Odd tensor modes from particle production during inflaton

Lorenzo Sorbo

IAP, 04/03/13

LS, 1101.1525, JCAP J. Cook and LS, 1109.0022, PRD Odd^{*,**}tensor modes from particle production during inflaton

*: parity violating (part 1 of the talk)

**: detectable by ground-based interferometers (part II of the talk)

> LS, 1101.1525, JCAP . Cook and LS, 1109.0022, PRD

(or any other CMB polarization experiment) detects <TB>≠0?

Parity-violating dynamics in the very Early Universe?

An obvious source of primordial parity violation:

A pseudoscalar inflaton

Why should we care about a pseudoscalar inflaton?

In order to be successful, a model of inflation needs "just" a scalar potential with small first and second derivatives in units of MP

 $|V'(\phi)| \leq \langle V(\phi)/M_P$

 $|V''(\phi)| < < V(\phi)/M_P^2$

Quantities can be kept "controllably small" by <u>symmetries</u>

A field ϕ has a shift symmetry if the theory that describes it is invariant under the transformation

 $\varphi \rightarrow \varphi + c$ (*c*=arbitrary constant)

If this symmetry is exact, the only possible potential for ϕ is $V(\phi)$ =constant

(i.e. a cosmological constant)

an exact shift symmetry is an overkill... ...but we can break the symmetry a bit and generate a potential

An (important) example

If ϕ is a phase, then shift symmetry \Leftrightarrow global U(1)

Theory with a spontaneously broken global U(1)

$$\mathcal{L} = \partial_{\mu} H^* \partial^{\mu} H - \lambda \left(|H|^2 - v^2 \right)^2$$

Decompose $H = (v + \delta H) e^{i\phi/v}$ where δH is massive and φ is a massless Goldstone boson <u>(pseudoscalar)</u>

The global U(1) is broken e.g. by some strong dynamics

$$\delta \mathcal{L} = \Lambda^3 \ (H + H^*) + \dots$$

A potential is generated:

$$\delta V \sim \Lambda^3 v \, \cos\left(\phi/v\right)$$

...but this is not the only example...

Pseudo-Nambu-Goldstone boson

The bottom line...

There are many well motivated models of pNGB inflation

and the pNGB is a pseudoscalar!

There are many well motivated models with

macroscopic parity violation in the Early Universe

How can this parity violation be transferred to the CMB?

If inflaton is a pseudoscalar (in particular a pNGB), it interacts with U(1) gauge fields via

$$\mathcal{L}_{\phi FF} = \frac{\phi}{f} \epsilon_{\alpha\beta\gamma\delta} F^{\alpha\beta} F^{\gamma\delta}$$

(f=constant with dimensions of a mass)

The gauge field is decomposed into helicity- λ modes

$$\mathbf{A}(\mathbf{x},\tau) = \sum_{\lambda=\pm} \int \frac{d^3 \mathbf{k}}{(2\pi)^{3/2}} \left[a_{\mathbf{k}}^{\lambda} A_{\lambda}^{\mathbf{k}}(\tau) \mathbf{e}^{\lambda}(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} + a_{\mathbf{k}}^{\lambda\dagger} A_{\lambda}^{\ast \cdot\mathbf{k}}(\tau) \mathbf{e}^{\lambda \cdot \ast}(\mathbf{k}) e^{-i\mathbf{k}\cdot\mathbf{x}} \right]$$

The mode functions $A_{\lambda}^{k}(\tau)$ are sourced by the rolling ϕ :

$$A_{\lambda}^{\prime\prime} + \left(\mathbf{k}^2 + \lambda \,\frac{\phi^{\prime}}{f} \,|\mathbf{k}|\right) \,A_{\lambda} = 0$$

for $\lambda = -$, the "mass term" is negative and large for ~ 1 Hubble time: Anber and LS 06

Exponential amplification of <u>left handed modes only</u>!

parity violation is transferred to the electromagnetic field

$$A_L \propto \exp\left\{\frac{\pi}{2} \frac{\dot{\phi}}{f H}\right\}$$

Primordial gravitational waves

Let us now focus on the tensor components of the metric

$$ds^{2} = a^{2}(\tau) \left[-d\tau^{2} + (\delta_{ij} + h_{ij} \left(\mathbf{x}, \tau \right) \right) dx^{i} dx^{j} \right]$$

the tensor mode has two components (=helicity ±2) so we can decompose it, in momentum space, into left-handed and right-handed modes

$$h_{ij} \left(\mathbf{k}, \tau \right) = \sum_{\lambda = \pm} h_{\lambda} \left(\mathbf{k}, \tau \right) \, \epsilon_{ij}^{\lambda} \left(\mathbf{k} \right)$$

 $\sum_{ij} \delta^{ij} h_{ij} = \sum_{i} \partial_i h_{ij} = 0$

Transferring parity violation to the gravitational waves

The energy of the electromagnetic field sources gravitational waves:

The amplitude of the helicity- λ gravitational waves If $G_k(\tau, \tau')$ is retarded propagator for operator $d^2/d\tau^2 + 2$ (*a'/a*) $d/d\tau + k^2$, then

$$h_{\lambda}\left(\mathbf{k},\,\tau\right) = \frac{2}{M_{P}^{2}} \int d\tau' \,G_{k}\left(\tau,\,\tau'\right) \,T_{\lambda}\left(\mathbf{k},\,\tau'\right)$$

and from this we obtain the amplitude

$$\langle h_{\lambda} \left(\mathbf{k}, \tau \right) h_{\lambda} \left(\mathbf{q}, \tau \right) \rangle = \frac{4}{M_{P}^{4}} \int d\tau' G_{k} \left(\tau, \tau' \right) \int d\tau'' G_{q} \left(\tau, \tau'' \right) \left\langle T_{\lambda} \left(\mathbf{k}, \tau' \right) T_{\lambda} \left(\mathbf{q}, \tau'' \right) \right\rangle$$

...note that to the special solution of the inhomogeneous equation for h_{λ} one should add the general solution of the homogeneous equation

$$h_{\lambda}^{\prime\prime} + 2 \,\frac{a^{\prime}}{a} \,h_{\lambda}^{\prime} + \mathbf{k}^2 \,h_{\lambda} = 0$$

parity-invariant uncorrelated to component sourced by ϕ exists in standard inflation models

The parity-violating power spectrum

Detection prospects related to observability of nonzero $\langle EB \rangle$ and/or $\langle TB \rangle$ Saito Ichicki Taruya 07, Contaldi Maguejio Smolin 08,

Gluscevic Kamionkowski 10

chirality of primordial perturbations

$$\Delta \chi = \frac{4.3 \times 10^{-7} \frac{e^{4\pi\xi}}{\xi^6} \frac{H^2}{M_P^2}}{1 + 4.3 \times 10^{-7} \frac{e^{4\pi\xi}}{\xi^6} \frac{H^2}{M_P^2}}.$$

 $\xi \equiv \frac{\dot{\phi}}{2 f H} = \sqrt{\frac{\epsilon}{2}} \frac{M_P}{f}$

Exponential dependence on the coupling 1/f

In principle parity violation detectable for significant portion of parameter space. But...

Constraints from nongaussianities

The electromagnetic modes backreact on the inflaton, contributing to its three-point function

Barnaby Peloso 10

NONGAUSSIANITIES

Strong constraint on ξ (<2.6)

Parity violation not detectable in the simplest version of this model without violating constraints from nongaussianities

Back to our question: suppose we see $\langle TB \rangle \neq 0$. Can we explain this observation in this scenario?

i) A CURVATON

Most of the primordial perturbation is due to a second field with nearly-gaussian perturbations.

ii) MANY GAUGE FIELDS

Contributions to f_{NL} add incoherently. With $\sim 10^3$ gauge fields f_{NL} safely small

constraint from nongaussianities is evaded

E.g. parameter space for curvaton making 90% of primordial perturbations

Note

Nonvanishing <*EB*> and <*TB*> could also be produced by some late-Universe effect (e.g. pseudoscalar quintessence)

Gluscevic and Kamionkowski 2010 have however shown that it is possible to distinguish a primordial *<EB>* and *<TB>* from a late one

...but most importantly

Standard relationship between amplitude of gravitational waves and *H* does not apply!

...which brings us to the second part of the talk...

A few comments

These tensor modes would be chiral!

The GWs produced this way should be strongly nongaussian Cook, LS in prep

Signal might correlate with nongaussianities at CMB/ LSS scales

Later on, Barnaby, Pajer and Peloso have performed a more accurate analysis. Qualitative behavior is confirmed.

Any other possibility?

Rather than steadily producing matter (such as photons) that in their turn produce GWs, *matter could be produced explosively,* leading to a feature in the primordial GW spectrum

Explosive production of matter during inflation

Possible e.g. if the inflaton ϕ interacts with another scalar χ via the coupling

$$\mathcal{L}_{\text{int}} = -\frac{g^2}{2}(\phi - \phi_0)^2 \chi^2$$

When ϕ crosses ϕ_0 , χ becomes temporarily massless and it is "cheaply" produced

⇒ about $(g \dot{\phi}_0)^{3/2}$ quanta of χ per unit volume are produced that can source the tensor modes

Unfortunately...

Cook, LS 1109.0022, PRD

Senatore, Silverstein, Zaldarriaga 1109.0542

The effect is too small:

Height of feature in GW spectrum

 \sim

$$\begin{array}{l} \text{Height of standard} \\ \text{GW spectrum} \end{array} \times \left\{ 1 + \mathcal{O}\left(10^{-3}\right) \, \frac{H^2}{M_P^2} \, \left(\frac{g \, \dot{\phi}}{H^2}\right)^{3/2} \right\} \end{array}$$

where the enhancement factor

$$\simeq 10^{-3} g^{3/2} \epsilon^{3/4} (H/M_P)^{1/2} \ll 1$$

(even if one can devise ways out)

Kofman et al 2007

Nonrelativistic scalars waves in Minkowski space does not generate GWs (no quadrupole)

Before concluding...

In these regions the tensor spectrum is **BLUE!** Example of (locally) blue tensor spectrum without violation of energy conditions

Conclusions

- Models of pseudoscalar inflation naturally lead to a chiral spectrum of gravitational waves
- In simplest model, strong constraints from nongaussianities
- However, "not too contrived" candidate explanation if nonvanishing $\langle EB \rangle$ and $\langle TB \rangle$ will be observed
- Same mechanism might lead to a stochastic background of gravitational waves detectable by advanced LIGO
- Production of tensor modes through explosive production of scalars (and vectors) typically inefficient