission at periastron
 ↔ important for the capture
- Complicated orbits with various timescales

114 days before merger, 36% of light speed

Probe of the strong field region

eLISA type mission:

expected rate	$1 \mathrm{yr}^{-1}$	
mass range	m_1	$\sim 5 M_{\odot}$ –20 M_{\odot}
	<i>m</i> ₂	$\sim 10^5 M_\odot$ – $10^6 M_\odot$
horizon	z = 0.7	
measured quantity	m_1	arepsilon=0.1%
	<i>m</i> ₂	arepsilon=0.1%
	<i>S</i> ₂	$\delta S_2 = 10^{-3}$
	е	$\delta e = 10^{-3}$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Specificity of EMRI waveform modeling

Accurate modeling crucial for

- detection
- parameter estimation

Failure of approaches normally used for black-hole binaries

- Numerical relativity
 - \hookrightarrow computational time issues
- Post-Newtonian approximation solution searched as a perturbative series in $(v_{high.typ.}/c)^2$

 $\frac{\text{PN counting}}{1\text{PN} = 1/c^2}$

 \hookrightarrow converge badly for $q=m_1/m_2 o 0$

▲ロト ▲母ト ▲ヨト ▲ヨト 三目 - のんの

Self-force approach

Covariant perturbative approach with arepsilon=q

SELF-FORCE	COUNTING
SF = q	$PSF = q^2$

Method to obtain the SF equations of motion:

• Expand the perturbed metric to order arepsilon

$$g_{\mu\nu}^{(\varepsilon)} \approx g_{\mu\nu} + \varepsilon \, \delta g_{\mu\nu}^{(1)}$$

- Describe the point-like objects with some $T^{\mu
 u} = arepsilon T^{\mu
 u}_{(1)}[y^{lpha},g_{lphaeta}]$
- Solve the perturbed Einstein eqs with some "regular" Green function

$$G_{\operatorname{reg}\alpha'\beta'}^{\mu\nu}(x,x') = G_{\operatorname{R}\alpha'\beta'}^{\mu\nu}(x,x') - G_{\operatorname{sing}\alpha'\beta'}^{\mu\nu}(x,x') \xrightarrow{\operatorname{highly non-trivial}}_{\operatorname{full rigor}} f_{\operatorname{full rigor}}^{\operatorname{highly non-trivial}}(x,x')$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

SELF-FORCE EQUATIONS OF MOTION

• equations of motion = geodesic equations in $g_{\mu\nu} + \varepsilon \, \delta g^{(1)}_{\mu\nu}$

• Use of $Y^{\ell m}$ -mode-sum regularization in practice

$$f^{\rm reg} = \sum_{\ell=0}^{+\infty} \left[f_{\ell} - A_{\pm}L - B - B - CL^{-1} \right] - D \qquad \text{with } L = \ell + 1/2$$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ ― 理 ―

2 Detweiler redshift & comparison PN vs SF

- (3) Where do the $\frac{n}{2}$ PN conservative terms come from?
- Post-Newtonian formalism
- 5 PN COMPUTATION OF HALF-INTEGRAL PN CONTRIBUTIONS
- 6 CONCLUSION

CASE OF EXACT CIRCULAR MOTION

System of interest

small mass particle in circular orbit about a black hole

Consequences:

- Helical killing vector: $k^\mu o \partial^\mu_t + \Omega \, \partial^\mu_\phi$ in some class of gauges
- Presence of incoming waves \Rightarrow conservative system

$$\begin{array}{c} \text{GRAVITATIONAL REDSHIFT} \\ z = -k^{\mu}u_{\mu} \end{array}$$

Properties:

• Gauge invariance property (for helically-symmetric gauge vectors)

z is a physical observable

• Simple interpretation for far-away observers along the axis

•
$$u^\mu=z^{-1}k^\mu$$
 and $z^{-1}=u^0$

 $\Rightarrow u^0$ can be used for comparison with PN results

< □ > < (四 >) < (回 >) < (回 >) < (回 >) (回 >) (回) (回 >) (回) (回 >) (回) (回 >) (u =)

COMPARISON WITH PN CALCULATIONS

General motivations:

- PN and SF perturbative formalisms both fairly delicate
- Both methods involve non-trivial regularizations
 - For PN:
 - $\bullet\,$ effective representation of bodies by point-particle $\Rightarrow\,$ dim-reg
 - technical Finite Part regularization to treat the field multipole expansion

< □ > < (四 > < (回 >) < (回 >) < (回 >) (□) = (□)

- For SF:
 - Green function regularization
 - mode-sum regularization for $\delta g^{(1)}_{\mu\nu}$ (or other equivalent reg)
- Insight provided by each formalism on the other about:
 - physical content
 - convergence properties

Recent SF computations of u^0 PN expansion to very high orders

HIGH PN ORDERS FROM SF CALCULATIONS I

$$u^{0} = \left[-\left(g_{\mu\nu} + \delta g_{\mu\nu}^{\rm reg}\right)\frac{v^{\mu}v^{\nu}}{c^{2}}\right]^{-1/2}$$

Work of Shah, Friedman & Whiting: 10.5PN order

• Start from Teukolsky radial equation for $\Psi_0 = C_{\mu\alpha\nu\beta} l^{\mu} m^{\alpha} l^{\nu} m^{\beta}$:

$$\mathcal{L}_{\mathsf{Teuk}}^{(r)}({}_2R_{\ell m\omega})[\delta g] = au_{\ell m\omega}^{(r)}S[\delta g]$$

- Solutions built from the hom sol of Mano, Suzuki & Tagasuki appearance of series of hypergeometric functions
- Accurate numerical computation with 350 digits!!
- Extract the metric angular modes in some "radiation gauge"
- Evaluate the field at particle position by mode-sum regularization

- 2

• Calculation of u^0 ; reconstruction of some analytic coefficients

Work of Bini and Damour: 8.5PN order

• Start from the Regge-Wheeler radial equations for the master function:

$$\mathcal{L}_{\scriptscriptstyle \mathsf{RG}}^{(r)} R_{\ell m \omega}^{(\mathsf{odd})} = S_{\ell m \omega}^{(\mathsf{odd})}(r)$$

 \hookrightarrow solutions at particule position built from Mano, Suzuki & Tagasuki

- Computation for $\ell \leq$ 4 using the hypergeometric series (for "up" sol)
- PN resolution for arbitrary ℓ
- Results "patched" together motivated by phys/math arguments

 \Rightarrow fully analytic expressions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

HALF-INTEGRAL PN ORDER TERMS IN u^0

DEFINITION

$$u^0 = rac{1}{\sqrt{1-3y}} + q \; u^0_{
m SF} + {\cal O}(q^2)$$

PN parameter:
$$y = \left(\frac{Gm_2\Omega}{c^3}\right)^{2/3}$$

$$u_{\rm SF}^{0} = -y + \sum_{n=-2}^{10} \alpha_n y^{n+1} + \sum_{n=4}^{10} \beta_n y^{n+1} \ln y + \sum_{n=7}^{10} \gamma_n y^{n+1} \ln^2 y$$
$$- \frac{13696}{525} \pi y^{13/2} + \frac{81077}{3675} \pi y^{15/2} + \frac{82561159}{467775} \pi y^{17/2}$$
$$+ \text{ higher half-integral orders } + y \mathcal{O}(y^{11})$$

Notice the presence of terms $\propto 1/c^{2q+1}$

- Why do they appear for this conservative dynamics?
- Can we compute them using standard PN techniques?

- 2 Detweiler redshift & comparison PN vs SF
- (3) Where do the $\frac{n}{2}$ PN conservative terms come from?
- Post-Newtonian formalism
- 5 PN COMPUTATION OF HALF-INTEGRAL PN CONTRIBUTIONS
- 6 CONCLUSION

IS THERE A PARADOX?

$$n = 2k + 2p + q + 2$$

For circular orbits $\boldsymbol{n}_{12} \cdot \boldsymbol{v}_{12} = 0$

What if they were non-"instantaneous" terms? $n_{12}(t) \cdot v_{12}(t') \neq 0$

WELL-KNOWN HEREDITARY EFFECT IN CLASSIC FIELD THEORY the tail effect

HUYGENS PRINCIPLE

"Il y a encore à considérer dans l'émanation de ces ondes, que chaque particule de la matière, dans laquelle une onde s'étend, ne doit pas communiquer son mouvement seulement à la particule prochaine, qui est dans la ligne droite tirée du point lumineux, mais qu'elle en donne aussi nécessairement à toutes les autres qui la touchent et qui s'opposent à son mouvement."

Fig. 6.

C. Huygens, Traité de la lumière credit: Caspar Netscher (ca 1639–1684)

Image: A math and a

VALIDITY OF HUYGENS PRINCIPLE

$$V \text{ solution of: } \Box V = 0 \qquad V(\mathbf{x}, t) = \int_{-\infty}^{+\infty} d\nu \tilde{V}(\mathbf{x}, \nu) e^{-2\pi i\nu t}$$

$$\tilde{V}(\mathbf{x}, \nu) = \int_{\Sigma} \frac{d^2 S'^i}{-4\pi} \left[\tilde{V}(\mathbf{x}', \nu) \partial'_i \left(\frac{e^{ik|\mathbf{x} - \mathbf{x}'|}}{|\mathbf{x} - \mathbf{x}'|} \right) - \frac{e^{ik|\mathbf{x} - \mathbf{x}'|}}{|\mathbf{x} - \mathbf{x}'|} \partial'_i \tilde{V}(\mathbf{x}', \nu) \right]$$

$$\mathbf{x}^{\bullet} \qquad \Sigma$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

HADAMARD REFORMULATION

Past dependence of a wave-type field $\Phi(x^{\mu})$ on $\mathcal{C} \cap \Sigma_t$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ のへで

TAIL EFFECTS

zone of Σ_t where the value of Φ determines $\Phi(x^{\mu} = y(\tau))$

Sourced wave equation: $\Box \Phi = \rho$

Retarded solution:

$$\Phi(x) = \int \mathrm{d}^4 x' G_{\mathsf{R}}(x, x') \rho(x')$$

GENERAL FORMULA FOR THE RETARDED GREEN FUNCTION $G_{\rm R}(x,x') \equiv G(x-x')$

$$G(x) = -\theta(t) \int_0^{+\infty} dk \left(\frac{k}{r}\right)^{\frac{d-2}{2}} \sin(ckt) J_{\frac{d-2}{2}}(kr)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

GREEN FUNCTION IN (d+1) DIMENSIONS II

• Reduction for *d* odd:

$$G(x) = \frac{(-1)^{\frac{d-1}{2}}}{4\pi^{\frac{d-1}{2}}} \left(\frac{\mathrm{d}}{\mathrm{d}r^2}\right)^{\frac{d-3}{2}} \frac{\delta(x^0 - r)}{r}$$

• Reduction for *d* even:

$$G(x) = \frac{(-1)^{\frac{d}{2}}}{2\pi^{\frac{d}{2}}} \left(\frac{\mathrm{d}}{\mathrm{d}r^{2}}\right)^{\frac{(d-2)}{2}} \int_{r}^{+\infty} \mathrm{d}s \, \frac{\delta(x^{0}-s)}{\sqrt{s^{2}-r^{2}}}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

GREEN FUNCTION IN CURVED SPACETIME

Focus on the equation satisfied by
$$\gamma_{\mu
u}=\delta g_{\mu
u}-rac{1}{2}(g^{lphaeta}\delta g_{lphaeta})g_{\mu
u}$$

Sourced wave equation:
$$\Box \gamma^{\mu\nu} + 2R_{\alpha \ \beta}^{\mu \ \nu} \gamma^{\alpha\beta} = \frac{16\pi G}{c^4} T^{\mu\nu}$$

Retarded solution:

$$\gamma^{\mu\nu}(x) = \frac{4G}{c^4} \int \mathrm{d}^4 x' \sqrt{-g'} G^{\mu\nu}_{\mathsf{R}\ \alpha'\beta'}(x,x') T^{\alpha'\beta'}(x')$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

HADAMARD FORM FOR THE RETARDED GREEN FUNCTION

$$G^{\mu\nu}_{\mathsf{R}\ \alpha'\beta'}(x,x') = \theta_{+}(x,\Sigma) \Big[U^{\mu\nu}_{\ \alpha'\beta'} \delta(\sigma) + V^{\mu\nu}_{\ \alpha'\beta'} \theta(-\sigma) \Big]$$

PERTURBATIVE INTERPRETATION

TAIL WAVE

GW scattered on the curvature of space-time

 \hookrightarrow corresponds to a $M \times M_L$ interaction in the waveform

TAIL-OF-TAIL WAVE

tail wave scattered on the curvature of space-time

 \hookrightarrow associated with the fact that null geodesic \neq 'straight lines' EFT point of view:

- 2 Detweiler redshift & comparison PN vs SF
- (3) Where do the $\frac{n}{2}$ PN conservative terms come from?
- POST-NEWTONIAN FORMALISM
- 5 PN COMPUTATION OF HALF-INTEGRAL PN CONTRIBUTIONS
- 6 CONCLUSION

$$v/c \ll 1$$

highest characteristic velocity

For a PN field $Q: \partial_t Q/c \sim \varepsilon \partial_i Q$

POST-NEWTONIAN EXPANSION:

expansion in the small parameter $\varepsilon = v/c$

For ordinary matter: $T^{00} \sim c^2$ $T^{0i} \sim c$ $T^{ij} \sim c^0$

▲ロト ▲母ト ▲ヨト ▲ヨト 三目 - のんの

ISOLATED PN SOURCES

Physical assumptions:

- ullet Ordinary matter source $\mathcal{T}^{\mu
 u}$ with compact support
- No-incoming wave condition
- Post-Newtonian approximation $v/c \ll 1$ valid within the matter $\Rightarrow D_{\rm matt} \ll \lambda$

MULTIPOLAR POST-MINKOWSKIAN APPROXIMATION

... but for a propagating field $Q: \ \partial_t Q/c \sim \partial_i Q$

Multipolar expansion:

expansion in the small parameter (D_{matt}/λ) \Rightarrow expansion in 1/r at t - r/c = cst

For Φ satisfying $\Box \Phi = \rho$

$$\Phi_{\text{ext}} = \sum_{\ell=0}^{+\infty} \frac{(-1)^{\ell}}{\ell!} \partial_L \left(\frac{M_L(t-r/c)}{r} \right)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

EINSTEIN EQUATIONS IN HARMONIC GAUGE

PM perturbation: $h^{\mu
u} = \sqrt{-g} \, g^{\mu
u} - \eta^{\mu
u}$

HARMONIC GAUGE CONDITION

$$\nabla^{\nu}\nabla_{\nu}x^{\mu} = 0 \quad \Leftrightarrow \quad \partial_{\nu}h^{\mu\nu} = 0$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- $\Lambda^{\mu\nu}$ contain a 2nd order derivative: $-h^{\alpha\beta}\partial_{\alpha\beta}h^{\mu\nu}$ \hookrightarrow produces the non-linear tail effect
- the gauge condition implies the equations of motion

STANDARD PN SCHEME

Smooth $T^{\mu\nu}$ assumed with $T^{00} \sim c^2$ $T^{0i} \sim c$ $T^{ij} \sim c^0$

Iterative computation of $h^{\mu
u}_{[m]}$

- Assume $h^{\mu
 u}_{[m']}$ known for m' < m (not needed at leading order)
- Solution for $h_{[m]}^{\mu\nu}$ taken to be

$$h_{[m]}^{\mu
u} = rac{16\pi G}{c^4} \Big\{ \Box_{
m R}^{-1} \Big[au^{\mu
u} (h^{lphaeta}) \Big] \Big\}_{[m-4]}$$

Go to the next order

FORMAL PN SERIES:
$$\overline{h^{\mu\nu}} = \sum_{m=m_{\min}}^{+\infty} \frac{1}{c^m} h^{\mu\nu}_{(m)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What is the iterative PN expansion
$$\overline{\Box_{R}^{-1}\tau}$$
 of
 $\Box_{R}^{-1}\tau = \int \frac{d^{3}\mathbf{x}'}{-4\pi} \frac{1}{|\mathbf{x} - \mathbf{x}'|} \tau(\mathbf{x}', t - |\mathbf{x} - \mathbf{x}'|/c)$?

$$\overline{\Box_{\mathrm{R}}^{-1}[\tau]} = \sum_{k \ge 0, n} \frac{(-1)^k}{k!} \frac{\partial_t^k}{c^k} \int \frac{d^3 \mathbf{x}'}{-4\pi} |\mathbf{x} - \mathbf{x}'|^{k-1} \frac{\overline{\tau}_{(n)}(\mathbf{x}', t)}{c^n}$$

does not make sense!!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

information on the field behavior far from the system required...

Key idea to study the field outside the near zone

 $h^{\mu\nu}$ in the exterior zone satisfies the vacuum Einstein equations \hookrightarrow contained in the most general PM asymptotic solution

Principle of the algorithm:

• Decompose
$$h^{\mu
u}$$
 as $\sum_{n=1}^{+\infty} G^n h^{\mu
u}_{\scriptscriptstyle (n)}$

• Find iteratively the most general solution of

$$\Box h_{(n+1)}^{\mu\nu} = \Lambda_{(n)}^{\mu\nu} (\partial h_{(\leq n)}, \partial h_{(\leq n)})$$

◆□▶ ◆舂▶ ◆理▶ ◆理▶ 三語…

Absorb homogeneous solutions by moment redefinitions

FINITE PART (FP) REGULARIZATION

PM solutions expressed in terms of FP integrals

$$\mathsf{FP}\int\mathrm{d}^3 x' F(x',t)$$
 for a smooth function F on \mathbb{R}^{*3} :

• Computation of
$$I[F](B) \equiv \int \mathrm{d}^3 x' (|x'|/r_0)^B F(x')$$

• Expansion of I[F](B) in a Laurent series of the form

$$\sum_{k=k_0}^{+\infty} I_k[F]B^k$$

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへで

•
$$\operatorname{FP}\int \mathrm{d}^3 x' F(x',t) = l_0[F] \leftarrow \text{depends on } r_0$$

LINEARIZED EXTERIOR FIELD I

Linearized Einstein equations in vacuum:

 $\Box h_{(1)}^{\mu
u} = 0$ $\partial_{\nu} h_{(1)}^{\mu
u} = 0$

with the no-incoming wave condition

$$\lim_{\substack{r \to +\infty \\ t+r/c \to cst}} h_{(m)}^{\mu\nu} = 0 \qquad \qquad \lim_{\substack{r \to +\infty \\ t+r/c \to cst}} \left[\left(\partial_r + \frac{1}{c} \partial_t \right) (r h_{(m)}^{\mu\nu}) \right] = 0$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Form of the most general solutions in Minkowskian-like coordinates:

• in spherical symmetry
$$\frac{l(t - r/c)}{r}$$

• in general $\sum_{\ell \ge 0} \partial_{lL} \left(\frac{l_{JL}(t - r/c)}{r} \right)$
(possible contraction to ε_{abc} for current moments)

Most general exterior linear solution

 $\begin{aligned} h_{(1)}^{\mu\nu} &= h_{\text{can}}^{\mu\nu}(I_L(t'), J_L(t')) + \text{ linear gauge transformation term in } \phi_{(1)}^{\mu} \\ & \text{ with } \Box \phi_{(1)}^{\mu} = 0 \end{aligned}$

 $\Rightarrow h^{\mu
u}$ entirely parameterized by 6 moments

- I_L = source mass-type moment of order ℓ J_L = source current-type moment of order ℓ
- 4 gauge moments \Leftrightarrow high-order PN corrections to $\{I_L, J_L\}$

Unicity of the multipole parameterization iff the moments are STF

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$$e.g. I_{ij} = I_{ji}, I_{ii} = 0$$

POST-MINKOWSKIAN ITERATION

• Search of a particular solution of $\Box h_{(n+1)}^{\mu\nu} = \Lambda_{(n+1)}^{\mu\nu}(h_{(\leq n)}, h_{(\leq n)})$ $\Box_{\mathrm{R}}^{-1} \Lambda_{(n+1)}^{\mu\nu}$ ill-defined... but

$$\Box(\mathsf{FP}\Box_{\mathrm{R}}^{-1}F)=F$$

solution under assumption of past stationarity : $p_{(n+1)}^{\mu\nu} = \mathsf{FP}\square_{\mathrm{R}}^{-1} \Lambda_{(n+1)}^{\mu\nu}$

• Determination of the homogeneous solution $q^{\mu
u}_{_{(n+1)}}$ of $\Box h^{\mu
u} = ...$

$$\partial_{\nu}h_{\scriptscriptstyle (n+1)}^{\mu\nu}=\partial_{\nu}p_{\scriptscriptstyle (n+1)}^{\mu\nu}+\partial_{\nu}q_{\scriptscriptstyle (n+1)}^{\mu\nu}=0\quad\text{and}\quad \Box q_{\scriptscriptstyle (n+1)}^{\mu\nu}=0\quad\Rightarrow\quad q_{\scriptscriptstyle (n+1)}^{\mu\nu}$$

GENERAL SOLUTION

$$h_{(n+1)}^{\mu
u} = p_{(n+1)}^{\mu
u} + q_{(n+1)}^{\mu
u}$$

(+ homogeneous solution absorbed in a moment redefinition)

PRINCIPLE OF THE MATCHING PROCEDURE

- In the exterior zone $D_{
 m ext}$: $h^{\mu
 u}=\mathcal{M}(h^{\mu
 u})\equiv$ mult expansion of $h^{\mu
 u}$
- In the near zone $D_{\scriptscriptstyle near}$: $h^{\mu
 u}$ given by the searched PN expression $\overline{h}^{\mu
 u}$
- In some buffer zone $D_{\scriptscriptstyle \mathsf{near}} \cap D_{\scriptscriptstyle \mathsf{ext}}$
- stationarity in the remote past

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

EXPANSION OF RETARDED QUANTITIES

RESULT OF MATCHING
$$\overline{\Box_{R}^{-1}[\tau]} = \overline{\Box_{R}^{-1}[\tau]} + \mathcal{H}[\tau]$$

with
$$\overline{\Box}_{\mathbb{R}}^{-1}[\tau] = \sum_{k \ge 0, n} \frac{(-1)^k}{k!} \frac{\partial_t^k}{c^k} \mathsf{FP} \int \frac{d^3 \mathbf{x}'}{-4\pi} |\mathbf{x} - \mathbf{x}'|^{k-1} \frac{\overline{\tau}_{(n)}(\mathbf{x}', t)}{c^n}$$

 $\mathcal{H}[\tau] = \sum_{\ell=0}^{+\infty} \frac{(-1)^\ell}{\ell!} \hat{\partial}_L \left\{ \frac{\overline{\mathcal{R}}[\tau]_L(t - r/c) - \overline{\mathcal{R}}_L[\tau](t + r/c)}{2r} \right\} \right]$

H[*τ*] is a homogeneous solution of the wave equation
 → the source "feels" some external-like regular wave

 $\mathcal{H}[au]$ actually contains the tail effect

• \mathcal{R}_L depends on $\mathcal{M}(h)$

I INTRODUCTION

- 2 Detweiler redshift & comparison PN vs SF
- 3 Where do the $\frac{n}{2}$ PN conservative terms come from?
- POST-NEWTONIAN FORMALISM
- **6** PN COMPUTATION OF HALF-INTEGRAL PN CONTRIBUTIONS

6 CONCLUSION

STRUCTURE OF TAIL TERMS

Interactions involving $k_{non stat} \ge 2$ non-static moments ignored

 $M \times ... \times M \times I_P$ TAIL INTERACTIONS IN $h^{\mu\nu}$

$$h_{M\times\cdots\times M\times I_{P}}^{\alpha\beta} \sim \sum_{k,p,\ell,i} \frac{G^{k}M^{k-1}}{c^{3k+p}} \hat{n}_{L}^{L} \left(\frac{r}{c}\right)^{\ell+2i} \int_{-\infty}^{+\infty} \mathrm{d}u \,\kappa_{LP}^{\alpha\beta}(t,u) \,I_{P_{k}}^{(a)}(u)$$

$$= \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{d}u \,\kappa_{LP}^{\alpha\beta}(t,u) \,I_{P_{k}}^{(a)}(u) = \int_{-\infty}^{+\infty} \frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{d}u \,\kappa_{LP}^{\alpha\beta}(t,u) \,I_{P_{k}}^{(a)}(u) = \int_{-\infty}^{+\infty} \frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{d}u \,\kappa_{LP}^{\alpha\beta}(t,u) \,I_{P_{k}}^{(a)}(u) = \int_{-\infty}^{+\infty} \mathrm{d}u \,\kappa_{LP}^{\alpha\beta}(t,u) \,I_{P_{k}}^{(a)}(u) \,I_{P_{k}}^{(a)}(u) = \int_{-\infty}^{+\infty} \mathrm{d}u \,\kappa_{LP}^{\alpha\beta}(t,u) \,I_{P_{k}}^{(a)}(u) \,I_{P_{k}}^{(a)}(u) \,I_{P_{k}}^{(a)}(u) = \int_{-\infty}^{+\infty} \mathrm{d}u \,\kappa_{LP}^{\alpha\beta}(t,u) \,I_{P_{k}}^{(a)}(u) \,I_{P_{k}}^{($$

• a= # of
$$\partial_t = k + p + \ell + 2i + 1$$

- power of 1/c: $n = 3k + p + \ell + 2i + s 2$
- angular momentum selection rules:

•
$$|\ell-
ho|\leq s$$
 [with $s(h^{00})=0$, $s(h^{0i})=1$, $s(h^{ij})=2$]

• s and $\ell - p$ have same parity

$$\Rightarrow$$
 $n = 3k + 2p + 2j - 2$ with $j \in \mathbb{N}$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨー つへ⊙

WHAT ARE THE FIRST HALF-INTEGRAL PN ORDERS?

HALF-INTEGRAL PN ORDERS BELOW 7.5PN n = 11 + 2(p - 2) + 2j

Only k = 3 contributes: $M \times M \times moment = tail of tail$

- 5.5PN, 6.5PN, 7.5PN, ... for the mass quadrupole
- 6.5PN, 7.5PN, ... for the mass octupole
- 7.5PN, ... for the mass hexadecapole

Orders for current-type interaction: involve $\varepsilon_{ija}J_{aL-1}$ \hookrightarrow deduced from $a \to a - 1$, $p \to p + 1$

- 6.5PN, 7.5PN, ... for the current quadrupole
- 7.5PN, ... for the current octupole

CONSTRUCTION OF THE CUBIC FIELD

STRATEGY

Compute the relevant part of $\mathcal{H}[au]$ through that of $\overline{\mathcal{M}(h^{\mu
u})}$

- Start from the MPM quadratic field M×moment
- Construct the cubic source $M \times M \times$ moment

$$N_{(3)}^{M imes M imes M_L} = \sum_{\ell}^{\text{finite}} S_\ell(r, t - r/c) \hat{n}^L$$

 \hookrightarrow contains

- "instantaneous" terms: $S(r, t r/c) = r^{B-k} F(t r/c)$
- hereditary terms (related to tails):

$$S(r,t-r/c)=r^{B-k}\int_{1}^{+\infty}\mathrm{d}x\,Q_m(x)\,F(t-r\,x/c)$$

• Apply $\square_{\mathsf{R}}^{-1}$ on each source piece $S(r, t - r/c)\hat{n}^L$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

EXTRACTION OF THE HEREDITARY TAIL PART

• Variant of the previous formula for $\overline{\Box_{\mathsf{R}}^{-1}[...]}$ for r o 0

$$h = \underbrace{\hat{\partial}_L \left(\frac{G(t - r/c) - G(t + r/c)}{r} \right)}_{\text{contains all hereditary contributions}} + \underbrace{\Box_{\text{inst}}^{-1} [\overline{S} \ \hat{n}^L]}_{\text{local-in-time operator}}$$

• Analysis of $G(u) = C_{k,\ell,m} \times \mathsf{FP}_{B=0}$ (some integral with a kernel τ^B)

$$\Rightarrow \quad \mathcal{G}_{\text{tail-tail}}(u) \propto \frac{G^3 M^2}{c^n} \text{Res } \mathcal{C}_{k,\ell,m} \int_0^{+\infty} d\tau \ln \tau M_L^{(a)}(u-\tau)$$

• Ansatz: the conservative part is given by

$$G_{\rm cons}(u) \propto \frac{G^3 M^2}{c^n} \operatorname{Res} C_{k,\ell,m} \int_0^{+\infty} d\tau \, \ln \tau \left(\frac{M_L^{(a)}(u-\tau) + M_L^{(a)}(u+\tau)}{2} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \Rightarrow Insertion into $\Lambda_{\scriptscriptstyle (2)}$ and $\Lambda_{\scriptscriptstyle (3)}$ can generate coupling of U, ..., and $h^{\mu
u}$

- Gauge transformation to minimize the couplings: terms 0*i*, $ij \rightarrow 00$
- EE must be iterated with coupling included
 - 2 iterations needed for I_{ii}
 - 1 iteration needed for I_{ijk} and J_{ij}
- Equations to be solved of the form

$$\Delta \Psi_L = \hat{x}^L r^{2p} \phi$$

 \leftrightarrow systematic use of superpotentials: $\Delta \phi_{2k+2} = \phi_{2k}$

From the metric to u^0

STRUCTURE OF THE $\frac{n}{2}$ PN TYPE GRAV FIELD

$$h^{\mu
u}\sim\sum G^{(a)}_{
m cons}(t)\,\hat{x}^L\partial\phi$$

- \bullet Superpotentials obtained by guess work \rightarrow to be regularized at $\textbf{\textit{x}}=\textbf{\textit{y}}_1$
- Iij, Iijk, ... replaced by their explicit PN values
- Integrals computed by using

$$egin{aligned} &x_{12}^i(t\pm au)=\cos(\Omega au)\,x_{12}^i(t)\pm\sin(\Omega au)\,v_{12}^i(t)/\Omega\,,\ &v_{12}^i(t\pm au)=\mp\Omega\,\sin(\Omega au)\,x_{12}^i(t)+\cos(\Omega au)\,v_{12}^i(t) \end{aligned}$$

and

$$\int_{0}^{+\infty} d\tau \ln \tau e^{i\lambda\tau} = -\frac{\pi}{2|\lambda|} - \frac{i}{\lambda} (\ln |\lambda| + \gamma_{\mathsf{E}})$$

Note that for $\lambda = m\Omega$ the term $\propto \pi$ is invariant for $t \rightarrow -t$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

I INTRODUCTION

- 2 Detweiler redshift & comparison PN vs SF
- 3 Where do the $\frac{n}{2}$ PN conservative terms come from?
- POST-NEWTONIAN FORMALISM
- 5 PN COMPUTATION OF HALF-INTEGRAL PN CONTRIBUTIONS

6 CONCLUSION

- We find that there is no radial velocity
- We confirmed the origin of the half-integral order conservative terms
- We found full agreement with the SF results
- Generalization beyond linear order in m_1/m_2 could be interesting

Blanchet, F. & Whiting Phys. Rev. D 89, 064026 (2014)

Blanchet, F. & Whiting Phys. Rev. D 90, 044017 (2014)

and references there in

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで