The Effective Field Theory of Dark Energy

Filippo Vernizzi IPhT, CEA/Saclay

with Giulia Gubitosi, Federico Piazza, 1210.0201, JCAP

IAP, 11 February 2013

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

- Future surveys (EUCLID, LSST, BigBoss, etc.) will be sensitive to dynamical properties of dark energy and modified gravity (DE), observable in the power spectra and higher-order correlation functions
- Many models of DE, each one with its own motivations, physical effects, etc...
- Democratic view: look for a unifying (many models) and effective (agnostic to motivations) treatment of DE to test models against the data

Ideally...

 Description in terms of limited number of effective operators, each one responsible for an observable dynamical feature (e.g. flavor-changing neutral currents in physics beyond Standard Model)

Another acceleration

- Common feature of many DE models: gravity + single scalar degree of freedom (in some regime)
- Similar to inflation, where scalar field is needed to break de Sitter: clock

Models of Inflation/DE share the same motivations and problems

 Two types of Effective Field Theory approaches to inflation: "covariant" (à la Weinberg) and "geometrical" (Creminelli et al. '06, Cheug et al. '07, deals directly with cosmological perturbations)

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi) R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right]$$

One possible strategy: (Weinberg `08, Park, Zurek and Watson `10, Bloomfield and Flanagan `11) Apply covariant EFT to explore $\mathcal{F}[\phi, g^{\mu\nu}]$:field/derivative expansion

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi) R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right]$$

One possible strategy: (Weinberg `08, Park, Zurek and Watson `10, Bloomfield and Flanagan `11) Apply covariant EFT to explore $\mathcal{F}[\phi, g^{\mu\nu}]$: field/derivative expansion

However:

I) Expansion in number of fields is not necessarily meaningful

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$S = \int d^{4}x \sqrt{-g} \left[\frac{M^{2}}{2} f(\phi)R - \frac{1}{2}(\partial\phi)^{2} - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right]$$
One pc
$$V = V_{1}\phi + V_{2}\phi^{2} + V_{3}\phi^{3} + V_{4}\phi^{4}$$

$$= V_{2}\delta\phi^{2} + V_{3}\phi_{0}(t)\delta\phi^{2} + 6V_{4}\phi_{0}^{2}(t)\delta\phi^{2}$$
All terms potentially important in cosmological perturbation theory!
Howev

I) Expansion in number of fields is not necessarily meaningful

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi) R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right]$$

One possible strategy: (Weinberg `08, Park, Zurek and Watson `10, Bloomfield and Flanagan `11) Apply covariant EFT to explore $\mathcal{F}[\phi, g^{\mu\nu}]$: field/derivative expansion

However:

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi) R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right]$$

However:

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi) R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right]$$

However:

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi) R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right]$$

However:

Many inflation/DE models reduce, in their relevant regimes, to scalar tensortheories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi) R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right]$$

One possible strategy: (Weinberg `08, Park, Zurek and Watson `10, Bloomfield and Flanagan `11) Apply covariant EFT to explore $\mathcal{F}[\phi, g^{\mu\nu}]$: field/derivative expansion

However:

- I) Expansion in number of fields is not necessarily meaningful
- 2) Naively "perturbations" but not always so...
- 3) Only halfway through the work to be done (background first + expand..)

EFT: a theory for the relevant low-energy d.o.f.

Examples:

I) QCD: quarks and gluons mucleons and pions at low energies

EFT: a theory for the relevant low-energy d.o.f.

Examples:

I) QCD: quarks and gluons mucleons and pions at low energies

2) EW theory: 4 massless vector bosons, 2 complex scalars etc.

I massless and 3 massive vector bosons, I massive ``Higgs" field etc.

EFT: a theory for the relevant low-energy d.o.f.

Examples:

I) QCD: quarks and gluons mucleons and pions at low energies

2) EW theory: 4 massless vector bosons, 2 complex scalars etc.

I massless and 3 massive vector bosons, I massive ``Higgs" field etc.

3) Cosmology: ... Cosmological Perturbations!

The Effective Field Theory of Inflation

Unitary gauge action:

(Creminelli et al. `06, Cheung et al. `07)

• Main idea: scalar degree of freedom is "eaten" by the metric. Ex:

$$\phi(t, \vec{x}) \to \phi_0(t) \quad (\delta \phi = 0) \qquad -\frac{1}{2} (\partial \phi)^2 \to -\frac{1}{2} \dot{\phi}_0^2(t) \ g^{00}$$

Action contains all operators invariant under spatial diffeomorphisms

$$\int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2 R}{2} + \dot{H}(t) M_{\rm Pl}^2 g^{00} - 3H^2(t) - \dot{H}(t) + \frac{M_2^4(t)}{2} (\delta g^{00})^2 - \frac{\bar{M}_1^3(t)}{2} \delta g^{00} \delta K + \dots \right]$$

 Dictionary between operators and observables, i.e. shape and amplitude of non-Gaussianity constrained by WMAP and Planck

EFT of Inflation and non-Gaussianity

$$S = \int d^4x \sqrt{-g} \left[-\frac{M_{\rm Pl}^2 \dot{H}}{c_s^2} \left(\dot{\pi}^2 - c_s^2 \frac{(\partial_i \pi)^2}{a^2} \right) + (M_{\rm Pl}^2 \dot{H}) \frac{1 - c_s^2}{c_s^2} \left(\frac{\dot{\pi}(\partial_i \pi)^2}{a^2} + \frac{A}{c_s^2} \dot{\pi}^3 \right) + \cdots \right]$$

$$\begin{split} f_{NL}^{\rm eq} &= \ \frac{1-c_s^2}{c_s^2}(-0.276+0.0785A) \\ f_{NL}^{\rm orth} &= \ \frac{1-c_s^2}{c_s^2}(0.0157-0.0163A) \end{split}$$

10⁰

... and DE?

- Obvious difference: energy scales and presence of different species (baryons, CDM, photons, neutrinos, etc) and thus different couplings, in the DE case
- ⇒ Minimally coupled DE: Effective Field Theory of Quintessence: stability and zero sound speed limit (with Creminelli et al. 2008)

... and DE?

- Obvious difference: energy scales and presence of different species (baryons, CDM, photons, neutrinos, etc) and thus different couplings, in the DE case
- ⇒ Minimally coupled DE: Effective Field Theory of Quintessence: stability and zero sound speed limit (with Creminelli et al. 2008)

Our Recipe for Dark Energy: (with Gubitosi, Piazza, 2012)

I) Assume WEP (universally coupled metric $S_m[g_{\mu\nu}, \Psi_i]$): Jordan frame clock.

2) Write the most generic action for $g_{\mu\nu}$ compatible with the residual un-broken symmetries (3-diff).

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

The most generic action written in terms of $g_{\mu\nu}$ compatible with the residual symmetry of spatial diffeomorphisms

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

The most generic action written in terms of $g_{\mu\nu}$ compatible with the residual symmetry of spatial diffeomorphisms

Genuine 4-dim covariant terms are still allowed, but will in general be multiplied by functions of time because time translations are broken

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

The most generic action written in terms of $g_{\mu\nu}$ compatible with the residual symmetry of spatial diffeomorphisms

Genuine 4-dim covariant terms are still allowed, but will in general be multiplied by functions of time because time translations are broken

The function f(t) cannot be set to unity by a metric redefinition \neq EFT of Inflation $g_{\mu\nu} \rightarrow f^{1/2}g_{\mu\nu}$

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t) R - \Lambda(t) - c(t) g^{00} \right] + S_{DE}^{(2)}$$

The most generic action written in terms of $g_{\mu\nu}$ compatible with the residual symmetry of spatial diffeomorphisms

General functions of time are allowed

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t) R - \Lambda(t) - c(t) g^{00} \right] + S_{DE}^{(2)}$$

The most generic action written in terms of $g_{\mu\nu}$ compatible with the residual symmetry of spatial diffeomorphisms

...as well as tensors with "0" indices

Essentially: contractions with

$$n_{\mu} = -\frac{\partial_{\mu}\phi}{\sqrt{-(\partial\phi^2)}}$$

The Action: main message

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Any arbitrarily complicate action with one scalar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations The Action: main message

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Any arbitrarily complicate action with one scalar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations

Example:

 $(\partial \phi)^2 R = \dot{\phi}_0^2 (-1 + \delta g^{00}) (R^{(0)} + \delta R) = \dot{\phi}_0^2 \left[-R + R^{(0)}(t) + R^{(0)}(t) g^{00} + \delta g^{00} \delta R \right]$

The Action: background

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Enough for background equations:

$$M^{2}(fG_{\mu\nu} - \nabla_{\mu}\nabla_{\nu}f + g_{\mu\nu}\Box f) + (cg^{00} + \Lambda)g_{\mu\nu} - 2c\delta^{0}_{\mu}\delta^{0}_{\nu} = T^{(m)}_{\mu\nu}$$

$$c = \frac{1}{2}(-\ddot{f} + H\dot{f})M^{2} + \frac{1}{2}(\rho_{D} + p_{D})$$

$$\Lambda = \frac{1}{2}(\ddot{f} + 5H\dot{f})M^{2} + \frac{1}{2}(\rho_{D} - p_{D})$$

The Action: background

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Enough for background equations:

$$M^{2}(fG_{\mu\nu} - \nabla_{\mu}\nabla_{\nu}f + g_{\mu\nu}\Box f) + (cg^{00} + \Lambda)g_{\mu\nu} - 2c\delta_{\mu}^{0}\delta_{\nu}^{0} = T_{\mu\nu}^{(m)}$$

$$c = \frac{1}{2}(-\ddot{f} + H\dot{f})M^{2} + \frac{1}{2}(\rho_{D} + p_{D})$$

$$\Lambda = \frac{1}{2}(\ddot{f} + 5H\dot{f})M^{2} + \frac{1}{2}(\rho_{D} - p_{D})$$

$$H^{2} = \frac{1}{3fM^{2}}(\rho_{m} + \rho_{D})$$

$$H^{2} = \frac{1}{3fM^{2}}(\rho_{m} + \rho_{D} + p_{m} + p_{D})$$

$$\dot{H} = -\frac{1}{2fM^{2}}(\rho_{m} + \rho_{D} + p_{m} + p_{D})$$

"Bare" Planck Mass Defined by the modified Friedman equations

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Explicitly quadratic in the perturbations:

$$S_{DE}^{(2)} = \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \, \delta g^{00} \delta K - \frac{\bar{M}_2^2}{2} \, \delta K^2 - \frac{\bar{M}_3^2}{2} \, \delta K_\mu^{\ \nu} \delta K_\mu^\mu + \dots$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Explicitly quadratic in the perturbations:

$$S_{DE}^{(2)} = \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \, \delta g^{00} \delta K - \frac{\bar{M}_2^2}{2} \, \delta K^2 - \frac{\bar{M}_3^2}{2} \, \delta K_\mu^{\ \nu} \delta K_\mu^\mu + \dots$$

Extrinsic curvature: $n_{\mu} = -\frac{\partial_{\mu}\phi}{\sqrt{-(\partial\phi^2)}}$ $h_{\mu\nu} \equiv g_{\mu\nu} + n_{\mu}n_{\nu}$

$$K_{\mu\nu} = h_{\mu}^{\ \sigma} \nabla_{\sigma} n_{\nu} \qquad \delta K_{\mu\nu} = K_{\mu\nu} - H h_{\mu\nu}$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Explicitly quadratic in the perturbations:

$$S_{DE}^{(2)} = \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \, \delta g^{00} \delta K - \frac{\bar{M}_2^2}{2} \, \delta K^2 - \frac{\bar{M}_3^2}{2} \, \delta K_\mu^{\ \nu} \delta K_\mu^\mu + \dots$$

3-curvature terms: $+ \frac{\tilde{m}_1}{2} \delta g^{00\ (3)} R + \frac{\tilde{M}_1}{2} \delta K_\mu^{\ \nu\ (3)} R_\nu^{\ \mu} + \dots$

In EFT of Inflation these terms can be eliminated by a metric redefinition

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Explicitly quadratic in the perturbations:

$$S_{DE}^{(2)} = \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \, \delta g^{00} \delta K - \frac{\bar{M}_2^2}{2} \, \delta K^2 - \frac{\bar{M}_3^2}{2} \, \delta K_\mu^{\ \nu} \delta K_\mu^{\ \mu} + \dots + \frac{\tilde{m}_1}{2} \delta g^{00\ (3)} R + \frac{\tilde{M}_1}{2} \delta K_\mu^{\ \nu\ (3)} R_\nu^{\ \mu} + \dots$$

Action in "standard form" (no ambiguities, field redefinitions)

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda - cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{M_3^4}{6} (\delta g^{00})^3 + \dots \right)$$

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} f R - \Lambda - c g^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{M_3^4}{6} (\delta g^{00})^3 + \dots \right)$$

Non-minimally coupled scalar field

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} F(\phi)R - \frac{1}{2} (\partial\phi)^2 - V(\phi) \right]$$

 $f(t) = F(\phi_0(t))$, $\Lambda(t) = V(\phi_0(t))$, $c(t) = \dot{\phi}_0^2(t)$

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} f R \left(-\Lambda - cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{M_3^4}{6} (\delta g^{00})^3 + \dots \right) ds \right)$$

K-essence (Amendariz-Picon et al., 2000)

$$S = \int d^4x \sqrt{-g} P(\phi, X) \qquad X \equiv g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$$

Expansion: $X = \dot{\phi}_0^2(t)(-1 + \delta g^{00})$

 $\Lambda(t) = c(t) - P(\phi_0(t), \dot{\phi}_0^2(t)) , \quad c(t) = \left. \frac{\partial P}{\partial X} \right|_{\phi = \phi_0, X = \dot{\phi}_0^2} ,$ $M_n^4(t) = \left. \frac{\partial^n P}{\partial X^n} \right|_{\phi = \phi_0, X = \dot{\phi}_0^2} \quad (n \ge 2)$

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda - cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 + \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{M_3^4}{6} (\delta g^{00})^3 + \dots \right)$$

"Galilean Cosmology" (Chow and Khoury, 2009)

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} e^{-2\phi/M} R - \frac{r_c^2}{M} (\partial\phi)^2 \Box\phi \right]$$

$$\begin{split} f(t) &= e^{-2\frac{\phi_0}{M}} \ , \quad \Lambda(t) = -\frac{r_c^2}{M} \, \dot{\phi}_0^2 (\ddot{\phi}_0 + 3H\dot{\phi}_0) \ , \quad c(t) = \frac{r_c^2}{M} \, \dot{\phi}_0^2 (\ddot{\phi}_0 - 3H\dot{\phi}_0) \ , \\ M_2^4(t) &= -\frac{r_c^2}{2M} \, \dot{\phi}_0^2 (\ddot{\phi}_0 + 3H\dot{\phi}_0) \ , \quad M_3^4(t) = -\frac{3r_c^2}{4M} \dot{\phi}_0^2 (\ddot{\phi}_0 + H\dot{\phi}_0) \ , \quad \bar{m}_1^3(t) = -\frac{r_c^2}{M} 2\dot{\phi}_0^3 \ , \end{split}$$

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

Mixing with gravity:

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda - cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply "Stueckelberg trick" and go to Newtonian Gauge

$$ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(1-2\Psi)\delta_{ij}dx^{i}dx^{j}$$

Mixing with gravity:

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda - cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply "Stueckelberg trick" and go to Newtonian Gauge $ds^2 = -(1+2\Phi)dt^2 + a^2(1-2\Psi)\delta_{ij}dx^i dx^j$

The scalar d.o.f. can be made explicit by forcing a time-diff on the action: $t \to t + \pi(x)$

and by promoting the parameter of diffeomorphism to a field:

$$\begin{aligned} c(t) &\to c(t+\pi) = c(t) + \dot{c}(t) \pi + \frac{1}{2} \ddot{c}(t) \pi^2 + \dots \\ g^{00} &\to g^{\mu\nu} \partial_{\mu} (t+\pi) \partial_{\nu} (t+\pi) = g^{00} + 2g^{0\mu} \partial_{\mu} \pi + g^{\mu\nu} \partial_{\mu} \pi \partial_{\nu} \pi , \\ \delta K &\to \delta K - 3\dot{H}\pi - a^{-2} \nabla^2 \pi \end{aligned}$$

Mixing with gravity:

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda - cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply "Stueckelberg trick" and go to Newtonian Gauge

$$ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(1-2\Psi)\delta_{ij}dx^{i}dx^{j}$$

Expand at quadratic order and retain only kinetic operators (2 derivatives): $\dot{\Psi}^2$, $(\vec{\nabla}\Psi)^2$, etc.

Modified Gravity \approx Kinetic mixing $\dot{\Psi}\dot{\pi}$, $\vec{\nabla}\Psi\vec{\nabla}\pi$, etc. One less derivative in couplings $\dot{\Psi}\pi \approx$ Jeans length (in progress)

Mixing with gravity 1: Brans-Dicke

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda \left(cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply Stueckelberg and go to Newtonian Gauge $ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(1-2\Psi)\delta_{ij}dx^{i}dx^{j}$ $S^{\text{kinetic}} \int M^{2}f \left[-3\dot{\Psi}^{2} - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^{2} + c\,\dot{\pi}^{2} - c(\vec{\nabla}\pi)^{2} + 3(\dot{f}/f)\dot{\Psi}\dot{\pi} + (\dot{f}/f)\vec{\nabla}\pi(\vec{\nabla}\Phi - 2\vec{\nabla}\Psi) \right]$

Mixing with gravity 1: Brans-Dicke

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda \left(cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

 $\begin{array}{ll} \text{Apply Stueckelberg and go to} \\ \text{Newtonian Gauge} \\ S \stackrel{\text{kinetic}}{=} \int M^2 f \left[-3\dot{\Psi}^2 - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^2 + c\,\dot{\pi}^2 - c(\vec{\nabla}\pi)^2 + 3(\dot{f}/f)\dot{\Psi}\dot{\pi} + (\dot{f}/f)\vec{\nabla}\pi(\vec{\nabla}\Phi - 2\vec{\nabla}\Psi) \right] \end{array}$

I propagating d.o.f.

$$\det \mathcal{L} = k^4 (\omega^2 - k^2)$$

De-mixing = conformal transformation

$$\Phi_E = \Phi + \frac{1}{2}(\dot{f}/f)\pi$$
$$\Psi_E = \Psi - \frac{1}{2}(\dot{f}/f)\pi$$

Newtonian limit
$$\partial_t \ll \vec{\nabla}$$

 $S \stackrel{\text{kinetic}}{=} \int M^2 f \left[-3\dot{\Psi}^2 - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^2 + \dot{c}\dot{\tau}^2 - c(\vec{\nabla}\pi)^2 + 3(\dot{f}/f)\dot{\Psi}\tau + (\dot{f}/f)\vec{\nabla}\pi(\vec{\nabla}\Phi - 2\vec{\nabla}\Psi) \right]$

$$-\Phi\delta
ho_m$$

$$1 - \gamma \equiv \frac{\Phi - \Psi}{\Phi} = \frac{M^2 \dot{f}^2 / f}{2(c + M^2 \dot{f}^2 / f)}$$
$$\nabla^2 \pi = \frac{-M^2 \dot{f}}{2(c + M^2 \dot{f}^2 / f)} \nabla^2 \Phi$$

 $\nabla^2 \Phi = 4\pi G_{\text{eff}} \delta \rho_m \qquad \text{Poisson equation}$ $G_{\text{eff}} = \frac{1}{8\pi M^2 f} \frac{c + M^2 \dot{f}^2 / f}{c + \frac{3}{4} M^2 \dot{f}^2 / f} \qquad \text{``dressed'' Newton constant}$

Mixing with gravity 2: f(t) = 1 $S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda + cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$ (see also Creminelli et al. 2006 & 2008) $G(\phi, X) \Box \phi$ (Cf. braiding: Deffayet et al., 2010) $\frac{1}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$

Apply Stueckelberg and go to Newtonian Gauge $ds^2 = -(1+2\Phi)dt^2 + a^2(1-2\Psi)\delta_{ij}dx^i dx^j$

$$S \stackrel{\text{kinetic}}{=} \int M^2 \left[-3\dot{\Psi}^2 - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^2 \right] + c\dot{\pi}^2 - c(\vec{\nabla}\pi)^2 - 3\bar{m}_1^3\dot{\Psi}\dot{\pi} - \bar{m}_1^3\vec{\nabla}\Phi\vec{\nabla}\pi$$

Mixing with gravity 2: f(t) = 1(see also Creminelli et al. 2006 & 2008) $G(\phi, X) \Box \phi$ (Cf. braiding: Deffayet et al., 2010)

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda + cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply Stueckelberg and go to Newtonian Gauge $ds^2 = -(1+2\Phi)dt^2 + a^2(1-2\Psi)\delta_{ij}dx^i dx^j$

$$S \stackrel{\text{kinetic}}{=} \int M^2 \left[-3\dot{\Psi}^2 - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^2 \right] + c\dot{\pi}^2 - c(\vec{\nabla}\pi)^2 - 3\bar{m}_1^3\dot{\Psi}\dot{\pi} - \bar{m}_1^3\vec{\nabla}\Phi\vec{\nabla}\pi$$

I propagating d.o.f.

$$\det \mathcal{L} = k^4 (\omega^2 - c_s^2 k^2)$$
$$c_s^2 = \frac{c + \frac{1}{2} (H\bar{m}_1^3 + \dot{\bar{m}}_1^3) - \frac{1}{4} \bar{m}_1^6 / M^2}{c + \frac{3}{4} \bar{m}_1^6 / M^2}$$

De-mixing \neq conformal transformation

$$\Phi_E = \Phi + \frac{\bar{m}_1^3}{2M^2}\pi$$
$$\Psi_E = \Psi + \frac{\bar{m}_1^3}{2M^2}\pi$$

Newtonian limit
$$\partial_t \ll \vec{\nabla}$$

 $S^{\text{kinetic}} \int M^2 \left[-3\dot{p}^2 - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^2 \right] + \dot{\sigma}^2 - c(\vec{\nabla}\pi)^2 - 3\bar{m}_3^3\dot{\Psi}\dot{\pi} - \bar{m}_1^3\vec{\nabla}\Phi\vec{\nabla}\pi$
 $\Phi = \Psi$ unlike Brans-Dicke theories $\gamma = 1$
 $\nabla^2 \pi = -\frac{\bar{m}_1^3}{2c}\nabla^2 \Phi$
 $\nabla^2 \Phi = 4\pi G_{\text{eff}}\delta\rho_m$ Poisson equation
 $G_{\text{eff}} = \frac{1}{8\pi M^2 f} \left(1 - \frac{\bar{m}_1^3}{4cM^2}\right)^{-1}$ "dressed" Newton constant

Model building v.s. General treatment (with Gubitosi, Piazza, 2012)
$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda - cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{M_3^4}{6} (\delta g^{00})^3 + \dots \right)$$

Find, once and for all, the action for the scalar degree of freedom:

$$S_{\pi} \stackrel{\text{kinetic}}{=} \int a^{3} \left\{ \left[c + 2M_{2}^{4} + \frac{3}{4} \frac{\dot{f}^{2}}{f} M^{2} - \frac{3}{2} \bar{m}_{1}^{3} \frac{\dot{f}}{f} + \frac{3}{4} \frac{\bar{m}_{1}^{6}}{M^{2}} \right] \dot{\pi}^{2} - \left[c + \frac{3}{4} \frac{\dot{f}^{2}}{f} M^{2} - \frac{1}{2} \bar{m}_{1}^{3} \frac{\dot{f}}{f} - \frac{1}{4} \frac{\bar{m}_{1}^{6}}{M^{2}} + \frac{1}{2} \left(\dot{\bar{m}}_{1}^{3} + H \bar{m}_{1}^{3} \right) \right] \frac{(\vec{\nabla}\pi)^{2}}{a^{2}} \right\}$$

And address, once and for all, all questions of stability, speed of sound and deviations from GR:

$$1 - \gamma = \frac{1}{2} \frac{(M^2 \dot{f}^2 + \bar{m}_1^3 \dot{f})/f}{c + M^2 \dot{f}^2/f + \frac{1}{2}(\bar{m}_1^3 + H\bar{m}_1^3)}$$
$$G_{\text{eff}} = \frac{1}{8\pi M^2 f} \frac{c + M^2 \dot{f}^2/f + \frac{1}{2}(\bar{m}_1^3 + H\bar{m}_1^3)}{c + \frac{3}{4}M^2 \dot{f}^2/f - \frac{1}{2}\bar{m}_1^3 \dot{f}/f - \frac{1}{4}\bar{m}_1^6/M^2 + \frac{1}{2}(\bar{m}_1^3 + H\bar{m}_1^3)}$$

Outline

- Motivations
- The Action
- Examples
- Mixing with gravity, stability and speed of sound
- The zero sound speed limit
- Conclusions

The zero sound speed limit of quintessence

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda - cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{M_3^4}{6} (\delta g^{00})^3 + \dots \right)$$

- Consider a minimally coupled field, $\dot{f}=1,$ and the limit $c=\frac{1}{2}(\rho_D+p_D)\ll M_2^4$ with $M_2\simeq \bar{m}_1$
- The action reads

$$S_{\pi} \stackrel{\text{kinetic}}{=} \int a^3 \left\{ 2M_2^4 \dot{\pi}^2 - \left[c - \frac{1}{4} \frac{M_2^6}{M_{\text{Pl}}^2} + \frac{1}{2} \left(\dot{M}_2^3 + H M_2^3 \right) \right] \frac{(\vec{\nabla}\pi)^2}{a^2} \right\}$$

The speed of sound of fluctuations vanishes

$$c_s^2 = \frac{c}{2M_2^4} - \frac{1}{8}\frac{M_2^2}{M_{\rm Pl}^2} + \frac{3M_2}{8M_2^2} + \frac{H}{8M_2} \ll 1$$

• Shift symmetry invariance: $\phi \to \phi + \lambda \quad \Rightarrow \quad \mathcal{L} = P(X)$

EOM in expanding Universe: $\partial_t(a^3\dot{\phi}P_{,X})=0$

• Solution with $\dot{\phi} = \text{const} \implies \bar{X} = \text{const}^2$

and $P_{,X} \to 0 \implies w \to -1$ and $c_s^2 \to 0$

• Shift symmetry invariance: $\phi \to \phi + \lambda \quad \Rightarrow \quad \mathcal{L} = P(X)$

EOM in expanding Universe: $\partial_t (a^3 \dot{\phi} P_{,X}) = 0$

• Solution with $\dot{\phi} = \text{const} \implies \bar{X} = \text{const}^2$

and
$$P_{,X} \to 0 \implies w \to -1$$
 and $c_s^2 \to 0$

Ghost condensate theory: [Arkani-Hamed et al., '03, '05]

$$P(X) = \bar{P} + \frac{1}{2}P_{,XX}(X - \bar{X})^2 + \text{higher der.}$$

• Shift symmetry invariance: $\phi \to \phi + \lambda \quad \Rightarrow \quad \mathcal{L} = P(X)$

EOM in expanding Universe: $\partial_t (a^3 \dot{\phi} P_{,X}) = 0$

• Solution with $\dot{\bar{\phi}} = \text{const} \implies \bar{X} = \text{const}^2$

and
$$P_{,X} \to 0 \implies w \to -1 \text{ and } c_s^2 \to 0$$

Ghost condensate theory: [Arkani-Hamed et al., '03, '05]

$$P(X) = \bar{P} + \frac{1}{2}P_{,XX}(X - \bar{X})^2 + \text{higher der.}$$

• Tiny breaking of shift symmetrry: $c \ll M_2^4 \quad \Leftrightarrow \quad \bar{P}_{,X} \ll \bar{P}_{,XX} \bar{X}$

$$\begin{split} P(\phi, X) &= -V(\phi) + \bar{P}_{,X}(\phi, X)(X - \bar{X}) + \frac{1}{2}\bar{P}_{,XX}(\phi, X)(X - \bar{X})^2 + \dots \\ \text{Pressure gradients suppressed} \quad \begin{array}{l} \delta P|_{\delta\phi=0} \sim \bar{P}_{,X} \cdot \delta X \\ \text{wrt density gradients:} \quad \begin{array}{l} \delta \rho|_{\delta\phi=0} \sim \bar{P}_{,XX} \bar{X} \cdot \delta X \\ \end{array} \end{split}$$

• Stable model even for *w*<-1 (higher derivatives operators)

[Arkani-Hamed et al., '05; Creminelli et al., '06]

 $P(X) \qquad \qquad w < -1 \qquad \qquad w > -1$

X

• Euler equation:
$$\dot{\vec{v}} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{\rho + p} \left[\vec{\nabla}p + \vec{v}\frac{\partial p}{\partial t}\right] - \vec{\nabla}\Phi$$

[Creminelli et al.'10; see also Lim et al.'10]

• Euler equation:
$$\dot{\vec{v}} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{\rho + p} \left[\vec{\nabla}p + \vec{v}\frac{\partial p}{\partial t}\right] - \vec{\nabla}\Phi$$

[Creminelli et al. '10; see also Lim et al. '10]

For $c_s^2 = 0$ pressure gradients (orthogonal to the fluid 4-velocity) vanish! $(u^{\mu} \nabla_{\mu} u^{\nu} = 0 \text{ if } c_s^2 = 0)$

→ Geodesic motion: quintessence remains comoving with dark matter (also nonlinearly) $c_s=0$ $c_s=1$

VS

• Euler equation:
$$\dot{\vec{v}} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{\rho + p} \left[\vec{\nabla}p + \vec{v}\frac{\partial p}{\partial t}\right] - \vec{\nabla}\Phi$$

[Creminelli et al. '10; see also Lim et al. '10]

For $c_s^2 = 0$ pressure gradients (orthogonal to the fluid 4-velocity) vanish! $(u^{\mu} \nabla_{\mu} u^{\nu} = 0 \text{ if } c_s^2 = 0)$

➡ Geodesic motion: quintessence remains comoving with dark matter

• Continuity equation: $\dot{\rho}_Q + \vec{\nabla}[(\rho_Q + p_Q)\vec{v}] = 0$

No pressure gradients but <u>pressure is important!</u> No conserved particle number or current

$$\bar{\rho}_m \propto \frac{1}{a^3}; \quad \bar{\rho}_Q \propto \frac{1}{a^{3(1+w)}}$$

• Linearized continuity equations:

$$\dot{\delta}_m + \frac{1}{a}\vec{\nabla}\cdot\vec{v} = 0$$
$$\dot{\delta}_Q - 3w\frac{\dot{a}}{a}\delta_Q + (1+w)\frac{1}{a}\vec{\nabla}\cdot\vec{v} = 0$$

 $\Rightarrow \qquad \begin{array}{l} \textbf{During dark matter dominance:} \\ \delta_Q = \frac{1+w}{1-3w} \delta_{\rm DM} \end{array}$

• Linearized continuity equations:

$$\dot{\delta}_m + \frac{1}{a}\vec{\nabla}\cdot\vec{v} = 0$$
$$\dot{\delta}_Q - 3w\frac{\dot{a}}{a}\delta_Q + (1+w)\frac{1}{a}\vec{\nabla}\cdot\vec{v} = 0$$

During dark matter dominance: $\delta_Q = \frac{1+w}{1-3w} \delta_{\rm DM}$

• Linearized Euler + Poisson equations:

Spherical collapse

• Quintessence affects the spherical collapse model:

Spherical collapse

- Quintessence affects the spherical collapse model:
- <u>Both</u> density and pressure remain homogeneous and <u>follow the outside</u> Hubble flow:

$$\frac{\ddot{R}}{R} = -\frac{4\pi G}{3} (\rho_m + \bar{\rho}_Q + 3\bar{p}_Q)$$

No FRW universe inside [Wang & Steinhardt '98]

Spherical collapse

- Quintessence affects the spherical collapse model:
- <u>Both</u> density and pressure remain homogeneous and <u>follow the outside</u> Hubble flow:

No FRW universe inside [Wang & Steinhardt '98]

• Quintessence density follows dark matter flow but pressure remains as outside:

Quintessence mass

- Evolution equation inside the overdensity:
- Large overdensities behave as DM:

$$\delta_Q \gg |1+w| \Rightarrow \dot{\delta\rho_Q} + 3\frac{R}{R}\delta\rho_Q \approx 0$$

 $\dot{\rho}_Q + 3\frac{\dot{R}}{R}(\rho_Q + \bar{p}_Q) = 0$

٠

Quintessence mass

- Evolution equation inside the overdensity:
- Large overdensities behave as DM:

$$\delta_Q \gg |1+w| \Rightarrow \dot{\delta\rho_Q} + 3\frac{R}{R}\delta\rho_Q \approx 0$$

 $\dot{\rho}_Q + 3\frac{\dot{R}}{R}(\rho_Q + \bar{p}_Q) = 0$

Conclusion

- Unifying framework for dark energy/modified gravity
- Effective language: cosmological perturbations as the relevant d.o.f.
- Extension of EFT of inflation and quintessence to non-minimal couplings
- Unambiguous way to address mixing, stability, speed of sound etc.
- See also Bloomfield et al. 1211.7054. Much work in progress to consider effects of coupling to matter
- Quintessence can have zero sound speed! Simplest phenomenological alternative to the smooth case
- New phenomenology: 1) nonlinear corrections to PS and bispectrum; 2) Quintessence mass in virialized objects