Gravitational Waves from Spin Precessing, Compact Binary Inspirals

Nico Yunes A. Klein, K. Chatziioannou, N. Cornish Montana State University

IAP Seminar Paris, 2013 arXiv: 1305.1932 (submitted to PRD) arXiv: ???????? (to be submitted)

At our doorstep...

Spinning Waveforms

Data Analysis and Parameter Estimation

Return on Investment

What information we get from detecting an inspiral?

- Location Parameters: right ascension, declination, luminosity distance.
- Spin-Independent Parameters: chirp mass, symmetric mass ratio, inclination angle, polarization angle, time and phase of coalescence.
- Spinning Parameters: 3 components of spin 1 + 3 components of spin 2.

Provided we have waveforms that can accurately model the inspiral with full dependence on these parameters.

I. Template Construction Driven By Systems

II. Analytic Construction of Precessing Waveforms

III. Performance of Analytic Waveforms

Spinning Waveforms

I.

Template Construction Driven By Systems

Spinning Waveforms

Yunes

6

System-Driven Templates

What templates do we have today?

Are these templates enough?

Yes for detection, but no for parameter estimation.

Precession modifies the waveform dramatically

$$\tilde{h}(f) = \tilde{\mathcal{A}}(f) \ e^{i\Psi(f)}$$

Physical Scenarios

Quasi-circular inspiral, with spins misaligned with L

Precession of Orbital Plane

Waveform Modulation

1) Neutron Star binaries in LIGO band will have randomly oriented spins, but small spin magnitude.

$$\epsilon_A \equiv \arccos\left(\hat{S}_A \cdot \hat{L}\right) \ll 1$$

 $|\vec{S}_A| \ll \vec{L}$

2) Black hole binaries in gas-rich galaxies (or due to PN evolution) will have random spin magnitudes, but spins nearly aligned with L.

II. Analytic Construction of Precessing WaveformsTime Domain

Spinning Waveforms

Constructing Spin-Precessing Waveforms

$$h_+ \sim \frac{\eta M}{D_L} (M\omega)^{2/3} \left(1 + \cos^2 \iota\right) \cos 2\Phi^{\text{orb}}$$

But the inclination angle depends on time, as the orbital plane precesses about the total angular momentum.

You must solve the Spin-Precession Equations

$$\dot{\vec{L}} = \omega^2 C_1 \left(\vec{S}_1 \times \vec{L} \right) + \omega^2 C_2 \left(\vec{S}_1 \cdot \hat{L} \right) \left(\vec{S}_2 \times \hat{L} \right) - k\vec{L} + 1 \leftrightarrow 2$$
$$\dot{\vec{S}}_1 = \omega^2 C_1 \left(\vec{L} \times \vec{S}_1 \right) + \omega^2 C_2 \left(\vec{S}_2 \cdot \hat{L} \right) \left(\hat{L} \times \vec{S}_1 \right) + \omega^2 C_3 \left(\vec{S}_2 \times \vec{S}_1 \right)$$

Multiple Scale Analysis: Simple Example

$$\ddot{y} + y + \epsilon y^3 = 0$$
 [$y(0) = 0, \ \dot{y}(0) = 1$]

Try Perturbation Theory:
$$y(t) = \sum_{n=0}^{\infty} \epsilon^n y_n(t)$$
 $\epsilon \ll 1$

Solution

$$y(t) = \cos t + \epsilon \left[\frac{1}{32} \cos 3t - \frac{1}{32} \cos t - \frac{3}{8} t \sin t \right] + \mathcal{O}(\epsilon^2)$$

Perturbation Theory breaks
down at finite time t ~ 8/(3e)

Multiple Scale Analysis: Simple Example (Cont'd)

Solving Precession via Multiple Scale Analysis

$$\dot{\vec{L}} = \omega^2 C_1 \left(\vec{S}_1 \times \vec{L} \right) + \omega^2 C_2 \left(\vec{S}_1 \cdot \hat{L} \right) \left(\vec{S}_2 \times \hat{L} \right) - k\vec{L} + 1 \leftrightarrow 2$$

$$\dot{\vec{S}}_1 = \omega^2 C_1 \left(\vec{L} \times \vec{S}_1 \right) + \omega^2 C_2 \left(\vec{S}_2 \cdot \hat{L} \right) \left(\hat{L} \times \vec{S}_1 \right) + \omega^2 C_3 \left(\vec{S}_2 \times \vec{S}_1 \right)$$

For small spins or small misalignment angle, the scales separate, so expand in their ratio

$$t_{\rm rad.reac} \gg t_{\rm prec} \gg t_{\rm orb}$$

Promote all momenta to functions of 2 independent variables

Precession equations become PDEs and we demand no resonances are present.

Eg. Small spins (BNS)

time:
$$t$$

new time: $\tau = \mathcal{O}(t_{\text{prec}}/t_{\text{rad.reac}})$

$$\tau = f(t)$$

 $L(t,\tau), S_1(t,\tau), S_2(t,\tau)$

$$L_x(t,\tau) \sim L_{c,1} \cos \phi_1 + L_{s,1} \sin \phi_1 + 1 \to 2$$
$$L_z = \frac{M^2 \eta}{\xi} \qquad \phi_{1,2} = C_{1,2} \sum_{n=-3} \phi_n \xi^n \qquad \xi = (M\omega)^{1/3}$$

Spinning Waveforms

II. Analytic Construction of Precessing Waveforms **Frequency Domain**

Spinning Waveforms

Stationary Phase Approximation: Simple Example

$$\tilde{h}(f) = \int h(t)e^{2\pi i ft} dt = \int A(t)e^{i[2\pi ft - \Phi(t)]} dt$$

$$\phi(t)$$

For any given frequency, the integral is dominated by the regime where the phase is varying slowly

1. Expand the phase about the stationary point $\dot{\phi}(t_{\rm SP}) = 0$ $\phi(t) = \phi(t_{\rm SP}) + \frac{1}{2}\ddot{\phi}(t_{\rm SP})(t - t_{\rm SP})^2$

2. The Fourier Integral becomes a Gaussian Integral so solve it.

$$\tilde{h}(f) = \left[\frac{2}{|\ddot{\Phi}(t_{\rm SP})|}\right]^{1/2} A(t_{\rm SP})\Gamma(1/2)e^{2\pi i f t_{\rm SP} - \Phi(t_{\rm SP}) - \pi/4}$$

Fourier Transform via the Stationary Phase Approx.

$$h_{+} \sim \frac{\eta M}{D_L} (M\omega)^{2/3} \left(1 + \cos^2 \iota\right) \cos 2\Phi^{\rm orb}$$

Rewrite response function as slowly-varying amplitude times rapidly-varying phase

$$h(t) \sim \frac{\eta M}{D_L} \left(M\omega \right)^{2/3} \sum_{n,k,m} \mathcal{A}_{n,k,m} e^{i\Psi_{n,k,m}^{\mathrm{GW}}(t)}$$

Precession induces rapidlyvarying amplitude terms that should be promoted to the phase.

$$\Psi_{n,k,m}(t) = n\Phi^{\text{orb}}(t) + n\delta\phi(t) + k\iota(t) + m\psi(t)$$

Expand generalized Fourier integral about stationary point (where integral accumulates most)

$$\tilde{h}(f) \sim \sum_{n,k,m} \frac{1}{\sqrt{\ddot{\Psi}_{n,k,m}^{\mathrm{GW}}[t(f)]}} e^{i\left\{2\pi ft(f) - \Psi_{n,k,m}^{\mathrm{GW}}[t(f)]\right\}}$$

Fourier Transform via Uniform Asymptotics

$$\tilde{h}(f) \sim \sum_{n,k,m} \frac{1}{\sqrt{\ddot{\Psi}_{n,k,m}^{\text{GW}}[t(f)]}} \sim \sum_{n \ge 0} \sum_{k \in \mathbb{Z}} \sum_{m=\pm 2} \frac{1}{\sqrt{n\ddot{\Phi}^{\text{orb}} + n\delta\ddot{\phi} + k\ddot{\iota} + m\ddot{\psi}}}$$

For large enough spin, large precession could force the denominator to vanish and the stationary phase approx. to break down.

1) Rewrite the timedomain waveform

$$h(t) \sim \frac{\eta M}{D_L} \left(M\omega \right)^{2/3} \sum_{n,k,m} \mathcal{A}_{n,k,m} e^{-i[\Phi_C(t) + \alpha(t)\cos\beta(t)]}$$

2) Bessel
$$h(t) \sim \frac{\eta M}{D_L} (M\omega)^{2/3} \sum_{n,k,m} \mathcal{A}_{n,k,m} e^{-i\Phi_C(t)} \sum_{j=-\infty}^{\infty} (-i)^j J_j[\alpha(t)] e^{-ij\beta(t)}$$

3) SPA $\tilde{h}(f) \sim \sum_{n,k,m,j} \frac{1}{\sqrt{\dot{\Phi}^C + j\ddot{\beta}}} e^{i\left\{2\pi ft(f) - \Phi^C[t(f)] - j\beta[t(f)]\right\}}$
Spinning Waveforms Yunes Yunes

III. Performance of Analytic Waveforms

Spinning Waveforms

Yunes

20

Results: Fourier Amplitude and Phase

Phase Error is Tiny

SPA Amplitude reproduces DFT

(and we have not adjusted the physical parameters)

Spinning Waveforms

Results: Faithfulness

NS/NS

Overlap between DFT and spin-aligned SPA or uniform asymptotic waveform, for 1000 systems with random parameters (mass, mass ratio, spins, sky position, etc.) **without** adjusting the parameters to maximize the overlap (faithfulness).

New Analytic f-domain waveforms for spin-precessing binary inspirals are sufficiently accurate for detection and parameter estimation.

Road Map

Conclusions

Spinning Waveforms

What templates do we have now?

Order Counting

System/ Domain	Time Domain	Frequency Domain
Neutron Star Binary	 Lx, Ly to first-order in spin. h(t) to all orders in spin. Lz evolution includes 3.5PN complete RR, 8PN pt-ptcle scri+ RR, Lz expanded to 8PN order. 	 Standard SPA SPA to NLO up to 8PN. Restricted SPA uses only dominant PN amplitude.
Black Hole Binary	 Lx, Ly to 1st order in angle. h(t) to all orders in angle. Lz evolution includes 3.5PN complete RR, 8PN pt-ptcle scri+ RR, 5.5PN pt-ptcle Hor RR, Lz expanded to 8PN order. 	 Uniform Asymptotics. SPA to NLO up to 6.5PN. Restricted SPA uses only dominant PN amplitude.

System-Driven Templates

