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While T and E modes are parity-even,
B is parity-odd

<TB> and <EB> power spectra should vanish in parity-
invariant CMB

What if Planck 
(or any other CMB polarization experiment)

detects <TB>≠0?

Parity-violating dynamics in the very Early Universe?

CMB information: 
T modes (scalar), 

E and B modes (polarization)



A pseudoscalar inflaton

An obvious source of primordial parity violation: 

Why should we care about a 
pseudoscalar inflaton?



|V’(φ)|<<V (φ)/MP

|V’’(φ)|<<V (φ)/MP 2

In order to be successful, a model of inflation needs “just” a scalar 
potential with small first and second derivatives in units of MP



...but, in general, quantum loops will contribute to V’ and V’’ 
(and V’’’ etc...)

How can we keep radiative effe
cts 

under contro
l?



A field φ has a shift symmetry if the theory that describes it is 
invariant under the transformation

φ → φ + c

If this symmetry is exact, the only possible 
potential for φ is V(φ)=constant

(i.e. a cosmological constant)

an exact shift symmetry is an overkill...
...but we can break the symmetry a bit and generate a potential 

(c=arbitrary constant)

Quantities can be kept “controllably small” 
by symmetries



An (important) example
If φ is a phase, then shift symmetry ⇔ global U(1)

Theory with a spontaneously broken global U(1)

Decompose 
where δH is massive and φ is a massless Goldstone boson (pseudoscalar)

...but this is not the only example...

The global U(1) is broken e.g. by some strong dynamics
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Freese et al 1990

- One pNGB (natural inflation) V (�) = �4 (cos(�/v) + 1)

Kim, Nilles and Peloso 2004

- Two pNGBs

- PNGBs and moduli
Blanco-Pillado et al 2004

- Many pNGBs
Dimopoulos et al 2005

- Monodromy

Silverstein and Westphal, 2008

L=- Mixing with 4-form

Kaloper and LS, 2008
Kaloper, Lawrence and LS, 2010



There are many well motivated models of pNGB inflation

and the pNGB is a pseudoscalar!

macroscopic parity violation in the Early Universe

The bottom line...

There are many well motivated models with

How can this parity violation be transferred to the CMB? 



If inflaton is a pseudoscalar (in particular a pNGB),
it interacts with U(1) gauge fields via

L⇧FF =
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(f=constant with dimensions of a mass)

The gauge field is decomposed into helicity-λ modes
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The mode functions Aλk(τ) are sourced by the rolling φ:

for λ=-, the “mass term” is negative and large for ~1 Hubble time:

parity violation is transferred
to the electromagnetic field

Exponential amplification of left handed modes only!
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Primordial gravitational waves

Let us now focus on the tensor components of 
the metric

X

ij

�ij hij =
X

i

⇥i hij = 0

the tensor mode has two components (=helicity ±2) 
so we can decompose it, in momentum space, 

into left-handed and right-handed modes

ds
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Transferring parity violation to the 
gravitational waves

Projector on helicity-λ
components

(note: this is an operator equation)

since the RHS is known (computed in previous slides), 
can obtain hλ formally with retarded propagator

The energy of the electromagnetic field sources 
gravitational waves:

≡Tλ

Spatial components 
of gauge field 

stress-energy tensor
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The amplitude of the helicity-λ
gravitational waves

If Gk(τ, τ’) is retarded propagator 
for operator d2/dτ2+2 (a’/a) d/dτ +k2, then

and from this we obtain the amplitude 
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Parity violating gravitational waves
AL and AR have different amplitudes

<TLTL>≠<TRTR>

<hLhL>≠<hRhR>

Physics: in the limit of small 
transverse momentum two LH 

photons cannot create a RH graviton

Before computing the power 
spectrum of the tensors...



...note that to the special solution of the inhomogeneous 
equation for hλ one should add the general solution of the 

homogeneous equation

parity-invariant
uncorrelated to component sourced by φ

exists in standard inflation models
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The parity-violating 
power spectrum
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Detection prospects related to observability of 
nonzero <EB> and/or <TB>

3

(v) a CV-limited experiment. The corresponding in-
strumental parameters are given in Table I. Note that
the noise-equivalent temperature NET is related to the
temperature/polarization pixel-noise variances, σT/P , as

σ2
T /Npix = (NET)2/tobs, where σP =

√
2σT . We take

f0
sky = 1.0 (the fraction of the sky surveyed), and fsky =
0.7 (the fraction of the sky used in the analysis), for all ex-
periments, except for SPIDER, where f0

sky = fsky = 0.5.

FIG. 2: 1σ error on the gravitational chirality parameter ∆χ,
for five different CMB experiments, for the fiducial value of
∆χ = 0. The horizontal dotted line is at σ∆χ = 1 and repre-
sents maximal P violation. In the region above this line, the
chirality is non-detectable. The WMAP-5 curve lies entirely
above the non-detection line.

Fig. 2 shows the 1σ error of the estimate of ∆χ as
a function of tensor-to-scalar ratio r. The error in-
creases with decreasing r, which implies the existence
of a critical value of r below which a 1σ-level detection
becomes impossible even for maximal P violation (when
σ∆χ ≥ 1). This value is far above the current upper limit
for WMAP-5 (compare to Ref. [13]), and so WMAP-5
can give no constraints on chiral gravity. Prospects are
more optimistic for the next-generation CMB data re-
leases. The critical r is about 0.064 for SPIDER, 0.082
for Planck, 0.0079 for CMBPol, and 0.0023 for the CV-
limited experiment. If r is just below the current de-
tection limit of 0.22 [12], ∆χ will be detectable at the
1σ level if it is greater than 0.46, 0.51, 0.18, and 0.11
for these four instruments, respectively. If we consider
the 3σ confidence level, the corresponding minimum de-
tectable values are larger by a factor of ∼ 3.

To conclude this Section, we show how different mul-
tipoles l contribute to the sum of Eq. (6), separating the
contribution from TB and EB, in Fig. 3. In this plot, only
the TB/EB summands of Eq. (6) are plotted against l,
for r = 0.22, for SPIDER, Planck, and CMBPol. The off-

diagonal terms that contain the covariance between TB
and EB are negligible. The major contribution to σ−2

∆χ
for all five experiments comes from the TB power spec-
trum, from low multipoles, l ∼ 7. Thus, large angular
scales in TB (at l ≤ 10) contain most of the information
about gravitational chirality.

from TB
from EB

FIG. 3: Diagonal (TB,TB and EB,EB) summands of Eq. (6),
for r = 0.22, are plotted against the multipole l to show that
the constraint to ∆χ comes primarily from the TB power
spectrum at l ∼ 7.

III. CONSTRAINING COSMOLOGICAL
BIREFRINGENCE

Cosmological birefringence rotates the linear polariza-
tion at each point on the sky by an angle ∆α, and this
rotation induces TB/EB power spectra

CTB,rot
l = 2∆αCTE

l , CEB,rot
l = 2∆αCEE

l . (8)

The error σ∆α to which ∆α can be measured is given by

σ−2
∆α =

∑

l

∑

A,A′

∂CA
l

∂∆α

∂CA′

l

∂∆α
[Ξl

−1]AA′ . (9)

Using the same instrumental parameters as in §II B,
and for r = 0.22, we obtain the following 1σ errors for the
CB rotation angle: from WMAP-5, 3.2◦; from SPIDER,

From 
Gluscevic Kamionkowski 10

Depend on two parameters

�� = 2
PR � PL

PR + PL

tensor-to-scalar ratio

chirality of primordial
perturbations

Saito Ichicki Taruya 07, 
Contaldi Maguejio Smolin 08,
Gluscevic Kamionkowski 10

r =
PR + PL

PTζ



For our system

where the first line depends on the propagators while the second line depends on the amplitude of
the gauge field and on the helicity of the graviton. The second line can be written more explicitly
after using the property of the helicity projectors
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4
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In the large scale limit �k ⌃ ⌅ 0 the integral (??) can be computed numerically. Rather than
plotting the result of the numerical integration, we give the following analytical approximation that
for ⇤ & 3 (that, as we will see, is the regime we are interested in) is good at the 15%, and rapidly
improves as ⇤ increases
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We thus see that the spectra of both the left- and the right-handed tensor modes are scale
invariant. As a consequence of the violation of parity, however, their amplitude di⇥ers by a factor
⇤ 103.

Of course, one should also take into account the parity-symmetric component of gravitons
that are generated by the usual amplification of vacuum fluctuations in de Sitter space and that
correspond to the solutions of the homogeneous part of eq. (??). These are uncorrelated from those
discussed above, so that the overall left- and right-handed power spectra read
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from which we extract the chirality parameter
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4 Discussion

Let us now discuss the constraints on the model along with the prospects of observing such a chi-
ral background of gravitational waves. Our main result (??) depends only on the two parameter
H and ⇤. An extra parameter, the slow roll parameter ⇥, appears when we study the observa-
tional constraints on our scenario. Therefore, the entire system is in principle described by a
three-dimensional parameter space. It is possible to eliminate one parameter by imposing COBE
normalization of the spectrum of scalar perturbations. The amplitude of the scalar perturbations is
also a⇥ected by the presence of the excited electromagnetic modes, and has been computed for this
system in [? ], that have obtained the following expression (accurate at the 25% level for ⇤ & 3)

P⇧
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P
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two scenarios, consistent with the current constraints, where parity violating correlation functions
would be detectable in future CMB surveys. We conclude in section 5.

2 Production of helical gauge fields by a pseudoscalar inflaton

In order to make this paper self-contained, this section reviews the equations describing the pro-
duction of helical modes of a U(1) gauge field coupled to a pseudoscalar inflaton ⇧. A more detailed
presentation of the results presented in this section can be found in [? ]. The Lagrangian density
of our system is given by

L = �1

2
(⌥⇧)2 � V (⇧)� 1

4
Fµ⇥F

µ⇥ � ⇧

4 f
Fµ⇥F̃

µ⇥ , (2.1)

where V (⇧) is an arbitrary potential able to support slow-roll inflation. The dimensionful parameter
f is a measure of the coupling of ⇧ to the gauge field.

In terms of the vector potentialA (⌅, x), defined by a2B = ⌦⇥A, a2E = �A⇤, and neglecting
the spatial gradients of ⇧, the equations for the gauge field read

�
⌥2

⌥⌅2
�⌦2 � ⇧⇤

f
⌦⇥
⇥
A = 0, ⌦ ·A = 0 , (2.2)

where the prime denotes di�erentiation with respect to the conformal time ⌅ and a(⌅) is the scale
factor of the flat Friedmann-Robertson-Walker Universe .

In order to study the generation of the electromagnetic field induced by the rolling pseu-
doscalar, we promote the classical field A(⌅, x) to an operator Â (⌅, x), that we decompose into
annihilation and creation operators âk�, â

k
�
†

Âi(⌅, x) =

⌃
d3k

(2⇤)3/2
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k
� e

ik·x + h.c.
�
, (2.3)

where the helicity vectors �i± are defined so that ki �i± = 0, ⌃abc kb �c± = ⇤i k �c±, �i± �i⇥ = 1 and
�i± �i± = 0. Then, the functions A± must satisfy the equation A⇤⇤

± + (k2 ⇤ k ⇧⇤/f)A± = 0.
Since we are working on an inflating background, we assume de Sitter metric a (⌅) ⌥ �1/(H ⌅),

and ⇧⇤/a =
 
2 �HMP ⌥ constant. Hence, the equation for A± reads

d2A±(⌅, k)

d⌅2
+

⇤
k2 ± 2 k

⇥

⌅

⌅
A±(⌅, k) = 0 , (2.4)

where we have defined

⇥ ⌅ ⇧̇

2 f H
=

 
�

2

MP

f
, (2.5)

We will be interested in the case ⇥ >⇧ O (1).
Depending on the sign of ⇥, one of the two modes A+ or A� in (??) develops an instability

(we assume without loss of generality that ⇥ > 0). The other mode stays essentially in vacuum.
The di�erence between the amplitude of the left- and that of the right-handed photons shows that
the gauge modes have inherited the parity violating nature of the rolling inflaton.

The solution of equation (??) that reduces to positive frequency in the limit k ⌅ ⌃ �� is
A±(⌅, k) = 1⌅

2 k
[i F0(±⇥, �k ⌅) + G0(±⇥, �k ⌅)], where F0 and G0 are the regular and irregular

– 3 –

Exponential dependence on the coupling 1/f

In principle parity violation detectable for significant 
portion of parameter space. But...



Constraints from nongaussianities
The electromagnetic modes backreact on the inflaton, 

contributing to its three-point function

NONGAUSSIANITIES

Barnaby Peloso 10

Parity violation not detectable in the simplest version of this 
model without violating constraints from nongaussianities

Strong constraint on ξ (<2.6)

Back to our question: suppose we see <TB>≠0.  
Can we explain this observation in this scenario? 



I.e., ways out

i) A CURVATON

Most of the primordial perturbation is due to a second field with 
nearly-gaussian perturbations.

constraint from nongaussianities is evaded

ii) MANY GAUGE FIELDS

Contributions to fNL add incoherently. With ~103 gauge fields fNL 
safely small



E.g. parameter space for curvaton making 90% of 
primordial perturbations

2.5 3.0 3.5 4.0 4.5 5.0
⇥

1⇤ 10�6
2⇤ 10�6

5⇤ 10�6
1⇤ 10�5
2⇤ 10�5

5⇤ 10�5
1⇤ 10�4

H�MP

!"<!"min

r>0.24

Figure 1. Parameter space for parity violating tensor modes. The choice of parameters in the plot cor-
responds to the case where 90% of the scalar power spectrum is provided by a curvaton (i.e. � = 0.1, see
section 4.1 for details). In the region to the left of the thicker line, marked by �⌅ < �⌅min, the e⇥ect is
too small to be observed at the 95% confidence level in a cosmic-variance limited experiments. In the region
to the right of the thinner line, marked by r > 0.24, the amplitude of the tensor modes exceeds the current
limits. The region between the two lines and below H ⇤ 5� 10�5 MP is allowed by current data and leads
to observable parity violation in the CMB.

by N their ⇤-dependent parts. Also the expression giving f equil
NL must be modified by multiplying

it by a factor of N . Since, in the regime of large ⇤, both the two- and the three-point functions
are proportional to N , once COBE normalization is imposed the three point function scales as
1/

⌅
N . As a consequence, by setting N >⇥ 103, the constraint from nongaussianities is satisfied

for all values of ⇤. While a system with ⇥ 103 gauge fields does not appear to be very natural, it
is not even unreasonable – it is indeed rather common to run into string compactifications with
thousands of degrees of freedom. Just to mention one possibility, the O(103) Aµs could correspond
to the modes of a weakly coupled nonabelian gauge group emerging from a stack of ⇥ 30 branes.
If the gauge sector is large enough to nullify the nongaussianity constraint, then the parameter
space of the system looks very similar to the one depicted in figure 1. In this case, however, one
finds that in the regime of large ⇤, r does not pay the suppression by a factor of � found in the
previous subsection. As a consequence, a value of ⇥ as small as 1/30 can lead to a spectrum of chiral
gravitational waves that might be detected at 95% confidence level in a cosmic-variance limited
experiment.

5 Conclusions

The main result of this paper is given by eqs. (??), that show that a pseudoscalar inflaton, through
its natural coupling to gauge fields, can induce a parity-violating component in the spectrum of
gravitational waves. The degree of chirality (??) depends exponentially on the quantity

⌅
⇥MP /f ,

implying the spectrum of primordial gravitational waves is chiral in a large portion of the parameter
space.

– 7 –

Parity violation
too small

Too many
tensor modes

Detectable parity violation



Note

Nonvanishing <EB> and <TB> could also 
be produced by some late-Universe effect

(e.g. pseudoscalar quintessence)

Gluscevic and Kamionkowski 2010 have 
however shown that it is possible to 

distinguish a primordial <EB> and <TB> 
from a late one
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Figure 1. Parameter space for parity violating tensor modes. The choice of parameters in the plot cor-
responds to the case where 90% of the scalar power spectrum is provided by a curvaton (i.e. � = 0.1, see
section 4.1 for details). In the region to the left of the thicker line, marked by �⌅ < �⌅min, the e⇥ect is
too small to be observed at the 95% confidence level in a cosmic-variance limited experiments. In the region
to the right of the thinner line, marked by r > 0.24, the amplitude of the tensor modes exceeds the current
limits. The region between the two lines and below H ⇤ 5� 10�5 MP is allowed by current data and leads
to observable parity violation in the CMB.

by N their ⇤-dependent parts. Also the expression giving f equil
NL must be modified by multiplying

it by a factor of N . Since, in the regime of large ⇤, both the two- and the three-point functions
are proportional to N , once COBE normalization is imposed the three point function scales as
1/

⌅
N . As a consequence, by setting N >⇥ 103, the constraint from nongaussianities is satisfied

for all values of ⇤. While a system with ⇥ 103 gauge fields does not appear to be very natural, it
is not even unreasonable – it is indeed rather common to run into string compactifications with
thousands of degrees of freedom. Just to mention one possibility, the O(103) Aµs could correspond
to the modes of a weakly coupled nonabelian gauge group emerging from a stack of ⇥ 30 branes.
If the gauge sector is large enough to nullify the nongaussianity constraint, then the parameter
space of the system looks very similar to the one depicted in figure 1. In this case, however, one
finds that in the regime of large ⇤, r does not pay the suppression by a factor of � found in the
previous subsection. As a consequence, a value of ⇥ as small as 1/30 can lead to a spectrum of chiral
gravitational waves that might be detected at 95% confidence level in a cosmic-variance limited
experiment.

5 Conclusions

The main result of this paper is given by eqs. (??), that show that a pseudoscalar inflaton, through
its natural coupling to gauge fields, can induce a parity-violating component in the spectrum of
gravitational waves. The degree of chirality (??) depends exponentially on the quantity

⌅
⇥MP /f ,

implying the spectrum of primordial gravitational waves is chiral in a large portion of the parameter
space.
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...but most importantly

r=0.24

Standard relationship between amplitude of 
gravitational waves and H does not apply! 



...which brings us to the second part of the talk...



 Inflationary GWs for LIGO
Cook, LS 1109.0022

ξ increases during inflation
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GWs produced towards the end of inflation 
(i.e. at smaller scales) have larger amplitude

might be detected by advanced LIGO!
Note: constraints from fNL do not 

apply at LIGO scales!
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FIG. 2: Current limits and projected sensitivities to a stochastic gravitational-wave background versus the gravitational-wave
frequency. The solid curves all indicate current upper limits, while the dashed curves indicate projected sensitivities. The LISA
curve is from Ref. [65] and BBO correlated from Ref. [61]. The BBO sensitivity is estimated by increasing the BBO-correlated
curve by 4 orders of magnitude [see Eq. (29)]. The BBN constraint results from the limit to the number of relativistic degrees of
freedom at big-bang nucleosynthesis (e.g., Ref. [66]); the “M/R” constraint is from CMB/LSS constraints to matter-radiation
equality [67]; the “z. var” curve is from Ref. [68]; and the quasar-astrometry limit from Refs. [69, 70]. We note that the BBN
and “M/R” constraints assume a scale invariant gravitational-wave background that extends ∼ 60 e-folds below the current
Hubble horizon. LIGO sensitivities, taken from the LIGO Scientific Collaboration White Paper on Detector Research and
Development [71] are given in terms of a correlated analysis between the Hanford, WA and Livingston, LA sites [see Eq. (29)].
The run 1 LIGO limit (“S1 LIGO”) is from Ref. [72] and the run 3 LIGO limit (“S3 LIGO”) is from Ref. [73]. Also shown
are millisecond-pulsar timing constraints (current [74, 75] and sensitivities projected for the Square-Kilometer Array [76]).
Curves corresponding to scale-invariant (i.e., nt = 0) gravitational-wave backgrounds are shown (dotted curves), labeled by the
associated inflationary energy scales at CMB/LSS scales (but keep in mind that slow-roll inflation generically predicts nt < 0,
less power on small scales). The CMB/LSS currently constrains this value to be below 3.36 × 1016 GeV at CMB/LSS scales.
Future CMB measurements may be able to reach energy scales near 1015 GeV [77, 78, 79, 80].

model has also η = p2/8π, so ns = 1 − p2/8π = 1 − 2ε,
and for ns > 0.9 we find a constraint ε < 0.05. The con-
straint r = 16ε ! 1 is comparable or a bit weaker. Since
ns and r depend in this model only on the parameter

p, these models occupy a curve in the ns–r parameters
space, which is indicated by the heavy solid curve in Fig.
1. The constraint ∆N = 35 to the number of e-folds be-
tween CMB/LSS and BBO/DECIGO scales tells us that

Smith Kamionkowski Cooray 06Prospects of 
direct 

detection of 
GWs of 

inflationary 
origin
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not be trusted! 
Backreaction 
effects are too 

large here 
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FIG. 2: Current limits and projected sensitivities to a stochastic gravitational-wave background versus the gravitational-wave
frequency. The solid curves all indicate current upper limits, while the dashed curves indicate projected sensitivities. The LISA
curve is from Ref. [65] and BBO correlated from Ref. [61]. The BBO sensitivity is estimated by increasing the BBO-correlated
curve by 4 orders of magnitude [see Eq. (29)]. The BBN constraint results from the limit to the number of relativistic degrees of
freedom at big-bang nucleosynthesis (e.g., Ref. [66]); the “M/R” constraint is from CMB/LSS constraints to matter-radiation
equality [67]; the “z. var” curve is from Ref. [68]; and the quasar-astrometry limit from Refs. [69, 70]. We note that the BBN
and “M/R” constraints assume a scale invariant gravitational-wave background that extends ∼ 60 e-folds below the current
Hubble horizon. LIGO sensitivities, taken from the LIGO Scientific Collaboration White Paper on Detector Research and
Development [71] are given in terms of a correlated analysis between the Hanford, WA and Livingston, LA sites [see Eq. (29)].
The run 1 LIGO limit (“S1 LIGO”) is from Ref. [72] and the run 3 LIGO limit (“S3 LIGO”) is from Ref. [73]. Also shown
are millisecond-pulsar timing constraints (current [74, 75] and sensitivities projected for the Square-Kilometer Array [76]).
Curves corresponding to scale-invariant (i.e., nt = 0) gravitational-wave backgrounds are shown (dotted curves), labeled by the
associated inflationary energy scales at CMB/LSS scales (but keep in mind that slow-roll inflation generically predicts nt < 0,
less power on small scales). The CMB/LSS currently constrains this value to be below 3.36 × 1016 GeV at CMB/LSS scales.
Future CMB measurements may be able to reach energy scales near 1015 GeV [77, 78, 79, 80].

model has also η = p2/8π, so ns = 1 − p2/8π = 1 − 2ε,
and for ns > 0.9 we find a constraint ε < 0.05. The con-
straint r = 16ε ! 1 is comparable or a bit weaker. Since
ns and r depend in this model only on the parameter

p, these models occupy a curve in the ns–r parameters
space, which is indicated by the heavy solid curve in Fig.
1. The constraint ∆N = 35 to the number of e-folds be-
tween CMB/LSS and BBO/DECIGO scales tells us that
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A few comments
These tensor modes would be chiral!

Signal might correlate with nongaussianities at CMB/
LSS scales

The GWs produced this way should be strongly 
nongaussian

Later on, Barnaby, Pajer and Peloso have  performed 
a more accurate analysis. Qualitative behavior is 
confirmed.

Cook, LS in prep



Any other possibility?
Rather than steadily producing matter 

(such as photons) that in their turn produce GWs,
matter could be produced explosively,

leading to a feature in the primordial GW spectrum
6
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equality [67]; the “z. var” curve is from Ref. [68]; and the quasar-astrometry limit from Refs. [69, 70]. We note that the BBN
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Development [71] are given in terms of a correlated analysis between the Hanford, WA and Livingston, LA sites [see Eq. (29)].
The run 1 LIGO limit (“S1 LIGO”) is from Ref. [72] and the run 3 LIGO limit (“S3 LIGO”) is from Ref. [73]. Also shown
are millisecond-pulsar timing constraints (current [74, 75] and sensitivities projected for the Square-Kilometer Array [76]).
Curves corresponding to scale-invariant (i.e., nt = 0) gravitational-wave backgrounds are shown (dotted curves), labeled by the
associated inflationary energy scales at CMB/LSS scales (but keep in mind that slow-roll inflation generically predicts nt < 0,
less power on small scales). The CMB/LSS currently constrains this value to be below 3.36 × 1016 GeV at CMB/LSS scales.
Future CMB measurements may be able to reach energy scales near 1015 GeV [77, 78, 79, 80].

model has also η = p2/8π, so ns = 1 − p2/8π = 1 − 2ε,
and for ns > 0.9 we find a constraint ε < 0.05. The con-
straint r = 16ε ! 1 is comparable or a bit weaker. Since
ns and r depend in this model only on the parameter

p, these models occupy a curve in the ns–r parameters
space, which is indicated by the heavy solid curve in Fig.
1. The constraint ∆N = 35 to the number of e-folds be-
tween CMB/LSS and BBO/DECIGO scales tells us that



Explosive production of matter during inflation

Possible e.g. if the inflaton φ interacts with another 
scalar χ via the coupling
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Particle Production During Inflation: Observational Constraints and Signatures
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In a variety of inflation models the motion of the inflaton may trigger the production of some
non-inflaton particles during inflation, for example via parametric resonance or a phase transition.
Particle production during inflation leads to observables in the cosmological fluctuations, such as
features in the primordial power spectrum and also nongaussianities. Here we focus on a prototype
scenario with inflaton, φ, and iso-inflaton, χ, fields interacting during inflation via the coupling
g2(φ−φ0)

2χ2. Since several previous investigations have hinted at the presence of localized “glitches”
in the observed primordial power spectrum, which are inconsistent with the simplest power-law
model, it is interesting to determine the extent to which such anomalies can be explained by this
simple and microscopically well-motivated inflation model. Our prototype scenario predicts a bump-
like feature in the primordial power spectrum, rather than an oscillatory “ringing” pattern as has
previously been assumed. We discuss the observational constraints on such features using a variety
of cosmological data sets. We find that bumps with amplitude as large as O(10%) of the usual
scale invariant fluctuations from inflation, corresponding to g2

∼ 0.01, are allowed on scales relevant
for Cosmic Microwave Background experiments. Our results imply an upper limit on the coupling
g2 (for a given φ0) which is crucial for assessing the detectability of the nongaussianity produced
by inflationary particle production. We also discuss more complicated features that result from
superposing multiple instances of particle production. Finally, we point to a number of microscopic
realizations of this scenario in string theory and supersymmetry and discuss the implications of our
constraints for the popular brane/axion monodromy inflation models.

PACS numbers: 11.25.Wx, 98.80.Cq

I. INTRODUCTION

Recently, there has been considerable interest in in-
flationary models where the motion of the inflaton trig-
gers the production of some non-inflation (iso-curvature)
particles during inflation [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17]. Examples have been stud-
ied where this particle production occurs via parametric
resonance [1, 2, 3, 4, 5, 6], as a result of a phase tran-
sition [7, 8, 9, 10, 11, 12, 13], or otherwise. In some
scenarios, backreaction effects from particle production
can slow the motion of the inflaton on a steep poten-
tial [14, 15, 16], providing a new inflationary mechanism.
Moreover, inflationary particle production arises natu-
rally in a number of realistic microscopic models from
string theory [14, 15, 16, 18, 19, 20] and also supersym-
metry (SUSY) [21].

In [5] it was shown that the production of massive iso-
curvature particles during inflation (and their subsequent
interactions with the slow roll condensate) provides a
qualitatively new mechanism for generating cosmological
perturbations. This new mechanism leads to a variety of
novel observable signatures, such as features [5] and non-
gaussianities [5, 22] in the primordial fluctuations. In this
paper we study in detail the observational constraints on
such distortions of the primordial power spectrum for a
variety of scenarios.

One motivation for this study is to determine whether
features generated by particle production during in-
flation can explain some of the anomalies in the ob-

served primordial power spectrum, P (k). A number
of different studies have hinted at the possible pres-
ence of some localized features in the power spectrum
[2, 13, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
which are not compatible with the simplest power law
P (k) ∼ kns−1 model. Although such glitches may sim-
ply be statistical anomalies, there is also the tantalizing
possibility that they represent a signature of primordial
physics beyond the simplest slow roll inflation scenario.
Forthcoming polarization data may play a crucial role in
distinguishing between these possibilities [13]. However,
in the meantime, it is interesting to determine the extent
to which such features may be explained by microscopi-
cally realistic inflation models.

We consider a very simple model where the inflaton,
φ, and iso-inflaton, χ, fields interact via the coupling

Lint = −g2

2
(φ − φ0)

2χ2 (1)

We focus on this simple prototype model in order to il-
lustrate the basic phenomenology of particle production
during inflation, however, we expect our results to gener-
alize in a straightforward way to more complicated sce-
narios. Models of the type (1) have been considered as a
probe of Planck-scale effects [1] and offer a novel exam-
ple of the non-decoupling of high energy physics during
inflation.1

1 For reasonable values of g2 the χ particles are extremely mas-

When φ crosses φ0, χ becomes temporarily 
massless and it is “cheaply” produced

➽ about            quanta of χ per unit volume are produced   
⇣
g �̇0

⌘3/2

that can source the tensor modes



Unfortunately...

The effect is too small:

where the enhancement factor

Nonrelativistic scalars waves in Minkowski space does not generate GWs 
(no quadrupole) 

Kofman et al 2007
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(even if one can devise ways out)



Before concluding...
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FIG. 2: Current limits and projected sensitivities to a stochastic gravitational-wave background versus the gravitational-wave
frequency. The solid curves all indicate current upper limits, while the dashed curves indicate projected sensitivities. The LISA
curve is from Ref. [65] and BBO correlated from Ref. [61]. The BBO sensitivity is estimated by increasing the BBO-correlated
curve by 4 orders of magnitude [see Eq. (29)]. The BBN constraint results from the limit to the number of relativistic degrees of
freedom at big-bang nucleosynthesis (e.g., Ref. [66]); the “M/R” constraint is from CMB/LSS constraints to matter-radiation
equality [67]; the “z. var” curve is from Ref. [68]; and the quasar-astrometry limit from Refs. [69, 70]. We note that the BBN
and “M/R” constraints assume a scale invariant gravitational-wave background that extends ∼ 60 e-folds below the current
Hubble horizon. LIGO sensitivities, taken from the LIGO Scientific Collaboration White Paper on Detector Research and
Development [71] are given in terms of a correlated analysis between the Hanford, WA and Livingston, LA sites [see Eq. (29)].
The run 1 LIGO limit (“S1 LIGO”) is from Ref. [72] and the run 3 LIGO limit (“S3 LIGO”) is from Ref. [73]. Also shown
are millisecond-pulsar timing constraints (current [74, 75] and sensitivities projected for the Square-Kilometer Array [76]).
Curves corresponding to scale-invariant (i.e., nt = 0) gravitational-wave backgrounds are shown (dotted curves), labeled by the
associated inflationary energy scales at CMB/LSS scales (but keep in mind that slow-roll inflation generically predicts nt < 0,
less power on small scales). The CMB/LSS currently constrains this value to be below 3.36 × 1016 GeV at CMB/LSS scales.
Future CMB measurements may be able to reach energy scales near 1015 GeV [77, 78, 79, 80].

model has also η = p2/8π, so ns = 1 − p2/8π = 1 − 2ε,
and for ns > 0.9 we find a constraint ε < 0.05. The con-
straint r = 16ε ! 1 is comparable or a bit weaker. Since
ns and r depend in this model only on the parameter

p, these models occupy a curve in the ns–r parameters
space, which is indicated by the heavy solid curve in Fig.
1. The constraint ∆N = 35 to the number of e-folds be-
tween CMB/LSS and BBO/DECIGO scales tells us that

In these regions the tensor spectrum is BLUE! 
Example of (locally) blue tensor spectrum without 

violation of energy conditions

Peak induced by explosive 
particle production



Conclusions
• Models of pseudoscalar inflation naturally lead to a chiral 

spectrum of gravitational waves

• In simplest model, strong constraints from nongaussianities

• However, “not too contrived” candidate explanation if 
nonvanishing <EB> and <TB> will be observed

• Same mechanism might lead to a stochastic background of 
gravitational waves detectable by advanced LIGO 

• Production of tensor modes through explosive production of 
scalars (and vectors) typically inefficient


