The Effective Field Theory

of

Dark Energy

Filippo Vernizzi
IPhT, CEA/Saclay
with Giulia Gubitosi, Federico Piazza, 1210.0201, JCAP

IAP, 11 February 2013

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

Motivations

- Future surveys (EUCLID, LSST, BigBoss, etc.) will be sensitive to dynamical properties of dark energy and modified gravity (DE), observable in the power spectra and higher-order correlation functions
- Many models of DE, each one with its own motivations, physical effects, etc...
- Democratic view: look for a unifying (many models) and effective (agnostic to motivations) treatment of DE to test models against the data

Ideally...

- Description in terms of limited number of effective operators, each one responsible for an observable dynamical feature (e.g. flavor-changing neutral currents in physics beyond Standard Model)

Another acceleration

- Common feature of many DE models: gravity + single scalar degree of freedom (in some regime)
- Similar to inflation, where scalar field is needed to break de Sitter: clock

- Models of Inflation/DE share the same motivations and problems

- Two types of Effective Field Theory approaches to inflation: "covariant" (à la Weinberg) and "geometrical" (Creminelli et al. '06, Cheug et al. '07, deals directly with cosmological perturbations)

EFT: the covariant approach

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]
$$

One possible strategy: (Weinberg `08, Park, Zurek and Watson ` 10 , Bloomfield and Flanagan ` 11)
Apply covariant EFT to explore $\mathcal{F}\left[\phi, g^{\mu \nu}\right]$: field/derivative expansion

EFT: the covariant approach

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]
$$

One possible strategy:
Apply covariant EFT to explore $\mathcal{F}\left[\phi, g^{\mu \nu}\right]$: field/derivative expansion

However:
I) Expansion in number of fields is not necessarily meaningful

EFT: the covariant approach

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]
$$

I) Expansion in number of fields is not necessarily meaningful

EFT: the covariant approach

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]
$$

One possible strategy:
Apply covariant EFT to explore $\mathcal{F}\left[\phi, g^{\mu \nu}\right]$: field/derivative expansion

However:

1) Expansion in number of fields is not necessarily meaningful
2) Naively "perturbations" but not always so...

EFT: the covariant approach

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]
$$

One possible strategy:
(Weinberg `08, Park, Zurek and Watson `IO, Bloomfield and Flanagan `II)

However:

1) Expansion in number of fields is not necessarily meaningful
2) Naively "perturbations" but not always so...

EFT: the covariant approach

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]
$$

One possible strategy: (Weinberg `08, Park, Zurek and Watson `IO, Bloomfield and Flanagan `II)

However:
I) Expansion in number of fields is not necessarily meaningful
2) Naively "perturbations" but not always so...

EFT: the covariant approach

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]
$$

One possible strategy:
(Weinberg `08, Park, Zurek and Watson `IO, Bloomfield and Flanagan `II)

However:
I) Expansion in number of fields is not necessarily meaningful
2) Naively "perturbations" but not always so...

EFT: the covariant approach

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)+\mathcal{F}\left[\phi, g^{\mu \nu}\right]\right]
$$

One possible strategy:
Apply covariant EFT to explore $\mathcal{F}\left[\phi, g^{\mu \nu}\right]$: field/derivative expansion

However:

I) Expansion in number of fields is not necessarily meaningful
2) Naively "perturbations" but not always so...
3) Only halfway through the work to be done (background first + expand..)

EFT: a theory for the relevant low-energy d.o.f.

Examples:

।) QCD: quarks and gluons nucleons and pions at low energies

EFT: a theory for the relevant low-energy d.o.f.

Examples:
।) QCD: quarks and gluons nucleons and pions at low energies
2) EW theory: 4 massless vector bosons, 2 complex scalars etc.

I massless and 3 massive vector bosons, I massive "Higgs" field etc.

EFT: a theory for the relevant low-energy d.o.f.

Examples:
।) QCD: quarks and gluons nucleons and pions at low energies
2) EW theory: 4 massless vector bosons, 2 complex scalars etc.

I massless and 3 massive vector bosons, I massive "Higgs" field etc.
3) Cosmology: ...Cosmological Perturbations!

The Effective Field Theory of Inflation

Unitary gauge action:
(Creminelli et al. `06, Cheung et al. `07)

- Main idea: scalar degree of freedom is "eaten" by the metric. Ex:

$$
\phi(t, \vec{x}) \rightarrow \phi_{0}(t) \quad(\delta \phi=0) \quad-\frac{1}{2}(\partial \phi)^{2} \rightarrow-\frac{1}{2} \dot{\phi}_{0}^{2}(t) g^{00}
$$

- Action contains all operators invariant under spatial diffeomorphisms

$$
\int d^{4} x \sqrt{-g}\left[\frac{M_{\mathrm{Pl}}^{2} R}{2}+\dot{H}(t) M_{\mathrm{Pl}}^{2} g^{00}-3 H^{2}(t)-\dot{H}(t)+\frac{M_{2}^{4}(t)}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{M}_{1}^{3}(t)}{2} \delta g^{00} \delta K+\ldots\right]
$$

- Dictionary between operators and observables, i.e. shape and amplitude of non-Gaussianity constrained by WMAP and Planck

EFT of Inflation and non-Gaussianity

(Bennett et al, 20I2 - Final WMAP paper)
$S=\int d^{4} x \sqrt{-g}\left[-\frac{M_{\mathrm{Pl}}^{2} \dot{H}}{c_{s}^{2}}\left(\dot{\pi}^{2}-c_{s}^{2} \frac{\left(\partial_{i} \pi\right)^{2}}{a^{2}}\right)+\left(M_{\mathrm{Pl}}^{2} \dot{H}\right) \frac{1-c_{s}^{2}}{c_{s}^{2}}\left(\frac{\dot{\pi}\left(\partial_{i} \pi\right)^{2}}{a^{2}}+\frac{A}{c_{s}^{2}} \dot{\pi}^{3}\right)+\cdots\right]$

$$
\begin{aligned}
f_{N L}^{\text {eq }} & =\frac{1-c_{s}^{2}}{c_{s}^{2}}(-0.276+0.0785 A) \\
f_{N L}^{\text {orth }} & =\frac{1-c_{s}^{2}}{c_{s}^{2}}(0.0157-0.0163 A)
\end{aligned}
$$

... and DE?

- Obvious difference: energy scales and presence of different species (baryons, CDM, photons, neutrinos, etc) and thus different couplings, in the DE case
- \Rightarrow Minimally coupled DE: Effective Field Theory of Quintessence: stability and
zero sound speed limit
(with Creminelli et al. 2008)

... and DE?

- Obvious difference: energy scales and presence of different species (baryons, CDM, photons, neutrinos, etc) and thus different couplings, in the DE case
- \Rightarrow Minimally coupled DE: Effective Field Theory of Quintessence: stability and zero sound speed limit (with Creminelli et al. 2008)

Our Recipe for Dark Energy: (with Gubitosi, Piazza, 2012)
I) Assume WEP (universally coupled metric $S_{m}\left[g_{\mu \nu}, \Psi_{i}\right]$): Jordan frame clock.
2) Write the most generic action for $g_{\mu \nu}$ compatible with the residual un-broken symmetries (3-diff).

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

The (Jordan frame) Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms

The (Jordan frame) Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms

Genuine 4-dim covariant terms are still allowed, but will in general be multiplied by functions of time because time translations are broken

The (Jordan frame) Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms

Genuine 4-dim covariant terms are still allowed, but will in general be multiplied by functions of time because time translations are broken

The function $f(t)$ cannot be set to unity by a metric redefinition \neq EFT of Inflation

$$
g_{\mu \nu} \rightarrow f^{1 / 2} g_{\mu \nu}
$$

The (Jordan frame) Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms

General functions of time are allowed

The (Jordan frame) Action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

The most generic action written in terms of $g_{\mu \nu}$ compatible with the residual symmetry of spatial diffeomorphisms
...as well as tensors with " 0 " indices

Essentially: contractions with $\quad n_{\mu}=-\frac{\partial_{\mu} \phi}{\sqrt{-\left(\partial \phi^{2}\right)}}$

The Action: main message

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Any arbitrarily complicate action with one scalar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations

The Action: main message

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Any arbitrarily complicate action with one scalar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations

Example:
$(\partial \phi)^{2} R=\dot{\phi}_{0}^{2}\left(-1+\delta g^{00}\right)\left(R^{(0)}+\delta R\right)=\dot{\phi}_{0}^{2}\left[-R+R^{(0)}(t)+R^{(0)}(t) g^{00}+\delta g^{00} \delta R\right]$

The Action: background

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{aligned}
& M^{2}\left(f G_{\mu \nu}-\nabla_{\mu} \nabla_{\nu} f+g_{\mu \nu} \square f\right)+\left(c g^{00}+\Lambda\right) g_{\mu \nu}-2 c \delta_{\mu}^{0} \delta_{\nu}^{0}=T_{\mu \nu}^{(\mathrm{m})} \\
c= & \frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) \\
\Lambda= & \frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right)
\end{aligned}
$$

The Action: background

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Enough for background equations:

$$
\begin{aligned}
& \quad M^{2}\left(f G_{\mu \nu}-\nabla_{\mu} \nabla_{\nu} f+g_{\mu \nu} \square f\right)+\left(c g^{00}+\Lambda\right) g_{\mu \nu}-2 c \delta_{\mu}^{0} \delta_{\nu}^{0}=T_{\mu \nu}^{(\mathrm{m})} \\
& c=\frac{1}{2}(-\ddot{f}+H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}+p_{D}\right) \\
& \Lambda=\frac{1}{2}(\ddot{f}+5 H \dot{f}) M^{2}+\frac{1}{2}\left(\rho_{D}-p_{D}\right) \quad H^{2}=\frac{1}{3 f M^{2}}\left(\rho_{m}+\rho_{D}\right) \\
& \text { Generally Related to post-newtonian parameters } \quad \dot{H}=-\frac{1}{2 f M^{2}}\left(\rho_{m}+\rho_{D}+p_{m}+p_{D}\right) \\
& \text { "Bare" Planck Mass } \quad \text { Defined by the modified Friedman equations }
\end{aligned}
$$

The Action: perturbations

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Explicitly quadratic in the perturbations:

$$
S_{D E}^{(2)}=\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K-\frac{\bar{M}_{2}^{2}}{2} \delta K^{2}-\frac{\bar{M}_{3}^{2}}{2} \delta K_{\mu}{ }^{\nu} \delta K_{\nu}^{\mu}+\ldots
$$

The Action: perturbations

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Explicitly quadratic in the perturbations:

$$
S_{D E}^{(2)}=\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K-\frac{\bar{M}_{2}^{2}}{2} \delta K^{2}-\frac{\bar{M}_{3}^{2}}{2} \delta K_{\mu}^{\nu} \delta K_{\nu}^{\mu}+\ldots
$$

Extrinsic curvature: $\quad n_{\mu}=-\frac{\partial_{\mu} \phi}{\sqrt{-\left(\partial \phi^{2}\right)}} \quad h_{\mu \nu} \equiv g_{\mu \nu}+n_{\mu} n_{\nu}$

$$
K_{\mu \nu}=h_{\mu}{ }^{\sigma} \nabla_{\sigma} n_{\nu} \quad \delta K_{\mu \nu}=K_{\mu \nu}-H h_{\mu \nu}
$$

The Action: perturbations

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Explicitly quadratic in the perturbations:

$$
S_{D E}^{(2)}=\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K-\frac{\bar{M}_{2}^{2}}{2} \delta K^{2}-\frac{\bar{M}_{3}^{2}}{2} \delta K_{\mu}^{\nu} \delta K_{\nu}^{\mu}+\ldots
$$

3-curvature terms: $\quad+\frac{\tilde{m}_{1}}{2} \delta g^{00(3)} R+\frac{\tilde{M}_{1}}{2} \delta K_{\mu}{ }^{\nu}{ }^{(3)} R_{\nu}{ }^{\mu}+\ldots$
In EFT of Inflation these terms can be eliminated by a metric redefinition

The Action: perturbations

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}\right]+S_{D E}^{(2)}
$$

Explicitly quadratic in the perturbations:

$$
\begin{array}{r}
S_{D E}^{(2)}=\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K-\frac{\bar{M}_{2}^{2}}{2} \delta K^{2}-\frac{\bar{M}_{3}^{2}}{2} \delta K_{\mu}{ }^{\nu} \delta K_{\nu}^{\mu}+\ldots \\
+\frac{\tilde{m}_{1}}{2} \delta g^{00(3)} R+\frac{\tilde{M}_{1}}{2} \delta K_{\mu}{ }^{\nu(3)} R_{\nu}{ }^{\mu}+\ldots
\end{array}
$$

Action in "standard form" (no ambiguities, field redefinitions)

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

Examples

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)
$$

Examples

$$
S=\int \sqrt{-q}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)
$$

Non-minimally coupled scalar field

$$
\begin{aligned}
S & =\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} F(\phi) R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right] \\
f(t) & =F\left(\phi_{0}(t)\right), \quad \Lambda(t)=V\left(\phi_{0}(t)\right), \quad c(t)=\dot{\phi}_{0}^{2}(t)
\end{aligned}
$$

Examples

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)
$$

K-essence (Amendari-Picon et al., 2000)

$$
S=\int d^{4} x \sqrt{-g} P(\phi, X) \quad X \equiv g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi
$$

Expansion: $\quad X=\dot{\phi}_{0}^{2}(t)\left(-1+\delta g^{00}\right)$

$$
\begin{aligned}
& \Lambda(t)=c(t)-P\left(\phi_{0}(t), \dot{\phi}_{0}^{2}(t)\right), \quad c(t)=\left.\frac{\partial P}{\partial X}\right|_{\phi=\phi_{0}, X=\dot{\phi}_{0}^{2}}, \\
& M_{n}^{4}(t)=\left.\frac{\partial^{n} P}{\partial X^{n}}\right|_{\phi=\phi_{0}, X=\dot{\phi}_{0}^{2}}(n \geq 2)
\end{aligned}
$$

Examples

$$
S=\int \sqrt{-q}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)
$$

"Galilean Cosmology" (Chow and Khoury, 2009)

$$
\begin{gathered}
S=\int d^{4} x \sqrt{-g}\left[\frac{M^{2}}{2} e^{-2 \phi / M} R-\frac{r_{c}^{2}}{M}(\partial \phi)^{2} \square \phi\right] \\
f(t)=e^{-2 \frac{\phi_{0}}{M}}, \quad \Lambda(t)=-\frac{r_{c}^{2}}{M} \dot{\phi}_{0}^{2}\left(\ddot{\phi}_{0}+3 H \dot{\phi}_{0}\right), \quad c(t)=\frac{r_{c}^{2}}{M} \dot{\phi}_{0}^{2}\left(\ddot{\phi}_{0}-3 H \dot{\phi}_{0}\right), \\
M_{2}^{4}(t)=-\frac{r_{c}^{2}}{2 M} \dot{\phi}_{0}^{2}\left(\ddot{\phi}_{0}+3 H \dot{\phi}_{0}\right), \quad M_{3}^{4}(t)=-\frac{3 r_{c}^{2}}{4 M} \dot{\phi}_{0}^{2}\left(\ddot{\phi}_{0}+H \dot{\phi}_{0}\right), \quad \bar{m}_{1}^{3}(t)=-\frac{r_{c}^{2}}{M} 2 \dot{\phi}_{0}^{3},
\end{gathered}
$$

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

Mixing with gravity:

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply "Stueckelberg trick" and go to Newtonian Gauge

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

Mixing with gravity:

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply "Stueckelberg trick" and go to Newtonian Gauge

The scalar d.o.f. can be made explicit by forcing a time-diff on the action:

$$
t \rightarrow t+\pi(x)
$$

and by promoting the parameter of diffeomorphism to a field:

$$
\begin{aligned}
c(t) & \rightarrow c(t+\pi)=c(t)+\dot{c}(t) \pi+\frac{1}{2} \ddot{c}(t) \pi^{2}+\ldots \\
g^{00} & \rightarrow g^{\mu \nu} \partial_{\mu}(t+\pi) \partial_{\nu}(t+\pi)=g^{00}+2 g^{0 \mu} \partial_{\mu} \pi+g^{\mu \nu} \partial_{\mu} \pi \partial_{\nu} \pi, \\
\delta K & \rightarrow \delta K-3 \dot{H} \pi-a^{-2} \nabla^{2} \pi
\end{aligned}
$$

Mixing with gravity:

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply "Stueckelberg trick" and go to Newtonian Gauge

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

Expand at quadratic order and retain only kinetic operators (2 derivatives): $\dot{\Psi}^{2}, \quad(\vec{\nabla} \Psi)^{2}, \quad$ etc.

Modified Gravity \approx Kinetic mixing $\quad \dot{\Psi} \dot{\pi}, \quad \vec{\nabla} \Psi \vec{\nabla} \pi, \quad$ etc. One less derivative in couplings $\dot{\Psi} \pi \approx$ Jeans length (in progress)

Mixing with gravity 1: Brans-Dicke

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply Stueckelberg and go to Newtonian Gauge

$$
S \stackrel{\text { kinetic }}{=} \int M^{2} f\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}+3(\dot{f} / f) \dot{\Psi} \dot{\pi}+(\dot{f} / f) \vec{\nabla} \pi(\vec{\nabla} \Phi-2 \vec{\nabla} \Psi)\right]
$$

Mixing with gravity 1: Brans-Dicke

$$
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
$$

Apply Stueckelberg and go to Newtonian Gauge
$S \stackrel{\text { kinetic }}{=} \int M^{2} f\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}+3(\dot{f} / f) \dot{\Psi} \dot{\pi}+(\dot{f} / f) \vec{\nabla} \pi(\vec{\nabla} \Phi-2 \vec{\nabla} \Psi)\right]$

I propagating d.o.f.

 $\operatorname{det} \mathcal{L}=k^{4}\left(\omega^{2}-k^{2}\right)$$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

Newtonian limit $\quad \partial_{t} \ll \vec{\nabla}$

$$
\begin{aligned}
& S^{\text {kinetic }} \int M^{2} f\left[-3 \dot{j} / 2-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}+\eta \not 2-c(\vec{\nabla} \pi)^{2}+3(\dot{f} / f) \dot{f} f+(\dot{f} / f) \vec{\nabla} \pi(\vec{\nabla} \Phi-2 \vec{\nabla} \Psi)\right] \\
& 1-\gamma \equiv \frac{\Phi-\Psi}{\Phi}=\frac{M^{2} \dot{f}^{2} / f}{2\left(c+M^{2} \dot{f}^{2} / f\right)} \\
& \nabla^{2} \pi=\frac{-M^{2} \dot{f}}{2\left(c+M^{2} \dot{f}^{2} / f\right)} \nabla^{2} \Phi \\
& \nabla^{2} \Phi=4 \pi G_{\text {eff }} \delta \rho_{m} \quad \text { Poisson equation }
\end{aligned}
$$

$$
G_{\mathrm{eff}}=\frac{1}{8 \pi M^{2} f} \frac{c+M^{2} \dot{f}^{2} / f}{c+\frac{3}{4} M^{2} \dot{f}^{2} / f}
$$

"dressed" Newton constant

Mixing with gravity 2 : (see also Creminelli et al. 2006 \& 2008) $G(\phi, X) \square \phi \quad$ (Cf. braiding: Deffayet et al., 2010)

$$
\begin{gathered}
f(t)=1 \\
\left.S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K\right)+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
\end{gathered}
$$

Apply Stueckelberg and go to Newtonian Gauge
$S \stackrel{\text { kinetic }}{=} \int M^{2}\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}\right]+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}-3 \bar{m}_{1}^{3} \dot{\Psi} \dot{\pi}-\bar{m}_{1}^{3} \vec{\nabla} \Phi \vec{\nabla} \pi$

Mixing with gravity 2 :
(see also Creminelli et al. 2006 \& 2008) $G(\phi, X) \square \phi \quad$ (Cf. braiding: Deffayet et al., 2010)

$$
\begin{gathered}
f(t)=1 \\
S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{1}{2} T^{\mu \nu} \delta g_{\mu \nu}\right)
\end{gathered}
$$

Apply Stueckelberg and go to Newtonian Gauge

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

$S \stackrel{\text { kinetic }}{=} \int M^{2}\left[-3 \dot{\Psi}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}\right]+c \dot{\pi}^{2}-c(\vec{\nabla} \pi)^{2}-3 \bar{m}_{1}^{3} \dot{\Psi} \dot{\pi}-\bar{m}_{1}^{3} \vec{\nabla} \Phi \vec{\nabla} \pi$
I propagating d.o.f.
De-mixing \neq conformal transformation

$$
\begin{gathered}
\operatorname{det} \mathcal{L}=k^{4}\left(\omega^{2}-c_{s}^{2} k^{2}\right) \\
c_{s}^{2}=\frac{c+\frac{1}{2}\left(H \bar{m}_{1}^{3}+\dot{\bar{m}}_{1}^{3}\right)-\frac{1}{4} \bar{m}_{1}^{6} / M^{2}}{c+\frac{3}{4} \bar{m}_{1}^{6} / M^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& \Phi_{E}=\Phi+\frac{\bar{m}_{1}^{3}}{2 M^{2}} \pi \\
& \Psi_{E}=\Psi+\frac{\bar{m}_{1}^{3}}{2 M^{2}} \pi
\end{aligned}
$$

Newtonian limit $\quad \partial_{t} \ll \vec{\nabla}$
$S \stackrel{\text { kinetic }}{=} \int M^{2}\left[-3 \dot{m}^{2}-2 \vec{\nabla} \Phi \vec{\nabla} \Psi+(\vec{\nabla} \Psi)^{2}\right]+\dot{x}^{2}-c(\vec{\nabla} \pi)^{2}-3 \bar{m}^{3} \dot{m} \pi \bar{m}_{1}^{3} \vec{\nabla} \Phi \vec{\nabla} \pi$
$\Phi=\Psi \quad$ unlike Brans-Dicke theories $\quad \gamma=1$
$\nabla^{2} \pi=-\frac{\bar{m}_{1}^{3}}{2 c} \nabla^{2} \Phi$
$\nabla^{2} \Phi=4 \pi G_{\text {eff }} \delta \rho_{m} \quad$ Poisson equation
$G_{\mathrm{eff}}=\frac{1}{8 \pi M^{2} f}\left(1-\frac{\bar{m}_{1}^{3}}{4 c M^{2}}\right)^{-1} \quad$ "dressed" Newton constant

Model building v.s. General treatment (winh Gubiosis, PRazar, 2012)

$S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)$
Find, once and for all, the action for the scalar degree of freedom:

$$
\begin{aligned}
& S_{\pi} \text { kinetic } \int a^{3}\left\{\left[c+2 M_{2}^{4}+\frac{3}{4} \frac{\dot{f}^{2}}{f} M^{2}-\frac{3}{2} \bar{m}_{1}^{3} \frac{\dot{f}}{f}+\frac{3}{4} \frac{\bar{m}_{1}^{6}}{M^{2}}\right] \dot{\pi}^{2}\right. \\
- & {\left.\left[c+\frac{3}{4} \frac{\dot{f}^{2}}{f} M^{2}-\frac{1}{2} \bar{m}_{1}^{3} \frac{\dot{f}}{f}-\frac{1}{4} \frac{\bar{m}_{1}^{6}}{M^{2}}+\frac{1}{2}\left(\dot{m}_{1}^{3}+H \bar{m}_{1}^{3}\right)\right] \frac{(\vec{\nabla} \pi)^{2}}{a^{2}}\right\} }
\end{aligned}
$$

And address, once and for all, all questions of stability, speed of sound and deviations from GR:

$$
\begin{aligned}
1-\gamma & =\frac{1}{2} \frac{\left(M^{2} \dot{f}^{2}+\bar{m}_{1}^{3} \dot{f}\right) / f}{c+M^{2} \dot{f}^{2} / f+\frac{1}{2}\left(\bar{m}_{1}^{3}+H \bar{m}_{1}^{3}\right)} \\
G_{\mathrm{eff}} & =\frac{1}{8 \pi M^{2} f} \frac{c+M^{2} \dot{f}^{2} / f+\frac{1}{2}\left(\bar{m}_{1}^{3}+H \bar{m}_{1}^{3}\right)}{c+\frac{3}{4} M^{2} \dot{f}^{2} / f-\frac{1}{2} \bar{m}_{1}^{3} \dot{f} / f-\frac{1}{4} \bar{m}_{1}^{6} / M^{2}+\frac{1}{2}\left(\bar{m}_{1}^{3}+H \bar{m}_{1}^{3}\right)}
\end{aligned}
$$

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

The zero sound speed limit of quintessence

$S=\int \sqrt{-g}\left(\frac{M^{2}}{2} f R-\Lambda-c g^{00}+\frac{M_{2}^{4}}{2}\left(\delta g^{00}\right)^{2}-\frac{\bar{m}_{1}^{3}}{2} \delta g^{00} \delta K+\frac{M_{3}^{4}}{6}\left(\delta g^{00}\right)^{3}+\ldots\right)$

- Consider a minimally coupled field, $\dot{f}=1$, and the limit $c=\frac{1}{2}\left(\rho_{D}+p_{D}\right) \ll M_{2}^{4}$ with $M_{2} \simeq \bar{m}_{1}$
- The action reads

$$
S_{\pi} \stackrel{\text { kinetic }}{=} \int a^{3}\left\{2 M_{2}^{4} \dot{\pi}^{2}-\left[c-\frac{1}{4} \frac{M_{2}^{6}}{M_{\mathrm{Pl}}^{2}}+\frac{1}{2}\left(\dot{M}_{2}^{3}+H M_{2}^{3}\right)\right] \frac{(\vec{\nabla} \pi)^{2}}{a^{2}}\right\}
$$

- The speed of sound of fluctuations vanishes

$$
c_{s}^{2}=\frac{c}{2 M_{2}^{4}}-\frac{1}{8} \frac{M_{2}^{2}}{M_{\mathrm{Pl}}^{2}}+\frac{3 \dot{M}_{2}}{8 M_{2}^{2}}+\frac{H}{8 M_{2}} \ll 1
$$

Motivations

- Shift symmetry invariance: $\phi \rightarrow \phi+\lambda \quad \Rightarrow \quad \mathcal{L}=P(X)$

EOM in expanding Universe: $\quad \partial_{t}\left(a^{3} \dot{\phi} P_{, X}\right)=0$

- Solution with $\dot{\bar{\phi}}=$ const $\quad \Rightarrow \quad \bar{X}=$ const 2 and $\quad P_{, X} \rightarrow 0 \Rightarrow w \rightarrow-1$ and $c_{s}^{2} \rightarrow 0$

Motivations

- Shift symmetry invariance: $\phi \rightarrow \phi+\lambda \quad \Rightarrow \quad \mathcal{L}=P(X)$

EOM in expanding Universe: $\quad \partial_{t}\left(a^{3} \dot{\phi} P_{, X}\right)=0$

- Solution with $\dot{\bar{\phi}}=$ const $\quad \Rightarrow \quad \bar{X}=$ const 2 and $\quad P_{, X} \rightarrow 0 \Rightarrow w \rightarrow-1$ and $c_{s}^{2} \rightarrow 0$

Ghost condensate theory: [Arkani-Hamed et al., ${ }^{\text {'03, }}$, 05] $P(X)=\bar{P}+\frac{1}{2} P_{, X X}(X-\bar{X})^{2}+$ higher der.

Motivations

- Shift symmetry invariance: $\phi \rightarrow \phi+\lambda \quad \Rightarrow \quad \mathcal{L}=P(X)$

EOM in expanding Universe: $\quad \partial_{t}\left(a^{3} \dot{\phi} P_{, X}\right)=0$

- Solution with $\dot{\bar{\phi}}=$ const $\quad \Rightarrow \quad \bar{X}=$ const 2 and $\quad P_{, X} \rightarrow 0 \Rightarrow w \rightarrow-1$ and $c_{s}^{2} \rightarrow 0$

Ghost condensate theory: [Arkani-Hamed et al., 03, '05] $P(X)=\bar{P}+\frac{1}{2} P_{, X X}(X-\bar{X})^{2}+$ higher der.

- Tiny breaking of shift symmentry: $c \ll M_{2}^{4} \quad \Leftrightarrow \quad \bar{P}, X \ll \bar{P}_{, X X} \bar{X}$

$$
P(\phi, X)=-V(\phi)+\bar{P}_{, X}(\phi, X)(X-\bar{X})+\frac{1}{2} \bar{P}_{, X X}(\phi, X)(X-\bar{X})^{2}+\ldots
$$

Pressure gradients suppressed $\left.\quad \delta P\right|_{\delta \phi=0} \sim \bar{P}_{, X} \cdot \delta X$ wrt density gradients:

$$
\left.\delta \rho\right|_{\delta \phi=0} \sim \bar{P}_{, X X} \bar{X} \cdot \delta X
$$

- Stable model even for $w<-I$ (higher derivatives operators)

Clustering quintessence

- Euler equation: $\dot{\vec{v}}+(\vec{v} \cdot \vec{\nabla}) \vec{v}=-\frac{1}{\rho+p}\left[\vec{\nabla} p+\vec{v} \frac{\partial p}{\partial t}\right]-\vec{\nabla} \Phi$
[Creminelli et al. ' 10 ; see also Lim et al.' 10]

Clustering quintessence

- Euler equation: $\quad \dot{\vec{v}}+(\vec{v} \cdot \vec{\nabla}) \vec{v}=-\frac{1}{\rho+p}\left[\vec{\nabla} p+\overrightarrow{\partial p} \frac{\partial t}{\partial t}\right]-\vec{\nabla} \Phi$
[Creminelli et al. 'IO; see also Lim et al.' 10$]$

For $c_{s}^{2}=0$ pressure gradients (orthogonal to the fluid 4-velocity) vanish!
($u^{\mu} \nabla_{\mu} u^{\nu}=0$ if $c_{s}^{2}=0$)
\Rightarrow Geodesic motion: quintessence remains comoving with dark matter (also nonlinearly)

Clustering quintessence

- Euler equation: $\quad \dot{\vec{v}}+(\vec{v} \cdot \vec{\nabla}) \vec{v}=-\frac{1}{\rho+p}\left[\vec{\nabla} p+\frac{\partial p}{\partial t}\right]-\vec{\nabla} \Phi$
[Creminelli et al.' 10 ; see also Lim et al.' 10]

For $c_{s}^{2}=0$ pressure gradients (orthogonal to the fluid 4-velocity) vanish!
($u^{\mu} \nabla_{\mu} u^{\nu}=0$ if $c_{s}^{2}=0$)
\Rightarrow Geodesic motion: quintessence remains comoving with dark matter (also nonlinearly)

- Continuity equation: $\dot{\rho}_{Q}+\vec{\nabla}\left[\left(\rho_{Q}+p_{Q}\right) \vec{v}\right]=0$

No pressure gradients but pressure is important! No conserved particle number or current

$$
\bar{\rho}_{m} \propto \frac{1}{a^{3}} ; \quad \bar{\rho}_{Q} \propto \frac{1}{a^{3(1+w)}}
$$

Clustering quintessence

- Linearized continuity equations:
$\dot{\delta}_{m}+\frac{1}{a} \vec{\nabla} \cdot \vec{v}=0$
$\dot{\delta}_{Q}-3 w \frac{\dot{a}}{a} \delta_{Q}+(1+w) \frac{1}{a} \vec{\nabla} \cdot \vec{v}=0$
During dark matter dominance:

$$
\delta_{Q}=\frac{1+w}{1-3 w} \delta_{\mathrm{DM}}
$$

Clustering quintessence

- Linearized continuity equations:

$$
\begin{aligned}
& \dot{\delta}_{m}+\frac{1}{a} \vec{\nabla} \cdot \vec{v}=0 \\
& \dot{\delta}_{Q}-3 w \frac{\dot{a}}{a} \delta_{Q}+(1+w) \frac{1}{a} \vec{\nabla} \cdot \vec{v}=0
\end{aligned}
$$

During dark matter dominance:

$$
\delta_{Q}=\frac{1+w}{1-3 w} \delta_{\mathrm{DM}}
$$

- Linearized Euler + Poisson equations:
$\dot{\vec{v}}+\frac{\dot{a}}{a} \vec{v}=-\vec{\nabla} \Phi$

$\nabla^{2} \Phi=4 \pi G a^{2} \bar{\rho}_{m}\left(\delta_{m}+\frac{\Omega_{Q}}{\Omega_{m}} \delta_{Q}\right)$

Spherical collapse

- Quintessence affects the spherical collapse model:

Spherical collapse

- Quintessence affects the spherical collapse model:
- Both density and pressure remain homogeneous and follow the outside Hubble flow:

$$
\frac{\ddot{R}}{R}=-\frac{4 \pi G}{3}\left(\rho_{m}+\bar{\rho}_{Q}+3 \bar{p}_{Q}\right)
$$

No FRW universe inside [Wang \& Steinhardt '98]

Spherical collapse

- Quintessence affects the spherical collapse model:
- Both density and pressure remain homogeneous and follow the outside Hubble flow:

$$
\frac{\ddot{R}}{R}=-\frac{4 \pi G}{3}\left(\rho_{m}+\bar{\rho}_{Q}+3 \bar{p}_{Q}\right)
$$

No FRW universe inside [Wang \& Steinhardt '98]

- Quintessence density follows dark matter flow but pressure remains as outside:

Exact FRW universe inside!

Quintessence mass

- Evolution equation inside the overdensity: $\quad \dot{\rho}_{Q}+3 \frac{\dot{R}}{R}\left(\rho_{Q}+\bar{p}_{Q}\right)=0$
- Large overdensities behave as DM:

$$
\delta_{Q} \gg|1+w| \Rightarrow \delta \dot{\rho}_{Q}+3 \frac{\dot{R}}{R} \delta \rho_{Q} \approx 0
$$

Quintessence mass

- Evolution equation inside the overdensity: $\quad \dot{\rho}_{Q}+3 \frac{\dot{R}}{R}\left(\rho_{Q}+\bar{p}_{Q}\right)=0$
- Large overdensities behave as DM:

$$
\delta_{Q} \gg|1+w| \Rightarrow \delta \dot{\rho}_{Q}+3 \frac{\dot{R}}{R} \delta \rho_{Q} \approx 0
$$

Conserved quintessence mass inside halos!

$$
M_{Q}=\left.\frac{4 \pi R^{3}}{3} \delta \rho_{Q} \approx(1+w) \frac{\Omega_{Q}}{\Omega_{\mathrm{DM}}}\right|_{z_{\text {coll }}} \cdot M_{\mathrm{DM}}
$$

Conclusion

- Unifying framework for dark energy/modified gravity
- Effective language: cosmological perturbations as the relevant d.o.f.
- Extension of EFT of inflation and quintessence to non-minimal couplings
- Unambiguous way to address mixing, stability, speed of sound etc.
- See also Bloomfield et al. 1211.7054. Much work in progress to consider effects of coupling to matter
- Quintessence can have zero sound speed! Simplest phenomenological alternative to the smooth case
- New phenomenology: 1) nonlinear corrections to PS and bispectrum; 2) Quintessence mass in virialized objects

