Odd tensor modes
from particle production
during inflaton
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Odd “tensor modes
from particle production

during inflaton

": parity violating (part | of the talk)

": detectable by ground-based interferometers
(part Il of the talk)

LS, 1101.1525, JCAP
J. Cook and LS, 1109.0022, PRD
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J CMB information: A

T modes (scalar),
E and B modes (polarization)

While T and E modes are parity-even,
B is parity-odd
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<TB> and <EB> power spectra should vanish in parity-
invariant CMB

What if Planck
(or any other CMB polarization experiment)

detects <TB>+0?

Parity-violating dynamics in the very Early Universe!?




An obvious source of primordial parity violation:

A pseudoscalar inflaton

Why should we care about a
pseudoscalar inflaton!?



In order to be successful, a model of inflation needs “just™ a scalar
potential with small first and second derivatives in units of Mp

IV(¢)I<<V (¢p)/Mp

IV ())I<<V (¢)/Mp?




...but, in general, quantum loops will contribute toV’ andV”
(andV’” etc...)
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Quantities can be kept “controllably smal
by symmetries

O————————)

A field ¢ has a shift symmetry if the theory that describes it is
invariant under the transformation

O —> @ + ¢ | (c=arbitrary constant)

If this symmetry is exact, the only possible
potential for ¢ is V(¢ )=constant

(i.e. a cosmological constant)

an exact shift symmetry is an overkill...
..but we can break the symmetry a bit and generate a potential




If ¢ is a phase, then shift symmetry < global U(I)
© Theory with a spontaneously broken global U(1)
L=08,H 0"H -\ (|H? —v?)’

@ Decompose H = (v+ 6H) e/
where 0H is massive and ¢ is a massless Goldstone boson (pseudoscalar)

© The global U(l) is broken e.g. by some strong dynamics

6L=A° (H+H*)+...

®@ A potential is generated:

...but this is not the only example...'
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Freese et al 1990

- One pNGB (natural inflation) V' (¢) = A* (cos(@p/v) + 1)

—] Kim, Nilles and Peloso 2004
- Two pNGBs V =A} {l—cos (}9 p)] + Aj [l—cos (f
1
— Blanco-Pillado et aI 2004
- PNGBs and moduli N e
_ =
- Dimopoulos et al 2005
- Many pNGBs b=/ Z{ (0¢:)> + A% [1 + cos(¢i/ fz)]
=1
ﬁ
Silverstein and Westphal, 2008
- Monodromy ( Z((( O
Kaloper and LS, 2008
Kaloper, Lawrence and LS, 2010
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- Mixing with 4-form L= —/—PR — —(Vo) i e o] Foie + - )
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The bottom line...

There are many well motivated models of pNGB inflation

and the pNGB is a pseudoscalar!

—ll—

There are many well motivated models with

macroscopic parity violation in the Early Universe

How can this parity violation be transferred to the CMB!?




If inflaton is a pseudoscalar (in particular a pNGB),
it interacts with U(1) gauge fields via

(f=constant with dimensions of a mass)

The gauge field is decomposed into helicity-A modes

A(X, T) = Z / (265_‘_)1;/2 [aﬁ AI){\ (T) eA(k) eikX -+ CLﬁJr A;k (T) e>‘ *(k) e_ik x}




The mode functions A:%(7) are sourced by the rolling ¢:

/
’,\’+<k2+)\7\k\> Ay =0

for A=-,the “mass term” is negative and large for ~/ Hubble time:

Exponential amplification of left handed modes only!
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, prity violation is transferred -
b to the electromagnetic field
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Primordial gravitational waves

Let us now focus on the tensor components of
the metric

ds® = a*(T) [—de + (6;5 + hij (x, 7)) da’ dxj}

the tensor mode has two components (=helicity iZ)
sO we can decompose it, in momentum space,
into left-handed and right-handed modes




Transferring parity violation to the
gravitational waves

The energy of the electromagnetic field sources
gravitational waves:

(note: this is an operator equation)

/1 CL, / 2 2 ETA
ATt ’“:M

Projector on helicity-A
components

Spatial components
of gauge field
stress-energy tensor

since the RHS is known (computed in previous slides),

can obtain /1, formally with retarded propagator




The amplitude of the helicity-/4
gravitational waves

If Gi(T, 7°) is retarded propagator
for operator d?/dt?+2 (a’/a) d/dt +k?, then
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Parity violating gravitational waves

Ar and Ar have different amplitudes

—l

<TiT;>z<Trlpr>

——ly

<hih;>#z<hrhp>

Physics: in the limit of small
transverse momentum two LH
photons cannot create a RH graviton

_______ S ) .

Before computing the power
spectrum of the tensors...




...note that to the special solution of the inhomogeneous
equation for /1, one should add the general solution of the
homogeneous equation

/
W 4+25 by +k2hy =0
a

parity-invariant

uncorrelated to component sourced by ¢

exists in standard inflation models




The parity-violating
power spectrum
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Detection prospects related to observability of

Saito Ichicki Taruya 07,

NONZEro <EB> ain d/O I < TB> Contaldi Maguejio Smolin 08,

Gluscevic Kamionkowski 10

Depend on two parameters
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Exponential dependence on the coupling 1/f
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In principle parity violation detectable for significant
bortion of parameter space. But...



The electromagnetic modes backreact on the inflaton,
contributing to its three-point function

Barnaby Peloso 10

NONGAUSSIANITIES

Strong constraint on & (<2.6)

Parity violation not detectable in the simplest version of this
model without violating constraints from nongaussianities

Back to our question: suppose we see <TB>=0.
Can we explain this observation in this scenario?



1) A CURVATON

Most of the primordial perturbation is due to a second field with
nearly-gaussian perturbations.

i) MANY GAUGE FIELDS

Contributions to fyr. add incoherently. With ~10° gauge fields fyi.
safely small

constraint from nongaussianities is evaded




E.g. parameter space for curvaton making 90% of
primordial perturbations

H/Mp

10_47

) Too many

tensor modes

10_57

] Parity violation

too small

107}
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Nonvanishing <EB> and <TB> could also
be produced by some late-Universe effect
(e.g. pseudoscalar quintessence)

Gluscevic and Kamionkowski 2010 have
however shown that it is possible to
distinguish a primordial <EB> and <TB>
from a late one




Standard relationship between amplitude of
gravitational waves and H does not apply!

H/Myp
10_47

10_57

1070

ZLSII -




...which brings us to the second part of the talk...



& increases during inflation £ = N 1

el

GWs produced towards the end of inflation
(i.e. at smaller scales) have larger amplitude

el

might be detected by advanced LIGO!

Note: constraints from fyr do not
apply at LIGO scales!




Prospects of
direct
detection of
GWs of
inflationary
origin
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1.5 For certain values of the parameters,

advanced LIGO might detect
¢ chiral GWs of inflationary origin

|
Neo Iings
45 50 55 60 G M




These tensor modes would be chiral!

The GWs produced this way should be strongly
nongaUSSian Cook, LS in prep

Signal might correlate with nongaussianities at CMB/
LSS scales

Later on, Barnaby, Pajer and Peloso have performed
a more accurate analysis. Qualitative behavior is
confirmed.




Rather than steadily producing matter
(such as photons) that in their turn produce GWs,
matter could be produced explosively,
leading to a feature in the primordial GW spectrum
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Possible e.g. if the inflaton ¢ interacts with another
scalar  via the coupling

L = 26— 00X
int — 9 O)X

When ¢ crosses ¢, x becomes temporarily
massless and it is “cheaply” produced

. \3/2 .
B about (g cbo) quanta of ¥ per unit volume are produced

that can source the tensor modes




Cook, LS 1109.0022, PRD

Senatore, Silverstein,
Zaldarriaga 1109.0542

The effect is too small:

N\ 3/2
Height of feature Height of standard «{110 (10—3) H® (g¢
in GW spectrum ~ GW spectrum Mz \ H?

where the enhancement factor
~ 1073 g32 3/ (H/Mp)? <« 1

(even if one can devise ways out)

Kofman et al 2007
Nonrelativistic scalars waves in Minkowski space does not generate GWs

(no quadrupole)



Before concluding...
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In these regions the tensor spectrum is BLUE!
Example of (locally) blue tensor spectrum without
violation of energy conditions




Models of pseudoscalar inflation naturally lead to a chiral
spectrum of gravitational waves

In simplest model, strong constraints from nongaussianities

However, “not too contrived” candidate explanation if
nonvanishing <EB> and <TB> will be observed

Same mechanism might lead to a stochastic background of
gravitational waves detectable by advanced LIGO

Production of tensor modes through explosive production of
scalars (and vectors) typically inefficient




