Outline	Intro	Quick overview of massive gravity	Ghost free massive gravity	A new way of counting d.o.f.	Conclusion
		000000	0000000	00000	

A NEW WAY TO COUNT DEGREES OF FREEDOM IN DRGT MASSIVE GRAVITY RECENT DEVELOPMENTS IN MASSIVE GRAVITY

ILECENT DEVELOT MENTS IN MASSIVE GRAVIT

George Zahariade

APC, Paris C. Deffayet, J. Mourad, GZ, 1207.6338, 1208.4493

January 14, 2013

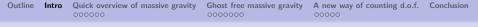
(日本) (日本) (日本)

1 Introduction

- QUICK OVERVIEW OF MASSIVE GRAVITY
 - Quadratic theory
 - Tension between theory and observation
 - Non-linear theories and the BD ghost
- **3** Non-linear ghost free massive gravity
 - The mass terms
 - Motivation of the specific form
 - A (not completely equivalent) vierbein reformulation
- 4 A NEW WAY OF COUNTING DEGREES OF FREEDOM
 - Constraints arising from local Lorentz invariance breaking
 - Constraints arising from diffeomorphism invariance breaking
 - Additional constraint

5 CONCLUSION

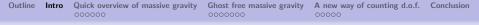
イロト イポト イヨト イヨト



• **Cosmological motivations:** adding a mass term to the graviton modifies gravity on large scales of order 1/m

$$V(r) \propto rac{1}{r}$$
 becomes $V(r) \propto rac{e^{-mr}}{r}$

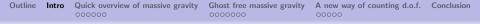
ヘロン 人間 とくほど くほとう



• **Cosmological motivations:** adding a mass term to the graviton modifies gravity on large scales of order 1/m

$$V(r) \propto rac{1}{r}$$
 becomes $V(r) \propto rac{e^{-mr}}{r}$

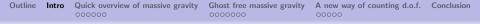
? Alternative explanation for dark energy and/or dark matter



• **Cosmological motivations:** adding a mass term to the graviton modifies gravity on large scales of order 1/m

$$V(r) \propto rac{1}{r}$$
 becomes $V(r) \propto rac{e^{-mr}}{r}$

- ? Alternative explanation for dark energy and/or dark matter
- **Theoretical motivations:** finding a theory of a massive spin-two field that might describe massive gravity as well as tensor mesons such as f_2 , a_2 or k_2^*

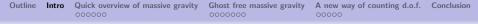


• **Cosmological motivations:** adding a mass term to the graviton modifies gravity on large scales of order 1/m

$$V(r) \propto rac{1}{r}$$
 becomes $V(r) \propto rac{e^{-mr}}{r}$

- ? Alternative explanation for dark energy and/or dark matter
- **Theoretical motivations:** finding a theory of a massive spin-two field that might describe massive gravity as well as tensor mesons such as f_2 , a_2 or k_2^*
- General relativity is a theory for a massless spin-two so... just add a mass term

・ロン ・回 と ・ ヨ と ・ ヨ と



• **Cosmological motivations:** adding a mass term to the graviton modifies gravity on large scales of order 1/m

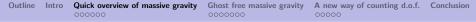
$$V(r) \propto rac{1}{r}$$
 becomes $V(r) \propto rac{e^{-mr}}{r}$

- ? Alternative explanation for dark energy and/or dark matter
- **Theoretical motivations:** finding a theory of a massive spin-two field that might describe massive gravity as well as tensor mesons such as f_2 , a_2 or k_2^*
- General relativity is a theory for a massless spin-two so... just add a mass term
- ! NOT SO EASY

Outline Intr	• Quick overview of massive gravity	Ghost free massive gravity	A new way of counting d.o.f.	Conclusion
	000000	000000	00000	

General relativity: highly non-linear theory of a massless spin-two

$$S = M_P^2 \int d^4x \sqrt{-g}R$$

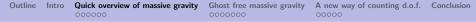


 General relativity: highly non-linear theory of a massless spin-two

$$S = M_P^2 \int d^4x \sqrt{-g}R$$

? Building a gauge invariance breaking mass term with the metric $g_{\mu\nu}$ only i.e. with no derivatives

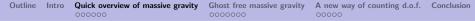
・ロン ・回 と ・ ヨ と ・ ヨ と



 General relativity: highly non-linear theory of a massless spin-two

$$S = M_P^2 \int d^4x \sqrt{-g}R$$

- ? Building a gauge invariance breaking mass term with the metric $g_{\mu\nu}$ only i.e. with no derivatives
- ! IMPOSSIBLE



 General relativity: highly non-linear theory of a massless spin-two

$$S = M_P^2 \int d^4x \sqrt{-g}R$$

- ? Building a gauge invariance breaking mass term with the metric $g_{\mu\nu}$ only i.e. with no derivatives
- ! IMPOSSIBLE
- Introduction of an auxiliary non-dynamical metric $f_{\mu
 u}$

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline Quick overview of massive gravity Intro 000000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

QUADRATIC THEORY (MASSLESS)

• Quadratic order action $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

$$S^{(2)}=-rac{M_P^2}{2}\int d^4x \; h^{\mu
u} {\cal E}^{
ho\sigma}_{\mu
u} h_{
ho\sigma}$$

where

$$\begin{aligned} \mathcal{E}^{\rho\sigma}_{\mu\nu} &\equiv -\frac{1}{2} \Big(\delta^{\rho}_{(\mu} \delta^{\sigma}_{\nu)} \Box - 2 \delta^{(\sigma}_{(\mu} \partial_{\nu)} \partial^{\rho)} &+ \eta^{\rho\sigma} \partial_{\mu} \partial_{\nu} \\ &- \eta_{\mu\nu} \eta^{\rho\sigma} \Box + \eta_{\mu\nu} \partial^{\rho} \partial^{\sigma} \Big) \end{aligned}$$

Outline Intro Quick overview of massive gravity 000000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

QUADRATIC THEORY (MASSLESS)

• Quadratic order action $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

$$\mathcal{S}^{(2)}=-rac{M_P^2}{2}\int d^4x \; h^{\mu
u}\mathcal{E}^{
ho\sigma}_{\mu
u}h_{
ho\sigma}$$

where

$$\begin{aligned} \mathcal{E}^{\rho\sigma}_{\mu\nu} &\equiv -\frac{1}{2} \Big(\delta^{\rho}_{(\mu} \delta^{\sigma}_{\nu)} \Box - 2 \delta^{(\sigma}_{(\mu} \partial_{\nu)} \partial^{\rho)} &+ \eta^{\rho\sigma} \partial_{\mu} \partial_{\nu} \\ &- \eta_{\mu\nu} \eta^{\rho\sigma} \Box + \eta_{\mu\nu} \partial^{\rho} \partial^{\sigma} \Big) \end{aligned}$$

• The fixed background metric $\eta_{\mu\nu}$ plays the role of the auxiliary metric $f_{\mu\nu}$

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline Intro Quick overview of massive gravity 000000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

QUADRATIC THEORY (MASSLESS)

• Quadratic order action $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

$$S^{(2)}=-rac{M_P^2}{2}\int d^4x \; h^{\mu
u} {\cal E}^{
ho\sigma}_{\mu
u} h_{
ho\sigma}$$

where

$$\begin{aligned} \mathcal{E}^{\rho\sigma}_{\mu\nu} &\equiv -\frac{1}{2} \Big(\delta^{\rho}_{(\mu} \delta^{\sigma}_{\nu)} \Box - 2 \delta^{(\sigma}_{(\mu} \partial_{\nu)} \partial^{\rho)} &+ \eta^{\rho\sigma} \partial_{\mu} \partial_{\nu} \\ &- \eta_{\mu\nu} \eta^{\rho\sigma} \Box + \eta_{\mu\nu} \partial^{\rho} \partial^{\sigma} \Big) \end{aligned}$$

- The fixed background metric $\eta_{\mu\nu}$ plays the role of the auxiliary metric $f_{\mu\nu}$
- Possible mass terms

$$h_{\mu\nu}h^{\mu\nu}$$
 and h^2

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline Quick overview of massive gravity Intro 000000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

QUADRATIC THEORY (MASSIVE)

• Quadratic order action $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

$$S_m^{(2)} = -rac{M_P^2}{2} \int d^4x \ h^{\mu
u} \mathcal{E}^{
ho\sigma}_{\mu
u} h_{
ho\sigma} - rac{M_P^2 m^2}{4} \int d^4x \ (h^{\mu
u} h_{\mu
u} - \gamma h^2)$$

Outline Quick overview of massive gravity Intro 000000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

QUADRATIC THEORY (MASSIVE)

• Quadratic order action $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

$$S_m^{(2)} = -rac{M_P^2}{2} \int d^4x \ h^{\mu
u} \mathcal{E}^{
ho\sigma}_{\mu
u} h_{
ho\sigma} - rac{M_P^2 m^2}{4} \int d^4x \ (h^{\mu
u} h_{\mu
u} - \gamma h^2)$$

Equations of motion

$$\Box h_{\mu\nu} - 2\partial_{(\mu}\partial^{\rho}h_{\nu)\rho} + \partial_{\mu}\partial_{\nu}h - \eta_{\mu\nu}\Box h + \eta_{\mu\nu}\partial^{\rho}\partial^{\sigma}h_{\rho\sigma}$$
$$= m^{2}(h_{\mu\nu} - \gamma\eta_{\mu\nu}h)$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline Intro Quick overview of massive gravity 00000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

QUADRATIC THEORY (MASSIVE)

• Quadratic order action $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

$$S_m^{(2)} = -rac{M_P^2}{2} \int d^4x \ h^{\mu
u} \mathcal{E}^{
ho\sigma}_{\mu
u} h_{
ho\sigma} - rac{M_P^2 m^2}{4} \int d^4x \ (h^{\mu
u} h_{\mu
u} - \gamma h^2)$$

Equations of motion

$$\Box h_{\mu\nu} - 2\partial_{(\mu}\partial^{\rho}h_{\nu)\rho} + \partial_{\mu}\partial_{\nu}h - \eta_{\mu\nu}\Box h + \eta_{\mu\nu}\partial^{\rho}\partial^{\sigma}h_{\rho\sigma}$$
$$= m^{2}(h_{\mu\nu} - \gamma\eta_{\mu\nu}h)$$

• Second order equations of motion for a priori 10 degrees of freedom i.e. 10×2 functions of the spatial coordinates can be set as initial conditions

Outline Intro Quick overview of massive gravity 00000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

QUADRATIC THEORY (MASSIVE)

• Quadratic order action $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

$$S_m^{(2)} = -rac{M_P^2}{2} \int d^4x \ h^{\mu
u} \mathcal{E}^{
ho\sigma}_{\mu
u} h_{
ho\sigma} - rac{M_P^2 m^2}{4} \int d^4x \ (h^{\mu
u} h_{\mu
u} - \gamma h^2)$$

Equations of motion

$$\Box h_{\mu\nu} - 2\partial_{(\mu}\partial^{\rho}h_{\nu)\rho} + \partial_{\mu}\partial_{\nu}h - \eta_{\mu\nu}\Box h + \eta_{\mu\nu}\partial^{\rho}\partial^{\sigma}h_{\rho\sigma}$$
$$= m^{2}(h_{\mu\nu} - \gamma\eta_{\mu\nu}h)$$

- Second order equations of motion for a priori 10 degrees of freedom i.e. 10×2 functions of the spatial coordinates can be set as initial conditions
- 4 constraint equations $\partial^{\mu}h_{\mu\nu} \gamma \partial_{\nu}h = 0$ (Bianchi identity)

Ghost free massive gravity A new way of counting d.o.f. Conclusion

FIERZ-PAULI THEORY $\gamma = 1$ (1939)

ADDITIONAL CONSTRAINT EQUATION

- Constraints $\partial^{\mu}h_{\mu\nu} \partial_{\nu}h = 0$ imply $\partial^{\mu}\partial^{\nu}h_{\mu\nu} \Box h = 0$
- Trace of the equations of motion $2(\partial^{\mu}\partial^{\nu}h_{\mu\nu}-\Box h)=-3m^{2}h$
- \rightarrow Additional constraint h = 0

Ghost free massive gravity A new way of counting d.o.f. Conclusion

FIERZ-PAULI THEORY $\gamma = 1$ (1939)

ADDITIONAL CONSTRAINT EQUATION

- Constraints $\partial^{\mu}h_{\mu\nu} \partial_{\nu}h = 0$ imply $\partial^{\mu}\partial^{\nu}h_{\mu\nu} \Box h = 0$
- Trace of the equations of motion $2(\partial^{\mu}\partial^{\nu}h_{\mu\nu}-\Box h)=-3m^{2}h$
- \rightarrow Additional constraint h = 0
 - 5 constraint equations

$$\partial^{\mu}h_{\mu
u} = 0$$

 $h = 0$

Ghost free massive gravity A new way of counting d.o.f. Conclusion

FIERZ-PAULI THEORY $\gamma = 1$ (1939)

ADDITIONAL CONSTRAINT EQUATION

- Constraints $\partial^{\mu}h_{\mu\nu} \partial_{\nu}h = 0$ imply $\partial^{\mu}\partial^{\nu}h_{\mu\nu} \Box h = 0$
- Trace of the equations of motion $2(\partial^{\mu}\partial^{\nu}h_{\mu\nu}-\Box h)=-3m^{2}h$
- \rightarrow Additional constraint h = 0
 - 5 constraint equations

$$\partial^{\mu}h_{\mu
u} = 0$$

 $h = 0$

• Naively $10-5=5=2\times 2+1$ degrees of freedom

Ghost free massive gravity A new way of counting d.o.f. Conclusion

FIERZ-PAULI THEORY $\gamma = 1$ (1939)

ADDITIONAL CONSTRAINT EQUATION

- Constraints $\partial^{\mu}h_{\mu\nu} \partial_{\nu}h = 0$ imply $\partial^{\mu}\partial^{\nu}h_{\mu\nu} \Box h = 0$
- Trace of the equations of motion $2(\partial^{\mu}\partial^{\nu}h_{\mu\nu}-\Box h)=-3m^{2}h$
- \rightarrow Additional constraint h = 0
 - 5 constraint equations

$$\partial^{\mu}h_{\mu
u}=0$$

 $h=0$

- Naively $10-5=5=2\times 2+1$ degrees of freedom
- ! Can be seen explicitly by considering plane wave solutions $h_{\mu\nu} = \epsilon_{\mu\nu} e^{ik_{\rho}x^{\rho}}$ of the equations of motion $\Box h_{\mu\nu} - m^2 h_{\mu\nu} = 0$

Outline Quick overview of massive gravity Intro 000000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

GHOST-FREE QUADRATIC THEORY

• If $\gamma \neq 1$ there is no additional constraint

Outline Intro Quick overview of massive gravity 000000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

GHOST-FREE QUADRATIC THEORY

- If $\gamma \neq 1$ there is no additional constraint
- Equation of motion of h

$$rac{2(\gamma-1)}{1-4\gamma}\Box h-m^2h=0$$

Ghost free massive gravity A new way of counting d.o.f. Conclusion

GHOST-FREE QUADRATIC THEORY

- If $\gamma \neq 1$ there is no additional constraint
- Equation of motion of h

$$\frac{2(\gamma-1)}{1-4\gamma}\Box h - m^2 h = 0$$

 \rightarrow If $\gamma < 1/4$ or $\gamma > 1$ then *h* is ghostlike

Ghost free massive gravity A new way of counting d.o.f. Conclusion

GHOST-FREE QUADRATIC THEORY

- If $\gamma \neq 1$ there is no additional constraint
- Equation of motion of h

$$\frac{2(\gamma-1)}{1-4\gamma}\Box h - m^2 h = 0$$

- \rightarrow If $\gamma < 1/4$ or $\gamma > 1$ then h is ghostlike
 - Even when $\gamma \in]1/4, 1[$ a ghost appears...

Outline Intro Quick overview of massive gravity 000000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

RECOVERING GR AT SMALL SCALES

• Fierz-Pauli theory is not in agreement with experiment (cf. light bending)

Outline Quick overview of massive gravity Intro 000000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

RECOVERING GR AT SMALL SCALES

- Fierz-Pauli theory is not in agreement with experiment (cf. light bending)
- \rightarrow van Dam, Veltman, Zakharov discontinuity

 $F.P. \rightarrow G.R.$ when $m \rightarrow 0$

Ghost free massive gravity A new way of counting d.o.f. Conclusion

RECOVERING GR AT SMALL SCALES

- Fierz-Pauli theory is not in agreement with experiment (cf. light bending)
- \rightarrow van Dam, Veltman, Zakharov discontinuity

 $F_{n}P_{n} \rightarrow G_{n}R_{n}$ when $m \rightarrow 0$

 Non-linearities may save us by screening the effects of the massive graviton at solar system scales (Vainshtein mechanism)

Ghost free massive gravity A new way of counting d.o.f. Conclusion

RECOVERING GR AT SMALL SCALES

- Fierz-Pauli theory is not in agreement with experiment (cf. light bending)
- \rightarrow van Dam, Veltman, Zakharov discontinuity

 $F.P. \rightarrow G.R.$ when $m \rightarrow 0$

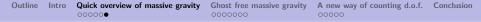
- Non-linearities may save us by screening the effects of the massive graviton at solar system scales (Vainshtein mechanism)
- We need a non-linear theory which reduces to Fierz-Pauli at quadratic order

 Outline
 Intro
 Quick overview of massive gravity
 Ghost free massive gravity
 A new way of counting d.o.f.
 Conclusion

NON-LINEAR COMPLETIONS OF FIERZ-PAULI THEORY

• Einstein-Hilbert action + mass term of the form

$$m^2 \int d^4x \sqrt{-g} V(g^{-1}f)$$

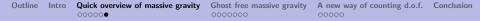


NON-LINEAR COMPLETIONS OF FIERZ-PAULI THEORY

• Einstein-Hilbert action + mass term of the form

$$m^2\int d^4x\sqrt{-g}V(g^{-1}f)$$

• Boulware and Deser (1972) showed explicitly that in some non-linear theories of massive gravity there was an inevitable ghost-like instability



NON-LINEAR COMPLETIONS OF FIERZ-PAULI THEORY

• Einstein-Hilbert action + mass term of the form

$$m^2 \int d^4x \sqrt{-g} V(g^{-1}f)$$

- Boulware and Deser (1972) showed explicitly that in some non-linear theories of massive gravity there was an inevitable ghost-like instability
- Due to the absence of a fifth constraint as in Fierz-Pauli theory

Outline Quick overview of massive gravity Intro

Ghost free massive gravity A new way of counting d.o.f. Conclusion

DRGT MASSIVE GRAVITY

• de Rham, Gabadadze, Tolley (2010) presented a theory claimed to be devoid of the BD ghost

Outline Quick overview of massive gravity Intro

DRGT MASSIVE GRAVITY

- de Rham, Gabadadze, Tolley (2010) presented a theory claimed to be devoid of the BD ghost
- \rightarrow Showed it to be ghost free at all orders in the decoupling limit

DRGT MASSIVE GRAVITY

- de Rham, Gabadadze, Tolley (2010) presented a theory claimed to be devoid of the BD ghost
- \rightarrow Showed it to be ghost free at all orders in the decoupling limit
 - Hassan, Rosen (2011): Hamiltonian analysis of the fully non-linear theory

Quick overview of massive gravity Outline Intro

DRGT MASSIVE GRAVITY

- de Rham, Gabadadze, Tolley (2010) presented a theory claimed to be devoid of the BD ghost
- \rightarrow Showed it to be ghost free at all orders in the decoupling limit
 - Hassan, Rosen (2011): Hamiltonian analysis of the fully non-linear theory
- \rightarrow Enough constraints to kill the BD ghost

DRGT MASSIVE GRAVITY

- de Rham, Gabadadze, Tolley (2010) presented a theory claimed to be devoid of the BD ghost
- $\rightarrow\,$ Showed it to be ghost free at all orders in the decoupling limit
 - Hassan, Rosen (2011): Hamiltonian analysis of the fully non-linear theory
- ightarrow Enough constraints to kill the BD ghost
 - Other independent proofs by Kluson, Mirbabayi and others

DRGT MASSIVE GRAVITY

- de Rham, Gabadadze, Tolley (2010) presented a theory claimed to be devoid of the BD ghost
- $\rightarrow\,$ Showed it to be ghost free at all orders in the decoupling limit
 - Hassan, Rosen (2011): Hamiltonian analysis of the fully non-linear theory
- ightarrow Enough constraints to kill the BD ghost
 - Other independent proofs by Kluson, Mirbabayi and others
 - Extension to bimetric theories by Hassan, Rosen

DRGT MASSIVE GRAVITY

- de Rham, Gabadadze, Tolley (2010) presented a theory claimed to be devoid of the BD ghost
- $\rightarrow\,$ Showed it to be ghost free at all orders in the decoupling limit
 - Hassan, Rosen (2011): Hamiltonian analysis of the fully non-linear theory
- ightarrow Enough constraints to kill the BD ghost
 - Other independent proofs by Kluson, Mirbabayi and others
 - Extension to bimetric theories by Hassan, Rosen
 - Study of solutions by Volkov, Mukohyama and others

DRGT MASSIVE GRAVITY

- de Rham, Gabadadze, Tolley (2010) presented a theory claimed to be devoid of the BD ghost
- $\rightarrow\,$ Showed it to be ghost free at all orders in the decoupling limit
 - Hassan, Rosen (2011): Hamiltonian analysis of the fully non-linear theory
- ightarrow Enough constraints to kill the BD ghost
 - Other independent proofs by Kluson, Mirbabayi and others
 - Extension to bimetric theories by Hassan, Rosen
 - Study of solutions by Volkov, Mukohyama and others
 - Vielbein and multi-vielbein reformulation by Hinterbichler, Rosen

Outline	Intro	Quick overview of massive gravity	Ghost free massive gravity	A new way of counting d.o.f.	Conclusion
		000000	000000	00000	

THE MASS TERMS

THE DRGT ACTION

$$S_{dRGT} = M_P^2 \int d^4 x \sqrt{-g} R - M_P^2 m^2 \sum_{n=0}^{3} \alpha_n \int d^4 x \sqrt{-g} E_n(\sqrt{g^{-1}f})$$

where $f_{\mu\nu}$ is non-dynamical and

$$E_0(A) = 1$$

$$E_1(A) = Tr(A)$$

$$E_2(A) = \frac{1}{2}(Tr(A^2) - Tr(A)^2)$$

$$E_3(A) = \frac{1}{6}(Tr(A)^3 - 3Tr(A)Tr(A^2) + Tr(A^3))$$

・ロト ・回ト ・ヨト ・ヨト

Э

Outline	Intro	Quick overview of massive gravity	Ghost free massive gravity	A new way of counting d.o.f.	Conclusion
		000000	000000	00000	

THE MASS TERMS

THE DRGT ACTION

$$S_{dRGT} = M_P^2 \int d^4 x \sqrt{-g} R - M_P^2 m^2 \sum_{n=0}^{3} \alpha_n \int d^4 x \sqrt{-g} E_n(\sqrt{g^{-1}f})$$

where $f_{\mu\nu}$ is non-dynamical and

$$E_0(A) = 1$$

$$E_1(A) = Tr(A)$$

$$E_2(A) = \frac{1}{2}(Tr(A^2) - Tr(A)^2)$$

$$E_3(A) = \frac{1}{6}(Tr(A)^3 - 3Tr(A)Tr(A^2) + Tr(A^3))$$

 \rightarrow 3 parameter family of non-trivial theories

000000

Ghost free massive gravity A new way of counting d.o.f. Conclusion

MOTIVATION BEHIND THIS AWKWARD FORM

• General non-linear theory of massive gravity

(日) (同) (E) (E) (E)

Outline Quick overview of massive gravity Intro

MOTIVATION BEHIND THIS AWKWARD FORM

- General non-linear theory of massive gravity
- \rightarrow BD ghost \implies higher order equations of motion for the scalar mode in the decoupling limit

(日) (同) (E) (E) (E)

Quick overview of massive gravity Outline Intro

MOTIVATION BEHIND THIS AWKWARD FORM

- General non-linear theory of massive gravity
- \rightarrow BD ghost \implies higher order equations of motion for the scalar mode in the decoupling limit
 - dRGT massive gravity avoids this by ensuring that the scalar has only second order equations of motion

< 由 > (同 > (目 > (日 >)) 日 = (日 >) (I =) (I =

Quick overview of massive gravity Outline Intro

MOTIVATION BEHIND THIS AWKWARD FORM

- General non-linear theory of massive gravity
- \rightarrow BD ghost \implies higher order equations of motion for the scalar mode in the decoupling limit
 - dRGT massive gravity avoids this by ensuring that the scalar has only second order equations of motion
 - Presence of Galileon terms in the decoupling limit action

< 由 > (同 > (目 > (日 >)) 日 = (日 >) (I =) (I =

 Outline
 Intro
 Quick overview of massive gravity
 Ghost free massive gravity
 A new way of counting d.o.f.
 Conclusion

VIERBEIN REFORMULATION

• Unpleasant presence of a matrix square root in the action

(日) (同) (E) (E) (E)

Outline Quick overview of massive gravity Intro

VIERBEIN REFORMULATION

• Unpleasant presence of a matrix square root in the action

EXISTENCE OF MATRIX SQUARE ROOTS

A necessary and sufficient condition for a real matrix A to admit a real square root is the following: for every negative eigenvalue λ , the number of identical Jordan blocks (in the Jordan decomposition of A) associated with λ must be even

 \rightarrow The existence of the matrix square root is not automatic

イロト イポト イヨト イヨト

Outline Quick overview of massive gravity Intro

VIERBEIN REFORMULATION

• Unpleasant presence of a matrix square root in the action

EXISTENCE OF MATRIX SQUARE ROOTS

A necessary and sufficient condition for a real matrix A to admit a real square root is the following: for every negative eigenvalue λ , the number of identical Jordan blocks (in the Jordan decomposition of A) associated with λ must be even

- \rightarrow The existence of the matrix square root is not automatic
 - Introducing vierbein variables for each of the two metrics

$$g_{\mu\nu} = \eta_{AB} E^{A}{}_{\mu} E^{B}{}_{\nu} \quad \text{and} \quad g^{\mu\nu} = \eta^{AB} e_{A}{}^{\mu} e_{B}{}^{\nu}$$
$$f_{\mu\nu} = \eta_{AB} L^{A}{}_{\mu} L^{B}{}_{\nu} \quad \text{and} \quad f^{\mu\nu} = \eta^{AB} \ell_{A}{}^{\mu} \ell_{B}{}^{\nu}$$

VIERBEIN REFORMULATION

• Unpleasant presence of a matrix square root in the action

EXISTENCE OF MATRIX SQUARE ROOTS

A necessary and sufficient condition for a real matrix A to admit a real square root is the following: for every negative eigenvalue λ , the number of identical Jordan blocks (in the Jordan decomposition of A) associated with λ must be even

- $\rightarrow\,$ The existence of the matrix square root is not automatic
 - Introducing vierbein variables for each of the two metrics

$$g_{\mu\nu} = \eta_{AB} E^{A}{}_{\mu} E^{B}{}_{\nu} \quad \text{and} \quad g^{\mu\nu} = \eta^{AB} e_{A}{}^{\mu} e_{B}{}^{\nu}$$
$$f_{\mu\nu} = \eta_{AB} L^{A}{}_{\mu} L^{B}{}_{\nu} \quad \text{and} \quad f^{\mu\nu} = \eta^{AB} \ell_{A}{}^{\mu} \ell_{B}{}^{\nu}$$

• Symmetry condition $e_A{}^{\mu}L_{B\mu} = e_B{}^{\mu}L_{A\mu}$ implies

$$\sqrt{g^{-1}f}^{\mu}{}_{\nu} = e_{A}{}^{\mu}L^{A}{}_{\nu}$$

Ghost free massive gravity ○○●●○○○

A new way of counting d.o.f. Conclusion

VIERBEIN REFORMULATION

The vierbein action

$$S_{dRGT} = M_P^2 \int \Omega^{AB} \wedge E_{AB}^* - M_P^2 m^2 \sum_{n=0}^3 \beta_n \int L^{A_1} \wedge \cdots \wedge L^{A_n} \wedge E_{A_1 \dots A_n}^*$$

where

$$E_{A_{1}...A_{n}}^{*} \equiv \frac{1}{(4-n)!} \varepsilon_{A_{n+1}...A_{4}} E^{A_{n+1}} \wedge \cdots \wedge E^{A_{4}}$$

$$\Omega^{AB} \equiv d\omega^{AB} + \omega^{A}{}_{C} \wedge \omega^{CB} \quad \text{(Curvature two-form)}$$

$$dE^{A} + \omega^{A}{}_{B} \wedge E^{B} = 0 \quad \text{(Spin connection)}$$

(日) (同) (E) (E) (E)

Ghost free massive gravity ○○●●○○○ A new way of counting d.o.f. Conclusion

VIERBEIN REFORMULATION

The vierbein action

$$S_{dRGT} = M_P^2 \int \Omega^{AB} \wedge E_{AB}^* - M_P^2 m^2 \sum_{n=0}^3 \beta_n \int L^{A_1} \wedge \cdots \wedge L^{A_n} \wedge E_{A_1 \dots A_n}^*$$

where

$$E_{A_{1}...A_{n}}^{*} \equiv \frac{1}{(4-n)!} \varepsilon_{A_{n+1}...A_{4}} E^{A_{n+1}} \wedge \cdots \wedge E^{A_{4}}$$

$$\Omega^{AB} \equiv d\omega^{AB} + \omega^{A}{}_{C} \wedge \omega^{CB} \quad \text{(Curvature two-form)}$$

$$dE^{A} + \omega^{A}{}_{B} \wedge E^{B} = 0 \quad \text{(Spin connection)}$$

? Choosing vierbeins obeying the symmetry condition

< ロ > < 回 > < 回 > < 回 > < 回 > <

An incomplete equivalence

• Imposing the symmetric vierbein condition has been claimed to be possible in general (not just perturbatively)

イロン イヨン イヨン イヨン

An incomplete equivalence

- Imposing the symmetric vierbein condition has been claimed to be possible in general (not just perturbatively)
- Some authors suggested it was imposed dynamically

An incomplete equivalence

- Imposing the symmetric vierbein condition has been claimed to be possible in general (not just perturbatively)
- Some authors suggested it was imposed dynamically
- ! BUT reliance on some sort of "generalized polar decomposition"

소리가 소문가 소문가 소문가

An incomplete equivalence

- Imposing the symmetric vierbein condition has been claimed to be possible in general (not just perturbatively)
- Some authors suggested it was imposed dynamically
- ! BUT reliance on some sort of "generalized polar decomposition"

FIRST RESULT

An invertible matrix M can be decomposed as $M = \Lambda.S$ with Λ being a Lorentz transformation matrix and S a symmetric matrix if and only if the matrix $\eta M^t \eta M$ admits a real square root which can be written as a product of η by a symmetric matrix

An incomplete equivalence

Second result

The symmetric vierbein condition can be imposed via local Lorentz transformations if and only if

- (i) the matrix $g^{-1}f$ admits a real square root γ
- (ii) $f\gamma$ is symmetric

An incomplete equivalence

Second result

The symmetric vierbein condition can be imposed via local Lorentz transformations if and only if

- (i) the matrix $g^{-1}f$ admits a real square root γ
- (ii) $f\gamma$ is symmetric
 - ? Relationship between hypotheses (*i*) and (*ii*) i.e. is (*i*) sufficient for the result to hold?

An incomplete equivalence

Second result

The symmetric vierbein condition can be imposed via local Lorentz transformations if and only if

(i) the matrix
$$g^{-1}f$$
 admits a real square root γ

(ii) $f\gamma$ is symmetric

- ? Relationship between hypotheses (*i*) and (*ii*) i.e. is (*i*) sufficient for the result to hold?
- ! YES in dimensions 2, 3, 4

イロト イポト イヨト イヨト

Outline	Intro	Quick overview of massive gravity	Ghost free massive gravity	A new way of counting d.o.f.	Conclusion
		000000	000000	00000	

Hyp: $g^{-1}f$ has real square roots

イロン イロン イヨン イヨン 三日

Outline	Intro	Quick overview of massive gravity	Ghost free massive gravity ○○○○○●	A new way of counting d.o.f.	Conclusion
-					

- HYP: $g^{-1}f$ has real square roots

・ 回 と く ヨ と く ヨ と

Outline	Intro	Quick overview of massive gravity	Ghost free massive gravity	A new way of counting d.o.f.	Conclusion
		000000	000000	00000	

- HYP: $g^{-1}f$ has real square roots

 - Negative eigenvalues: only five possible Jordan forms

$$\begin{array}{rcl} J_1 &=& diag(-u,-u,-v,-v) \\ J_2 &=& diag(-u,-u,v,w) & (\text{only one which can occur}) \\ J_3 &=& diag\left(\begin{pmatrix} -u & 0 \\ 0 & -u \end{pmatrix}, \pm \begin{pmatrix} v+iw & 0 \\ 0 & v-iw \end{pmatrix} \right) \\ J_4 &=& diag\left(\begin{pmatrix} -u & 0 \\ 0 & -u \end{pmatrix}, \begin{pmatrix} v & 1 \\ 0 & v \end{pmatrix} \right) \\ J_5 &=& diag\left(\begin{pmatrix} -u & 1 \\ 0 & -u \end{pmatrix}, \begin{pmatrix} -u & 1 \\ 0 & -u \end{pmatrix} \right) \right) \end{array}$$

(4月) (1日) (日)

Outline Intr	o Quick overview of massive gravity	Ghost free massive gravity	A new way of counting d.o.f.	Conclusion
	000000	000000	00000	

- HYP: $g^{-1}f$ has real square roots

 - $ightarrow f\gamma$ is symmetric
 - Negative eigenvalues: only five possible Jordan forms

$$J_{1} = diag(-u, -u, -v, -v)$$

$$J_{2} = diag(-u, -u, v, w) \quad (only one which can occur)$$

$$J_{3} = diag\left(\begin{pmatrix} -u & 0 \\ 0 & -u \end{pmatrix}, \pm \begin{pmatrix} v + iw & 0 \\ 0 & v - iw \end{pmatrix}\right)$$

$$J_{4} = diag\left(\begin{pmatrix} -u & 0 \\ 0 & -u \end{pmatrix}, \begin{pmatrix} v & 1 \\ 0 & v \end{pmatrix}\right)$$

$$J_{5} = diag\left(\begin{pmatrix} -u & 1 \\ 0 & -u \end{pmatrix}, \begin{pmatrix} -u & 1 \\ 0 & -u \end{pmatrix}\right)$$

マロト マヨト マヨト

Outline	Intro	Quick overview of massive gravity	Ghost free massive gravity	A new way of counting d.o.f.	Conclusion
		000000	000000	00000	

D=4 example

- HYP: $g^{-1}f$ has real square roots

 - $ightarrow f\gamma$ is symmetric
 - Negative eigenvalues: only five possible Jordan forms

$$J_{1} = diag(-u, -u, -v, -v)$$

$$J_{2} = diag(-u, -u, v, w) \quad (only one which can occur)$$

$$J_{3} = diag\left(\begin{pmatrix} -u & 0 \\ 0 & -u \end{pmatrix}, \pm \begin{pmatrix} v + iw & 0 \\ 0 & v - iw \end{pmatrix}\right)$$

$$J_{4} = diag\left(\begin{pmatrix} -u & 0 \\ 0 & -u \end{pmatrix}, \begin{pmatrix} v & 1 \\ 0 & v \end{pmatrix}\right)$$

$$J_{5} = diag\left(\begin{pmatrix} -u & 1 \\ 0 & -u \end{pmatrix}, \begin{pmatrix} -u & 1 \\ 0 & -u \end{pmatrix}\right)$$

ightarrow J_2 : existence a real square root with the desired symmetry __ $_{
m 2}$ $_{
m 2}$

Ghost free massive gravity A new way of counting d.o.f. Conclusion

THE VIERBEIN ACTION AS A STARTING POINT

THE VIERBEIN ACTION

$$S_{dRGT} = M_P^2 \int \Omega^{AB} \wedge E_{AB}^* - M_P^2 m^2 \sum_{n=0}^3 \beta_n \int L^{A_1} \wedge \cdots \wedge L^{A_n} \wedge E_{A_1 \dots A_n}^*$$

where L^A is the non-dynamical one-form dx^A and

$$E_{A_{1}...A_{n}}^{*} \equiv \frac{1}{(4-n)!} \varepsilon_{A_{n+1}...A_{4}} E^{A_{n+1}} \wedge \dots \wedge E^{A_{4}}$$

$$\Omega^{AB} \equiv d\omega^{AB} + \omega^{A}{}_{C} \wedge \omega^{CB} \quad (\text{Curvature two-form})$$

$$dE^{A} + \omega^{A}{}_{B} \wedge E^{B} = 0 \quad (\text{Spin connection})$$

< □ > < @ > < 注 > < 注 > ... 注

Outline Quick overview of massive gravity Intro

Ghost free massive gravity A new way of counting d.o.f. Conclusion

The vierbein action as a starting point

THE VIERBEIN ACTION

$$S_{dRGT} = M_P^2 \int \Omega^{AB} \wedge E_{AB}^* - M_P^2 m^2 \sum_{n=0}^3 \beta_n \int L^{A_1} \wedge \cdots \wedge L^{A_n} \wedge E_{A_1 \dots A_n}^*$$

where L^A is the non-dynamical one-form dx^A and

$$E_{A_{1}...A_{n}}^{*} \equiv \frac{1}{(4-n)!} \varepsilon_{A_{n+1}...A_{4}} E^{A_{n+1}} \wedge \cdots \wedge E^{A_{4}}$$

$$\Omega^{AB} \equiv d\omega^{AB} + \omega^{A}{}_{C} \wedge \omega^{CB} \quad \text{(Curvature two-form)}$$

$$dE^{A} + \omega^{A}{}_{B} \wedge E^{B} = 0 \quad \text{(Spin connection)}$$

! Theory with a priori 16 degrees of freedom

(日) (同) (E) (E) (E)

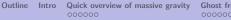
Outline	Intro	Quick	overview	of	massive	gravity	Ghos
		00000	00				0000

EQUATIONS OF MOTION

Einstein three-form

$${\cal G}_{A}\equiv -rac{1}{2}\Omega^{BC}\wedge E^{*}_{ABC}\equiv {\cal G}_{A}{}^{B}E^{*}_{B}$$

(ロ) (同) (E) (E) (E)



Ghost free massive gravity

EQUATIONS OF MOTION

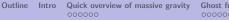
• Einstein three-form

$$G_A \equiv -rac{1}{2}\Omega^{BC} \wedge E^*_{ABC} \equiv G_A{}^B E^*_B$$

• Mass term three-form (analogous to the energy-momentum three-form appearing in the presence of matter)

$$t_A \equiv \frac{1}{2} \sum_{n=0}^{3} \beta_n L^{A_1} \wedge \cdots \wedge L^{A_n} \wedge E^*_{AA_1 \dots A_n} \equiv t_A{}^B E^*_B$$

・ロト ・回ト ・ヨト ・ヨト



EQUATIONS OF MOTION

Einstein three-form

$$G_A \equiv -rac{1}{2}\Omega^{BC} \wedge E^*_{ABC} \equiv G_A{}^B E^*_B$$

• Mass term three-form (analogous to the energy-momentum) three-form appearing in the presence of matter)

$$t_A \equiv \frac{1}{2} \sum_{n=0}^{3} \beta_n L^{A_1} \wedge \cdots \wedge L^{A_n} \wedge E^*_{AA_1 \dots A_n} \equiv t_A{}^B E^*_B$$

 \rightarrow Equations of motion: $G_A = t_A$ or, in components, $G_{AB} = t_{AB}$

(ロ) (同) (E) (E) (E)

Outline Intro

Quick overview of massive gravity Ghost free massive gravity A new way of counting d.o.f. Conclusion •••••

LOCAL LORENTZ SYMMETRY BREAKING

 Invariance of the kinetic term under local Lorentz transformations $G_{[AB]} = 0$ so $t_{[AB]} = 0$

Outline Intro

LOCAL LORENTZ SYMMETRY BREAKING

- Invariance of the kinetic term under local Lorentz transformations $G_{[AB]} = 0$ so $t_{[AB]} = 0$
- 6 constraints which, in principle, eliminate 6 degrees of freedom

Outline Intro

Quick overview of massive gravity Ghost free massive gravity A new way of counting d.o.f. Conclusion

LOCAL LORENTZ SYMMETRY BREAKING

- Invariance of the kinetic term under local Lorentz transformations $G_{[AB]} = 0$ so $t_{[AB]} = 0$
- 6 constraints which, in principle, eliminate 6 degrees of freedom
- $\rightarrow 16-6=10$ degrees of freedom (same number as in the metric theory)

Ghost free massive gravity A new way of counting d.o.f. Conclusion

LOCAL LORENTZ SYMMETRY BREAKING

- Invariance of the kinetic term under local Lorentz transformations $G_{[AB]} = 0$ so $t_{[AB]} = 0$
- 6 constraints which, in principle, eliminate 6 degrees of freedom
- $\rightarrow 16-6=10$ degrees of freedom (same number as in the metric theory)
 - In some cases the symmetric vierbein condition (always compatible with the constraints) $e_A{}^{\mu}L_{B\mu} = e_B{}^{\mu}L_{A\mu}$ is imposed dynamically
 - Only β_0 and β_1 are non-zero
 - Only β_0 and β_3 are non-zero
 - The β_n satisfy a specific relation such that the mass term $\propto \det(E^A_{\mu} - \kappa L^A_{\mu})$

Outline Intro

Quick overview of massive gravity Ghost free massive gravity A new way of counting d.o.f. Conclusion

LOCAL LORENTZ SYMMETRY BREAKING

- Invariance of the kinetic term under local Lorentz transformations $G_{[AB]} = 0$ so $t_{[AB]} = 0$
- 6 constraints which, in principle, eliminate 6 degrees of freedom
- $\rightarrow 16-6=10$ degrees of freedom (same number as in the metric theory)
 - In some cases the symmetric vierbein condition (always compatible with the constraints) $e_A^{\mu}L_{B\mu} = e_B^{\mu}L_{A\mu}$ is imposed dynamically
 - Only β_0 and β_1 are non-zero
 - Only β_0 and β_3 are non-zero
 - The β_n satisfy a specific relation such that the mass term $\propto \det(E^{A}_{\mu} - \kappa L^{A}_{\mu})$
 - Counter-example: if only β_0 and β_2 an antisymmetric vierbein condition is also compatible with the constraints (4回) (注) (注) (注) (注)

Outline Intro

DIFFEOMORPHISM INVARIANCE BREAKING

• Invariance of the kinetic term under diffeomorphisms $DG_A = 0$ so $Dt_{\Delta} = 0$ where

$$DF_A \equiv dF_A + \omega_A{}^B \wedge F_B$$

Outline Intro

DIFFEOMORPHISM INVARIANCE BREAKING

• Invariance of the kinetic term under diffeomorphisms $DG_A = 0$ so $Dt_{\Delta} = 0$ where

$$DF_A \equiv dF_A + \omega_A{}^B \wedge F_B$$

• 4 constraints which, in principle, eliminate 4 degrees of freedom

(日) (四) (王) (王) (王)

DIFFEOMORPHISM INVARIANCE BREAKING

• Invariance of the kinetic term under diffeomorphisms $DG_A = 0$ so $Dt_{\Delta} = 0$ where

$$DF_A \equiv dF_A + \omega_A{}^B \wedge F_B$$

- 4 constraints which, in principle, eliminate 4 degrees of freedom
- \rightarrow 10 4 = 6 degrees of freedom (5 massive spin-two degrees of freedom + the BD ghost)

DIFFEOMORPHISM INVARIANCE BREAKING

• Invariance of the kinetic term under diffeomorphisms $DG_A = 0$ so $Dt_{\Delta} = 0$ where

$$DF_A \equiv dF_A + \omega_A{}^B \wedge F_B$$

- 4 constraints which, in principle, eliminate 4 degrees of freedom
- \rightarrow 10 4 = 6 degrees of freedom (5 massive spin-two degrees of freedom + the BD ghost)
 - Specific cases
 - Only β_0 and β_1 are non-zero

$$\omega^{B}{}_{A\mu}e_{B}{}^{\mu}=0$$

• Only β_0 and β_2 are non-zero (with the symmetry condition enforced)

$$\omega^{B}{}_{C\mu}e_{B}{}^{\mu}e_{A}{}^{C}+\omega^{B}{}_{A\mu}e_{C}{}^{\mu}e_{B}{}^{C}-\omega^{B}{}_{A\mu}e_{B}{}^{\mu}e_{C}{}^{C}=0$$

Outline	Intro	Quick overview of massive gravity	Ghost free massive gravity	A new way of counting d.o.f.	Conclusion
		000000	000000	0000	

Additional constraint

• As in Fierz-Pauli theory, we trace over the equations of motion and try to get rid of second derivatives

(1日) (日) (日)

Additional constraint

- As in Fierz-Pauli theory, we trace over the equations of motion and try to get rid of second derivatives
- Only β_0 and β_1 are non-zero

$$E^A \wedge G_A \supset \partial_{\nu}(\omega^B{}_{A\mu}e_B{}^{\mu})$$

 Outline
 Intro
 Quick overview of massive gravity
 Ghost free massive gravity
 A new way of counting d.o.f.
 Conclusion

Additional constraint

- As in Fierz-Pauli theory, we trace over the equations of motion and try to get rid of second derivatives
- Only β_0 and β_1 are non-zero

$$E^A \wedge G_A \supset \partial_{\nu}(\omega^B{}_{A\mu}e_B{}^{\mu})$$

 $\rightarrow E^A \wedge G_A = E^A \wedge t_A$ is a new constraint!

ADDITIONAL CONSTRAINT

- As in Fierz-Pauli theory, we trace over the equations of motion and try to get rid of second derivatives
- Only β_0 and β_1 are non-zero

$$E^A \wedge G_A \supset \partial_{\nu}(\omega^B{}_{A\mu}e_B{}^{\mu})$$

 $\rightarrow E^A \wedge G_A = E^A \wedge t_A$ is a new constraint!

• Only β_0 and β_2 are non-zero

 $L^A \wedge G_A \supset \partial_{\nu}(\omega^B{}_{C\mu}e_B{}^{\mu}e_A{}^C + \omega^B{}_{A\mu}e_C{}^{\mu}e_B{}^C - \omega^B{}_{A\mu}e_B{}^{\mu}e_C{}^C)$

ADDITIONAL CONSTRAINT

- As in Fierz-Pauli theory, we trace over the equations of motion and try to get rid of second derivatives
- Only β_0 and β_1 are non-zero

$$E^A \wedge G_A \supset \partial_{\nu}(\omega^B{}_{A\mu}e_B{}^{\mu})$$

 $\rightarrow E^A \wedge G_A = E^A \wedge t_A$ is a new constraint!

• Only β_0 and β_2 are non-zero

 $L^A \wedge G_A \supset \partial_{\nu} (\omega^B{}_{C\mu}e_B{}^{\mu}e_A{}^C + \omega^B{}_{A\mu}e_C{}^{\mu}e_B{}^C - \omega^B{}_{A\mu}e_B{}^{\mu}e_C{}^C)$ $\rightarrow L^A \wedge G_A = L^A \wedge t_A$ is a new constraint!

ADDITIONAL CONSTRAINT

- As in Fierz-Pauli theory, we trace over the equations of motion and try to get rid of second derivatives
- Only β_0 and β_1 are non-zero

$$E^A \wedge G_A \supset \partial_{\nu} (\omega^B{}_{A\mu} e_B{}^{\mu})$$

 $\rightarrow E^A \wedge G_A = E^A \wedge t_A$ is a new constraint!

• Only β_0 and β_2 are non-zero

 $L^A \wedge G_A \supset \partial_{\nu} (\omega^B{}_{C\mu}e_B{}^{\mu}e_A{}^C + \omega^B{}_{A\mu}e_C{}^{\mu}e_B{}^C - \omega^B{}_{A\mu}e_B{}^{\mu}e_C{}^C)$

 $\rightarrow L^A \wedge G_A = L^A \wedge t_A$ is a new constraint!

! But here we enforced the symmetry condition manually

ADDITIONAL CONSTRAINT

- As in Fierz-Pauli theory, we trace over the equations of motion and try to get rid of second derivatives
- Only β_0 and β_1 are non-zero

$$E^A \wedge G_A \supset \partial_{\nu} (\omega^B{}_{A\mu} e_B{}^{\mu})$$

- $\rightarrow E^A \wedge G_A = E^A \wedge t_A$ is a new constraint!
 - Only β_0 and β_2 are non-zero

$$L^{A} \wedge G_{A} \supset \partial_{\nu} (\omega^{B}{}_{C\mu} e_{B}{}^{\mu} e_{A}{}^{C} + \omega^{B}{}_{A\mu} e_{C}{}^{\mu} e_{B}{}^{C} - \omega^{B}{}_{A\mu} e_{B}{}^{\mu} e_{C}{}^{C})$$

- $\rightarrow L^A \wedge G_A = L^A \wedge t_A$ is a new constraint!
 - ! But here we enforced the symmetry condition manually
 - Other cases not treatable in the same manner...

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline Intro Quick overview of massive gravity

Ghost free massive gravity A new way of counting d.o.f. Conclusion 00000

Recovering Fierz-Pauli

• With the additional constraint, 6 - 1 = 5 degrees of freedom naively

イロト イポト イヨト イヨト 二日

Outline Intro Quick overview of massive gravity

Ghost free massive gravity A new way of counting d.o.f. Conclusion 00000

Recovering Fierz-Pauli

- With the additional constraint, 6 1 = 5 degrees of freedom naively
- \rightarrow It kills the BD ghost

<ロ> (四) (四) (注) (注) (三)

Outline Quick overview of massive gravity Intro

Ghost free massive gravity A new way of counting d.o.f. Conclusion 00000

Recovering Fierz-Pauli

- With the additional constraint, 6 1 = 5 degrees of freedom naively
- \rightarrow It kills the BD ghost
 - ? Independence of the constraints

Outline Quick overview of massive gravity Intro

Ghost free massive gravity A new way of counting d.o.f. Conclusion 00000

Recovering Fierz-Pauli

- With the additional constraint, 6 1 = 5 degrees of freedom naively
- \rightarrow It kills the BD ghost
 - ? Independence of the constraints
 - Linearized limit

$$E^{A} = dx^{A} + E^{A}_{(1)}$$
$$e_{A} = \partial_{A} + e^{(1)}_{A}$$

Outline Intro Quick overview of massive gravity

Ghost free massive gravity A new way of counting d.o.f. Conclusion 00000

Recovering Fierz-Pauli

- With the additional constraint, 6 1 = 5 degrees of freedom naively
- \rightarrow It kills the BD ghost
 - ? Independence of the constraints
 - Linearized limit

$$E^{A} = dx^{A} + E^{A}_{(1)}$$
$$e_{A} = \partial_{A} + e^{(1)}_{A}$$

• Symmetry condition verified because $t_{(1)}^{AB} \propto \text{Tr}(e^{(1)})\eta^{AB} - e^{AB}_{(1)}$

Outline Quick overview of massive gravity Intro

Ghost free massive gravity A new way of counting d.o.f. Conclusion 00000

Recovering Fierz-Pauli

- With the additional constraint, 6 1 = 5 degrees of freedom naively
- \rightarrow It kills the BD ghost
 - ? Independence of the constraints
 - Linearized limit

$$E^{A} = dx^{A} + E^{A}_{(1)}$$
$$e_{A} = \partial_{A} + e^{(1)}_{A}$$

- Symmetry condition verified because $t_{(1)}^{AB} \propto \text{Tr}(e^{(1)})\eta^{AB} e^{AB}_{(1)}$
- Relationship to the metric formalism well defined

$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$$

 Outline
 Intro
 Quick overview of massive gravity
 Ghost free massive gravity

 000000
 0000000
 0000000

Recovering Fierz-Pauli

• Change of variable formulas

$$E_{AB}^{(1)} = \frac{h_{AB}}{2}$$

$$e_{(1)}^{AB} = -\frac{h^{AB}}{2}$$

$$\omega_{ABC}^{(1)} = \frac{1}{2}(\partial_B h_{AC} - \partial_A h_{BC})$$

 Outline
 Intro
 Quick overview of massive gravity
 Ghost free massive gravity
 A new way of coun

 000000
 000000
 000000
 00000
 00000
 00000

Recovering Fierz-Pauli

• Change of variable formulas

$$E_{AB}^{(1)} = \frac{h_{AB}}{2}$$

$$e_{(1)}^{AB} = -\frac{h^{AB}}{2}$$

$$\omega_{ABC}^{(1)} = \frac{1}{2}(\partial_B h_{AC} - \partial_A h_{BC})$$

CONSTRAINTS

 $Dt_A = 0$ becomes $\partial^{\mu} h_{\mu\nu} = 0$ while $m^A \wedge G_A = m^A \wedge t_A$ becomes h = 0 and we recover the Fierz-Pauli constraints

イロト イヨト イヨト イヨト

Quick overview of massive gravity Ghost free massive gravity A new way of counting d.o.f. Conclusion Outline Intro 0000

Recovering Fierz-Pauli

Change of variable formulas

$$E_{AB}^{(1)} = \frac{h_{AB}}{2}$$

$$e_{(1)}^{AB} = -\frac{h^{AB}}{2}$$

$$\omega_{ABC}^{(1)} = \frac{1}{2}(\partial_B h_{AC} - \partial_A h_{BC})$$

CONSTRAINTS

 $Dt_A = 0$ becomes $\partial^{\mu} h_{\mu\nu} = 0$ while $m^A \wedge G_A = m^A \wedge t_A$ becomes h = 0 and we recover the Fierz-Pauli constraints

 \rightarrow The constraints are independent

Outline Intro Quick overview of massive gravity

Ghost free massive gravity A new way of counting d.o.f. Conclusion

CONCLUSION AND FUTURE DIRECTIONS

 We studied dRGT theory in the vierbein formalism and clarified some ambiguities

CONCLUSION AND FUTURE DIRECTIONS

- We studied dRGT theory in the vierbein formalism and clarified some ambiguities
- For some region of parameter space, we have found enough constraints in order to kill the BD ghost

CONCLUSION AND FUTURE DIRECTIONS

- We studied dRGT theory in the vierbein formalism and clarified some ambiguities
- For some region of parameter space, we have found enough constraints in order to kill the BD ghost
- Same procedure as in Fierz-Pauli theory

CONCLUSION AND FUTURE DIRECTIONS

- We studied dRGT theory in the vierbein formalism and clarified some ambiguities
- For some region of parameter space, we have found enough constraints in order to kill the BD ghost
- Same procedure as in Fierz-Pauli theory
- We have shown that this procedure does not work for all the different mass terms (cf. β_3)

CONCLUSION AND FUTURE DIRECTIONS

- We studied dRGT theory in the vierbein formalism and clarified some ambiguities
- For some region of parameter space, we have found enough constraints in order to kill the BD ghost
- Same procedure as in Fierz-Pauli theory
- We have shown that this procedure does not work for all the different mass terms (cf. β_3)
- Confirmation of the result via a full Hamiltonian analysis

CONCLUSION AND FUTURE DIRECTIONS

- We studied dRGT theory in the vierbein formalism and clarified some ambiguities
- For some region of parameter space, we have found enough constraints in order to kill the BD ghost
- Same procedure as in Fierz-Pauli theory
- We have shown that this procedure does not work for all the different mass terms (cf. β_3)
- Confirmation of the result via a full Hamiltonian analysis
- \rightarrow It should be easier to do than in the metric formalism