Spectator mechanism and the CMB modulation

Lingfei Wang Lancaster University

Based on [1306.5736], PRD 88 023512, JCAP 1307 019, JCAP 1305 012, PRD 87 083501 21 October, 2013

[ESA/Planck]

CMB anisotropy

CMB anisotropy

Temperature fluctuations

$$\Delta T(\mathbf{\hat{n}}) = \sum_{lm} a_{lm} Y_{lm}(\mathbf{\hat{n}})$$

Angular bispectrum

$$\langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}\rangle = \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} B_{l_1l_2l_3}$$

- Post-inflation: ISW effect, etc
- * Inflation: primordial bispectrum (e.g. local $f_{\rm NL}$)

 $\langle \Phi(\mathbf{k}_1)\Phi(\mathbf{k}_2)\Phi(\mathbf{k}_3)\rangle = (2\pi)^3 \delta^3(\mathbf{k}_1 + \mathbf{k}_3 + \mathbf{k}_3)B(k_1, k_2, k_3)$

Temperature fluctuations

$$\Delta T(\mathbf{\hat{n}}) = \sum_{lm} a_{lm} Y_{lm}(\mathbf{\hat{n}})$$

Angular bispectrum

$$\langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}\rangle = \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} B_{l_1l_2l_3}$$

- Post-inflation: ISW effect, etc
- * Inflation: primordial bispectrum (e.g. local $f_{\rm NL}$) $\langle \Phi(\mathbf{k}_1)\Phi(\mathbf{k}_2)\Phi(\mathbf{k}_3)\rangle = (2\pi)^3 \delta^3(\mathbf{k}_1 + \mathbf{k}_3 + \mathbf{k}_3)B(k_1, k_2, k_3)$
- * Trispectrum $\tau_{\rm NL}$

 $\langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}a_{l_4m_4}\rangle, \ldots$

Temperature fluctuations

$$\Delta T(\mathbf{\hat{n}}) = \sum_{lm} a_{lm} Y_{lm}(\mathbf{\hat{n}})$$

Angular bispectrum

$$\langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}\rangle = \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} B_{l_1l_2l_3}$$

- Post-inflation: ISW effect, etc
- * Inflation: primordial bispectrum (e.g. local $f_{\rm NL}$) = 2.7 ± 5.8 $\langle \Phi(\mathbf{k}_1)\Phi(\mathbf{k}_2)\Phi(\mathbf{k}_3)\rangle = (2\pi)^3 \delta^3(\mathbf{k}_1 + \mathbf{k}_3 + \mathbf{k}_3)B(k_1, k_2, k_3)$
- Trispectrum $\tau_{\rm NL} < 2800$ $\langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}a_{l_4m_4} \rangle, \ldots$

Erickcek et al 08, Dai et al 13, Lyth 13, Wang & Mazumdar 13

CMB temperature perturbations

Other perturbations

 $\Delta \rho_{\rm CDM}$

 ΔT

 ΔT

C

CMB temperature perturbations

- * Other perturbations $\Delta \rho_{\rm CDM} = \Delta \rho_{\nu}$
- Adiabatic: curvature perturbation

- CMB temperature perturbations
- Other perturbations

 ΔT

Adiabatic: curvature perturbation

- CMB temperature perturbations
- Other perturbations
- Adiabatic: curvature perturbation
- Isocurvature: more than one degree of freedom during inflation

 $\Delta \rho_{\rm CDM}$

- CMB temperature perturbations
- Other perturbations
- Adiabatic: curvature perturbation
- Isocurvature: more than one degree of freedom during inflation

 $\Delta \rho_{\rm CDM}$

Constrain multi-field inflation

CMB power spectrum

Spectral index

 $P_{\zeta} = 2.196 \times 10^{-9}$ $n_s = 0.9603 \pm 0.0073$

CMB power spectrum
Spectral index
CMB bispectrum

 $P_{\zeta} = 2.196 \times 10^{-9}$ $n_s = 0.9603 \pm 0.0073$ $f_{\rm NL} = 2.7 \pm 5.8$

CMB power spectrum
Spectral index
CMB bispectrum
CMB trispectrum

 $P_{\zeta} = 2.196 \times 10^{-9}$ $n_s = 0.9603 \pm 0.0073$ $f_{\rm NL} = 2.7 \pm 5.8$ $\tau_{\rm NL} < 2800$

CMB power spectrum
Spectral index
CMB bispectrum
CMB trispectrum
CMB dipole asymmetry

 $P_{\zeta} = 2.196 \times 10^{-9}$ $n_s = 0.9603 \pm 0.0073$ $f_{\rm NL} = 2.7 \pm 5.8$ $au_{\rm NL} < 2800$ $A = 0.07 \pm 0.02$

 CMB power spectrum Spectral index CMB bispectrum CMB trispectrum CMB dipole asymmetry Isocurvature perturbations $P_{\zeta} = 2.196 \times 10^{-9}$ $n_s = 0.9603 \pm 0.0073$ $f_{\rm NL} = 2.7 \pm 5.8$ $\tau_{\rm NL} < 2800$ $A = 0.07 \pm 0.02$ $\beta_{\rm iso} < 0.0025$

 $P_{\zeta} = 2.196 \times 10^{-9}$ CMB power spectrum Spectral index $n_s = 0.9603 \pm 0.0073$ CMB bispectrum $f_{\rm NL} = 2.7 \pm 5.8$ CMB trispectrum $\tau_{\rm NL} < 2800$ CMB dipole asymmetry $A = 0.07 \pm 0.02$ $\beta_{\rm iso} < 0.0025$ Isocurvature perturbations Tensor to scalar ratio, running of spectral index, etc

 CMB power spectrum 	$P_{\zeta} = 2.196 \times 10^{-9}$
 Spectral index 	$n_s = 0.9603 \pm 0.0073$
 CMB bispectrum 	$f_{\rm NL} = 2.7 \pm 5.8$
 CMB trispectrum 	$\tau_{\rm NL} < 2800$
 CMB dipole asymmetry 	$A = 0.07 \pm 0.02$
 Isocurvature perturbations 	$\beta_{\rm iso} < 0.0025$

Tensor to scalar ratio, running of spectral index, etc

Standard Model Lagrangian Density

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}q_j^{\sigma})g_{\mu}^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c_{*}^{2}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}H\partial_{$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{h}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{c^{2}} +$ $\frac{2M}{\rho}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{\rho^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - \psi^-_\mu)]$ $\begin{array}{l} W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] \\ - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}W_{\mu}^{-})] \\ - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] \\ - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] \\ - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-})] \\ - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] \\ - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) +$ $g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-)]$ $W_{\mu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\mu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{2}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})]+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{\alpha_{\nu}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{\mu}}{c_{\nu}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2c_w^2}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] \frac{1}{4}g^2 \frac{1}{c_w^2} Z^0_\mu Z^0_\mu [H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s_w^2}{c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- +$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{\mu}^{2}}{c_{\nu}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}))$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2}-1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-}$ $g^{1}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-}-\bar{e}^{\lambda}(\gamma\partial+m_{e}^{\lambda})e^{\lambda}-\bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda}-\bar{u}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}^{\lambda})u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}(\gamma\partial+m_{\mu}$ m_d^{λ} $d_j^{\lambda} + igs_w A_{\mu} [-(\bar{e}^{\lambda}\gamma e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{\partial}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{\partial}_j^{\lambda}\gamma d_j^{\lambda})] + \frac{ig}{4\gamma_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{\partial}_j^{$ $\gamma^5 \nu^{\lambda}$ + $(\overline{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda})$ + $(\overline{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 - \gamma^5)u_j^{\lambda})$ + $(\bar{d}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}-\gamma^{5})d_{j}^{\lambda})]+\frac{iq}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda}$ $\gamma^5 C_{\lambda\kappa} d_j^{\kappa}] + \frac{iq}{2\sqrt{2}} W_{\mu} [(\bar{e}^{\lambda} \gamma^{\mu} (1+\gamma^5) \nu^{\lambda}) + (\bar{d}_j^{\kappa} C_{\lambda\kappa}^{\dagger} \gamma^{\mu} (1+\gamma^5) u_j^{\lambda})] +$ $\frac{iq}{2\sqrt{2}}\frac{m_{\lambda}^{\lambda}}{M}\left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m_{\lambda}^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m_{\lambda}^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m_{\lambda}^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m_{\lambda}^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m_{\lambda}^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m_{\lambda}^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m_{\lambda}^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]$ $i\phi^0(\bar{e}^\lambda\gamma^5 e^\lambda)] + \frac{iq}{2M\sqrt{2}}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^\kappa) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)]$ $\gamma^5 d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}} \phi^- [m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_i^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}(1-\gamma^5)u_i^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\kappa}(1-\gamma^5)u_i^{\kappa}) - m_u^{$ $\frac{g m_{\lambda}^{\lambda}}{2M} H(\bar{u}_{i}^{\lambda} u_{i}^{\lambda}) - \frac{g m_{\lambda}^{\lambda}}{2M} H(\bar{d}_{i}^{\lambda} d_{i}^{\lambda}) + \frac{ig m_{\lambda}^{\lambda}}{2M} \phi^{0}(\bar{u}_{i}^{\lambda} \gamma^{5} u_{i}^{\lambda}) - \frac{ig m_{\lambda}^{\lambda}}{2M} \phi^{0}(\bar{d}_{i}^{\lambda} \gamma^{5} d_{i}^{\lambda}) +$ $\bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c^{2}})X^{0} + \bar{Y}\partial^{2}Y +$ $igc_wW^+_\mu(\partial_\mu \bar{X}^0 X^- - \partial_\mu \bar{X}^+ X^0) + igs_wW^+_\mu(\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ Y) +$ $igc_wW^-_\mu(\partial_\mu \bar{X}^- X^0 - \partial_\mu \bar{X}^0 X^+) + igs_wW^-_\mu(\partial_\mu \bar{X}^- Y - \partial_\mu \bar{Y} X^+) +$ $igc_w Z^0_\mu(\partial_\mu \bar{X}^+ X^+ - \partial_\mu \bar{X}^- X^-) + igs_w A_\mu(\partial_\mu \bar{X}^+ X^+ - \partial_\mu \bar{X}^- X^-) \frac{1}{2}gM[\bar{X}^+X^+H + \bar{X}^-X^-H + \frac{1}{c_w^2}\bar{X}^0X^0H] + \frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ - \frac{1}{2}c_w^2]$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2m}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+}] + igMs_{$ $\bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

Standard Model Lagrangian Density

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}q_i^{\sigma})g_{\mu}^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c_{\nu}^{2}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}H\partial_{$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{c}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{a^{2}} +$ $\frac{2M}{q}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{q^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu \begin{array}{l} W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}) \\ W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-}) \\ \end{array}$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}V_{\mu}^{+}$ $\frac{1}{8}g^2 \alpha_h [H^4 + (\phi^0)]^4$ $+(\phi^{0})^{4}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2H^{2}\phi^{+}\phi^{-}+2H^{2}\phi^{+}\phi^{-}+2$ $-\phi^{-}\phi$ $(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W^{+}_{\mu}(H^{2}\phi^{-} - \phi^{-}\partial_{\mu}H)]$ $[\partial_{\mu}H)] + \frac{1}{2}g \frac{1}{\alpha_{\nu}} (Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}$ $igs_w MA_*(W^+_u q$ $- \Delta_{\mu} A_{\mu} \phi^{+} \phi$ $\partial \nu^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda}$ $(u_j) - \frac{1}{3} (\overline{d}_j^{\lambda} \gamma d_j^{\lambda})] +$ $+ (\overline{u}_{i}^{\lambda}\gamma^{\mu})^{4}$ $(2)u_{1}^{2}$ + $(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1 + u_{i}^{\lambda}\gamma^{\mu}(1 +$ $^{(5)}C_{3\kappa}a_{i}^{\kappa}] +$ $(\bar{d}_{i}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{i}^{\lambda})] +$ $(\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})) - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) +$ $\frac{u_{j}}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})+m_{u}$ $[d_j] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\overline{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\overline{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}] - m_u^{\kappa}(\overline{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}] - m_u^{\kappa}(\overline{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\overline{d}_j^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\overline{d}_j^{\kappa}) - m_u^{\kappa}(\overline{d}_j^{\kappa}) - m_u^{\kappa}(\overline{d}_j^{\kappa}) - m_u^{\kappa}(\overline{d}_j^{\kappa}) - m_u^{\kappa}(\overline{d}_j^{\kappa}) - m_u^{\kappa}(\overline{d}_j^{\kappa}) \frac{g m_{u}^{\lambda}}{2M} H(\bar{u}_{j}^{\lambda} u_{j}^{\lambda}) - \frac{g m_{d}^{\lambda}}{2M} H(\bar{d}_{j}^{\lambda} d_{j}^{\lambda}) + \frac{ig m_{u}^{\lambda}}{2M} \phi^{0}(\bar{u}_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}) - \frac{ig m_{d}^{\lambda}}{2M} \phi^{0}(\bar{d}_{j}^{\lambda} \gamma^{5} d_{j}^{\lambda}) +$ $\bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{\ell^{2}})X^{0} + \bar{Y}\partial^{2}Y +$ $igc_w W^+_\mu (\partial_\mu \bar{X}^0 X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ Y) +$ $igc_wW^-_\mu(\partial_\mu \bar{X}^- X^0 - \partial_\mu \bar{X}^0 X^+) + igs_wW^-_\mu(\partial_\mu \bar{X}^- Y - \partial_\mu \bar{Y} X^+) +$ $igc_w Z^0_\mu(\partial_\mu \bar{X}^+ X^+ - \partial_\mu \bar{X}^- X^-) + igs_w A_\mu(\partial_\mu \bar{X}^+ X^+ - \partial_\mu \bar{X}^- X^-) \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \frac{1}{2}c_{w}^{2}h] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2m}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+}$ $\bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

Single-field slow roll inflation

Curvaton

Lyth & Wands 01, Lyth et al 02, Lyth & Rodriguez 05, [1303.5082]

Curvaton

Lyth & Wands 01, Lyth et al 02, Lyth & Rodriguez 05, [1303.5082]

Curvaton

Lyth & Wands 01, Lyth et al 02, Lyth & Rodriguez 05, [1303.5082]
Curvaton

Lyth & Wands 01, Lyth et al 02, Lyth & Rodriguez 05, [1303.5082]

A spectator should:

Not affect inflation dynamics when perturbed/removed

- Subdominate the energy density
- Not couple to the inflaton(s) (except minimally by gravity)
- Dominate (or contribute significant) curvature perturbations
- End slow roll during inflation, after the Hubble exit of the relevant scales

Typical potential

Typical potential

Typical potential

Typical potential

Shifting boundary

Shifting boundary

Shifting boundary

 $V_{\rm tot} = V(\phi) + U(\sigma)$

$$\delta N = N_{\sigma} \delta \sigma_* \qquad \qquad N_{\sigma} = \frac{8\pi U_*}{M_p^2 U_*'} \Big(1 + \mathcal{O}(\epsilon) + \mathcal{O}(\eta) \Big)$$

$$\epsilon_{\phi} \equiv \frac{M_p^2 V'^2}{16\pi (U+V)^2}$$

$$\eta_{\sigma} \equiv \frac{M_p^2 U^{\prime\prime}}{8\pi (U+V)}$$

 $V_{\rm tot} = V(\phi) + U(\sigma)$

$$\delta N = N_{\sigma} \delta \sigma_*$$

$$\epsilon_{\phi} \equiv \frac{M_p^2 V'^2}{16\pi (U+V)^2}$$

$$\eta_{\sigma} \equiv \frac{M_p^2 U''}{8\pi (U+V)}$$

 $V_{\rm tot} = V(\phi) + U(\sigma)$

0 -- 0

$$\delta N = N_{\sigma} \delta \sigma_*$$

$$N_{\sigma} = \frac{8\pi U_*}{M_p^2 U_*'}$$

$$\epsilon_{\phi} \equiv \frac{M_p^2 V'^2}{16\pi (U+V)^2}$$

$$\eta_{\sigma} \equiv \frac{M_p^2 U''}{8\pi (U+V)}$$

$$P_{\zeta} = N_{\sigma}^2 P_{\delta\sigma_*} = \frac{16H_*^2 U_*^2}{M_p^4 U_*'^2}$$

$$n_s - 1 = -2\epsilon_{\phi*} + 2\eta_{\sigma*}$$

 $V_{\rm tot} = V(\phi) + U(\sigma)$

$$N_{\sigma} = \frac{8\pi U_*}{M_p^2 U_*'}$$

$$\epsilon_{\phi} \equiv \frac{M_p^2 V'^2}{16\pi (U+V)^2}$$

 $\delta N = N_{\sigma} \delta \sigma_*$

 $\eta_{\sigma} \equiv \frac{M_p^2 U''}{8\pi (U+V)}$

$$P_{\zeta} = N_{\sigma}^2 P_{\delta\sigma_*} = \frac{16H_*^2 U_*^2}{M_p^4 U_*'^2} \qquad n_s - 1 = -2\epsilon_{\phi*} + 2\eta_{\sigma*}$$

 $V_{\rm tot} = V(\phi) + U(\sigma)$

 $\delta N = N_{\sigma} \delta \sigma_*$

Not suppressed by a low energy density $U_* \rightarrow 0$

$$P_{\zeta} = N_{\sigma}^2 P_{\delta\sigma_*} = \frac{16H_*^2 U_*^2}{M_p^4 U_*'^2} \qquad n_s - 1 = -2\epsilon_{\phi*} + 2\eta_{\sigma*}$$

 $V_{\rm tot} = V(\phi) + U(\sigma)$

 $\delta N = N_{\sigma} \delta \sigma_*$

Not suppressed by a low

energy density $U_* \rightarrow 0$

$$N_{\phi} = \frac{8\pi V_*}{M_p^2 V_*'}$$

$$P_{\zeta} = N_{\sigma}^2 P_{\delta\sigma_*} = \frac{16H_*^2 U_*^2}{M_p^4 U_*'^2} \qquad n_s - 1 = -2\epsilon_{\phi*} + 2\eta_{\sigma*}$$

 $V_{\rm tot} = V(\phi) + U(\sigma)$

 $\delta N = N_{\sigma} \delta \sigma_*$

Not suppressed by a low energy density $U_* \rightarrow 0$

Spectator produces significant perturbations $\frac{U'_*}{U_*} \leq \frac{V'_*}{V_*}$ when its potential is relatively flatter:

$$\delta N = N_{\sigma} \delta \sigma_* + \frac{1}{2} N_{\sigma\sigma} \delta \sigma_*^2 \qquad \qquad N_{\sigma\sigma} \equiv \frac{\partial N_{\sigma}}{\partial \sigma_*}$$

$$\delta N = N_{\sigma} \delta \sigma_* + \frac{1}{2} N_{\sigma\sigma} \delta \sigma_*^2 \qquad \qquad N_{\sigma\sigma} \equiv \frac{\partial N_{\sigma}}{\partial \sigma_*}$$

$$f_{\rm NL} = \frac{5}{6} \frac{N_{\sigma\sigma}}{N_{\sigma}^2} = \frac{10\epsilon_{\phi c}(2\epsilon_{\phi c} - \eta_{\phi c})}{9(1+w)r} - \frac{5\eta_{\sigma*}}{6r} + \cdots$$

$$\delta N = N_{\sigma} \delta \sigma_* + \frac{1}{2} N_{\sigma\sigma} \delta \sigma_*^2 \qquad \qquad N_{\sigma\sigma} \equiv \frac{\partial N_{\sigma}}{\partial \sigma_*}$$

$$f_{\rm NL} = \frac{5}{6} \frac{N_{\sigma\sigma}}{N_{\sigma}^2} = \frac{10\epsilon_{\phi c}(2\epsilon_{\phi c} - \eta_{\phi c})}{9(1 + w)r} - \frac{5\eta_{\sigma*}}{6r} + \cdots$$

$$\delta N = N_{\sigma} \delta \sigma_* + \frac{1}{2} N_{\sigma\sigma} \delta \sigma_*^2 \qquad \qquad N_{\sigma\sigma} \equiv \frac{\partial N_{\sigma}}{\partial \sigma_*}$$

$$f_{\rm NL} = \frac{5}{6} \frac{N_{\sigma\sigma}}{N_{\sigma}^2} = \frac{10\epsilon_{\phi c}(2\epsilon_{\phi c} - \eta_{\phi c})}{9(1 + w)r} - \frac{5\eta_{\sigma*}}{6r} + \cdots$$

$$r \equiv \frac{U_c}{U_c + V_c} \ll 1$$

$$\delta N = N_{\sigma} \delta \sigma_* + \frac{1}{2} N_{\sigma\sigma} \delta \sigma_*^2 \qquad \qquad N_{\sigma\sigma} \equiv \frac{\partial N_{\sigma}}{\partial \sigma_*}$$

$$f_{\rm NL} = \frac{5}{6} \frac{N_{\sigma\sigma}}{N_{\sigma}^2} = \frac{10\epsilon_{\phi c}(2\epsilon_{\phi c} - \eta_{\phi c})}{9(1 + wr)} - \frac{5\eta_{\sigma*}}{6r} \stackrel{<}{\leftarrow} 1$$

$$r \equiv \frac{U_c}{U_c + V_c} \ll 1$$

$$\delta N = N_{\sigma} \delta \sigma_* + \frac{1}{2} N_{\sigma\sigma} \delta \sigma_*^2 \qquad \qquad N_{\sigma\sigma} \equiv \frac{\partial N_{\sigma}}{\partial \sigma_*}$$

$$f_{\rm NL} = \frac{5}{6} \frac{N_{\sigma\sigma}}{N_{\sigma}^2} = \frac{10\epsilon_{\phi c}(2\epsilon_{\phi c} - \eta_{\phi c})}{9(1 + w)r} - \frac{5\eta_{\sigma*}}{6r} \stackrel{<}{\leftarrow} \frac{1}{6r}$$

$$r \equiv \frac{U_c}{U_c + V_c} \ll 1$$

Curvaton: $f_{NL} \sim \frac{1}{r}$

$$\delta N = N_{\sigma} \delta \sigma_* + \frac{1}{2} N_{\sigma\sigma} \delta \sigma_*^2 \qquad \qquad N_{\sigma\sigma} \equiv \frac{\partial N_{\sigma}}{\partial \sigma_*}$$

$$f_{\rm NL} = \frac{5}{6} \frac{N_{\sigma\sigma}}{N_{\sigma}^2} = \frac{10\epsilon_{\phi c}(2\epsilon_{\phi c} - \eta_{\phi c})}{9(1 + w)r} - \frac{5\eta_{\sigma*}}{6r} \stackrel{<}{\leftarrow} \frac{1}{1}$$

Smaller non-Gaussianity than Curvaton: $f_{NL} \sim \frac{1}{r}$

MSSM flat direction inflaton

Allahverdi et al 06, Allahverdi et al 06, Wang et al 13

MSSM flat direction inflaton

Allahverdi et al 06, Allahverdi et al 06, Wang et al 13

MSSM flat direction inflaton

Allahverdi et al 06, Allahverdi et al 06, Wang et al 13

Hyperbolic tangent spectator

Major results

$$V(\phi) = \frac{1}{2}m^2|\phi|^2 - \frac{2mh}{3\sqrt{3}}\phi^3 + \frac{h^2}{12}|\phi|^4$$
$$U(\sigma) = \frac{U_0}{2}\left(1 + \tanh\frac{\sigma}{\sigma_0}\right)$$
Major results

$$V(\phi) = \frac{1}{2}m^2|\phi|^2 - \frac{2mh}{3\sqrt{3}}\phi^3 + \frac{h^2}{12}|\phi|^4$$
$$U(\sigma) = \frac{U_0}{2}\left(1 + \tanh\frac{\sigma}{\sigma_0}\right)$$

 $m \sim 1 \,\text{TeV} \qquad m \sim 100 \,\text{TeV}$ $h \leq 10^{-11} \qquad h \leq 10^{-12}$

Major results

$$V(\phi) = \frac{1}{2}m^2|\phi|^2 - \frac{2mh}{3\sqrt{3}}\phi^3 + \frac{h^2}{12}|\phi|^4$$
$$U(\sigma) = \frac{U_0}{2}\left(1 + \tanh\frac{\sigma}{\sigma_0}\right)$$

 $m \sim 1 \,\text{TeV} \qquad m \sim 100 \,\text{TeV}$ $h \leq 10^{-11} \qquad h \leq 10^{-12}$

$$n_s - 1 = -\frac{2}{N_* - N_c + 1}$$

 $f_{NL} = \frac{5}{6(N_* - N_c + 1)r}$

Parameter space

* No

* No

Possible origins of the plateau potential:

Single field models

* No

Possible origins of the plateau potential:

Single field models

Flat directions in SUSY & String (wanted/unwanted)

* No

- Single field models
 - Flat directions in SUSY & String (wanted/unwanted)
 - Higgs-like potential

* No

- Single field models
 - Flat directions in SUSY & String (wanted/unwanted)
 - Higgs-like potential
- Multi-field models: no need for plateau

* No

- Single field models
 - Flat directions in SUSY & String (wanted/unwanted)
 - Higgs-like potential
- Multi-field models: no need for plateau
 - Hybrid potential

* Phenomenological model: $\Delta T(\mathbf{\hat{n}}) = (1 + A \mathbf{\hat{p}} \cdot \mathbf{\hat{n}}) \Delta T_{iso}(\mathbf{\hat{n}})$

• Planck result: $A = 0.07 \pm 0.02$

- * Phenomenological model: $\Delta T(\mathbf{\hat{n}}) = (1 + A \mathbf{\hat{p}} \cdot \mathbf{\hat{n}}) \Delta T_{iso}(\mathbf{\hat{n}})$
- Planck result: $A = 0.07 \pm 0.02$
- Possible explanation: very large scale perturbations

- * Phenomenological model: $\Delta T(\mathbf{\hat{n}}) = (1 + A \mathbf{\hat{p}} \cdot \mathbf{\hat{n}}) \Delta T_{iso}(\mathbf{\hat{n}})$
- Planck result: $A = 0.07 \pm 0.02$
- Possible explanation: very large scale perturbations
- Alternative explanations

- * Phenomenological model: $\Delta T(\mathbf{\hat{n}}) = (1 + A \mathbf{\hat{p}} \cdot \mathbf{\hat{n}}) \Delta T_{iso}(\mathbf{\hat{n}})$
- Planck result: $A = 0.07 \pm 0.02$

Possible explanation: very large scale perturbations

Alternative explanations

- * Phenomenological model: $\Delta T(\mathbf{\hat{n}}) = (1 + A \mathbf{\hat{p}} \cdot \mathbf{\hat{n}}) \Delta T_{iso}(\mathbf{\hat{n}})$
- Planck result: $A = 0.07 \pm 0.02$

Possible explanation: very large scale perturbations

Alternative explanations

- * Phenomenological model: $\Delta T(\mathbf{\hat{n}}) = (1 + A \mathbf{\hat{p}} \cdot \mathbf{\hat{n}}) \Delta T_{iso}(\mathbf{\hat{n}})$
- Planck result: $A = 0.07 \pm 0.02$

Possible explanation: very large scale perturbations

- * Phenomenological model: $\Delta T(\mathbf{\hat{n}}) = (1 + A \mathbf{\hat{p}} \cdot \mathbf{\hat{n}}) \Delta T_{iso}(\mathbf{\hat{n}})$
- Planck result: $A = 0.07 \pm 0.02$

Possible explanation: very large scale perturbations

- * Phenomenological model: $\Delta T(\mathbf{\hat{n}}) = (1 + A \mathbf{\hat{p}} \cdot \mathbf{\hat{n}}) \Delta T_{iso}(\mathbf{\hat{n}})$
- Planck result: $A = 0.07 \pm 0.02$

Possible explanation: very large scale perturbations

Dependence on primordial local non-Gaussianity

Single perturbation source:

Dependence on primordial local non-Gaussianity

Single perturbation source:

$$A = \frac{3}{5} \frac{|\Delta \sigma|}{\sqrt{P_{\delta \sigma_*}}} |f_{\rm NL}| \sqrt{P_{\zeta}}$$

Dependence on primordial local non-Gaussianity

* Single perturbation source: $A = \frac{3}{5} \frac{(\Delta \sigma)}{\sqrt{P_{\delta \sigma_*}}} |f_{\rm NL}| \sqrt{P_{\zeta}}$

> σ generates curvature perturbations and gains very large scale perturbations

Dependence on primordial local non-Gaussianity

Single perturbation source:

$$A = \frac{3}{5} \frac{|\Delta \sigma|}{\sqrt{P_{\delta \sigma_*}}} |f_{\rm NL}| \sqrt{P_{\zeta}}$$

Multi perturbation sources:

$$A < \frac{|\Delta \sigma|}{2\sqrt{P_{\delta \sigma_*}}} \sqrt{\tau_{\rm NL} P_{\zeta}}$$

Dependence on primordial local non-Gaussianity

Single perturbation source:

$$A = \frac{3}{5} \frac{|\Delta \sigma|}{\sqrt{P_{\delta \sigma_*}}} |f_{\rm NL}| \sqrt{P_{\zeta}}$$

Multi perturbation sources:

$$A < \frac{|\Delta \sigma|}{2\sqrt{P_{\delta\sigma_*}}} \sqrt{\tau_{\rm NL} P_{\zeta}}$$

 $f_{\rm NL} = 2.7 \pm 11.6$ $|\Delta \sigma|$

$$\frac{1}{\sqrt{P_{\delta\sigma_*}}} > 174$$

$$\tau_{\rm NL} < 2800$$

$$\frac{|\Delta\sigma|}{\sqrt{P_{\delta\sigma_*}}} > 56$$

Dependence on primordial local non-Gaussianity

Single perturbation source:

$$A = \frac{3}{5} \frac{|\Delta \sigma|}{\sqrt{P_{\delta \sigma_*}}} |f_{\rm NL}| \sqrt{P_{\zeta}}$$

Multi perturbation sources:

$$A < \frac{|\Delta\sigma|}{2\sqrt{P_{\delta\sigma_*}}}\sqrt{\tau_{\rm NL}P_{\zeta}}$$

Scale invariant spectrum

 $\frac{|\Delta\sigma|}{\sqrt{P_{\delta\sigma_*}}} \lesssim 2 \text{ must be violated}$

 $f_{\rm NL} = 2.7 \pm 11.6$ $|\Delta \sigma|$

$$\frac{1-\sigma_{+}}{\sqrt{P_{\delta\sigma_{*}}}} > 174$$

 $\tau_{\rm NL} < 2800$

(Fast roll for the field, not inflation)

Mazumdar & Wang 13

(Fast roll for the field, not inflation)

Mazumdar & Wang 13

$$m^2 = (e^{2N_m} - 1)2H^2$$

 $N_m = 1.4$

$$m^2 = (e^{2N_m} - 1)2H^2$$

 $N_* - 4.2 < N < N_* - 2.4$

 $N_m = 1.4$

$$f_{\rm NL} = 7$$

Mazumdar & Wang 13

$$m^{2} = (e^{2N_{m}} - 1)2H^{2}$$

$$A = 0.07$$

$$M_{m} = 1.4$$

$$f_{NL} = 7$$

$$m^{2} = (e^{2N_{m}} - 1)2H^{2}$$

$$A = 0.07$$

$$M_{m} = 1.4$$

$$M_{m} = 1.4$$

$$f_{NL} = 7$$

No dipole asymmetry from small scales
 No excessive quadrupoles and octupoles

Parameter space for fast roll

Mazumdar & Wang 13

Scale dependence

Flender & Hotchkiss 13

Scale dependence

Flender & Hotchkiss 13

Scale dependence

Flender & Hotchkiss 13
Scale dependence

Flender & Hotchkiss 13

Scale dependence

Flender & Hotchkiss 13

How significant?

How significant?

Not so significant?

Over estimate

 $\Delta T(\mathbf{\hat{n}}) = (1 + A \,\mathbf{\hat{p}} \cdot \mathbf{\hat{n}}) \Delta T_{\rm iso}(\mathbf{\hat{n}})$

$\Delta T(\mathbf{\hat{n}}) = (1 + A \, \mathbf{\hat{p}} \cdot \mathbf{\hat{n}}) \Delta T_{\rm iso}(\mathbf{\hat{n}})$

$\Delta T(\mathbf{\hat{n}}) = (1 + A \, \mathbf{\hat{p}} \cdot \mathbf{\hat{n}}) \Delta T_{\rm iso}(\mathbf{\hat{n}})$

$$\Delta T(\mathbf{\hat{n}}) = \sum_{lm} a_{lm} Y_{lm}(\mathbf{\hat{n}})$$

 $\Delta T^2(\mathbf{\hat{n}}) = \sum a_{lm}^{(2)} Y_{lm}(\mathbf{\hat{n}})$ lm

AND WWWWWWWWWW

$$\Delta T^2(\mathbf{\hat{n}}) = \sum_{lm} a_{lm}^{(2)} Y_{lm}(\mathbf{\hat{n}})$$

 $\langle a_{lm}^{(2)*} a_{l'm'}^{(2)} \rangle = C_l^{(2,2)} \delta_{ll'} \delta_{mm'}$

Measurable

Measurable

Calculable

For Gaussian perturbations

$$C_{l}^{(2,2)} = \sum_{l_{1}l_{2}} \frac{(2l_{1}+1)(2l_{2}+1)}{4\pi} P_{l_{1}l_{2}l}C_{l_{1}}C_{l_{2}}$$
$$P_{l_{1}l_{2}l} \equiv (-1)^{l_{1}+l_{2}+l} \int_{-1}^{1} P_{l_{1}}(x)P_{l_{2}}(x)P_{l}(x)dx$$

 $P_l(x)$: Legendre polynomials

Calculable

For Gaussian perturbations

$$C_{l}^{(2,2)} = \sum_{l_{1}l_{2}} \frac{(2l_{1}+1)(2l_{2}+1)}{4\pi} P_{l_{1}l_{2}l}C_{l_{1}}C_{l_{2}}$$
$$P_{l_{1}l_{2}l} \equiv (-1)^{l_{1}+l_{2}+l} \int_{-1}^{1} P_{l_{1}}(x)P_{l_{2}}(x)P_{l}(x)dx$$

 $P_l(x)$: Legendre polynomials

Power dipole

$$C_1^{(2,2)} = \sum_l \frac{l+1}{\pi} C_l C_{l+1}$$

Gaussian perturbations

Natural modulation

Natural modulation

Natural modulation

Gaussian perturbations

$$\Delta C_l^{(2,2)} = \sum_{l_1...l_4} \frac{\sqrt{\prod_{n=1}^4 (-1)^{l_n} (2l_n+1)}}{8\pi (2l+1)} \sqrt{P_{l_1 l_2 l} P_{l_3 l_4 l}} T_{l_3 l_4}^{l_1 l_2} (l)$$

$$\Delta C_l^{(2,2)} = \frac{1}{2l+1} \sum_{l_1...l_4} F_{l_1 l_2 l_3 l_4} T_{l_3 l_4}^{l_1 l_2}(l)$$

$$\Delta C_l^{(2,2)} = \frac{1}{2l+1} \sum_{l_1...l_4} F_{l_1 l_2 l_3 l_4} T_{l_3 l_4}^{l_1 l_2}(l)$$

For non-Gaussian perturbations

$$\Delta C_{l}^{(2,2)} = \frac{1}{2l+1} \sum_{l_{1}...l_{4}} F_{l_{1}l_{2}l_{3}l_{4}} T_{l_{3}l_{4}}^{l_{1}l_{2}}(l)$$
$$\langle \Phi(\mathbf{k}_{1})\Phi(\mathbf{k}_{2})\Phi(\mathbf{k}_{3})\Phi(\mathbf{k}_{4}) \rangle$$

Fully determined by primordial cosmology

 $\Delta T(\mathbf{\hat{n}}) = \sum a_{lm} Y_{lm}(\mathbf{\hat{n}})$ lm

 $\Delta T(\mathbf{\hat{n}}) = \sum a_{lm} Y_{lm}(\mathbf{\hat{n}})$ lm

 $\delta(\mathbf{x}) = \int d^3 \mathbf{x} e^{i\mathbf{k}\cdot\mathbf{x}} \delta(\mathbf{k})$

 $\Delta T(\mathbf{\hat{n}}) = \sum a_{lm} Y_{lm}(\mathbf{\hat{n}})$ lm

$$\delta(\mathbf{x}) = \int d^3 \mathbf{x} e^{i\mathbf{k}\cdot\mathbf{x}} \delta(\mathbf{k})$$

 Possible measurement in the near future

Summary

- Spectator is an alternative to the curvaton scenario
 - It generates smaller non-Gaussianity, negligible isocurvature perturbations, and less tuning
- Example model shows good agreement with Planck
- CMB asymmetry is explained with a fast roll spectator
- Power multipoles is an alternative approach to dipole asymmetry
 - It has no free parameter and is determined by primordial cosmology
 Based on [1306.5736], PRD 88 023512, JCAP 1307 019, JCAP 1305 012, PRD 87 083501