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Introduction

e Astrophysicists and theoretical physicists are interested in the

solutions of the Einstein equations.

e The Einstein equations is system of hyperbolic PDEs, for which we
can formulate a Cauchy problem.

e We know certain stationary solutions (Minkowski space, de-Sitter
space, Anti-de-Sitter (AdS), Schwarzschild spacetime, Kerr
spacetime, Kerr-AdS spacetime, etc.).

e (Question: which of these solutions are stable, linearly, non-linearly ?



The trivial solutions
We look for the simplest solutions of Ric(g) = Ag.

e When A = 0, Minkowski space.
e When A > 0, de-Sitter space.

e When A < 0, Anti-de-Sitter space.



Anti-de-Sitter
Fix A < 0. Consider the manifold R* with Lorentzian metric

2 2 —1
JAds = — (1 + 1—2) dt* + (1 + l_2) dr® + r’do g,

where dog2 is standard metric on S? and [? = —%.
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The non-linear stability of the trivial solutions

e Minkowski space is non-linearly stable (Christodoulou-Klainerman,
1993, Lindblad-Rodnianski 2003,..).

e de-Sitter is non-linearly stable (Friedrich, 1986).

e Conjecture for Anti-de-Sitter [Dafermos-Holzegel, Anderson]:
Instability (Numerics and heuristics of Bizon-Rostworowski, see also
Dias-Horowitz-Santos).



Non-linear stability of spacetimes
For the study of non-linear problems, it is important to keep in mind

the following:

e The non-linear structure is important: Linear stability does not

imply non-linear stability.

e A linear stability result is only usefull if it leads to a quantitative

decay estimate.



Examples:

Consider the following non-linear wave equations:
O¢ = (019)° (1)
O = (9:9)" = (9,0)° 2)

¢ = 0 is a solution to both equations. However, it is a stable solution
for only one of them, which one ?



Answer: the second one (example due to Fritz John), because the

non-linearity has a special structure:

(0:6)° = (0:0)" = Dup - Dud
with
v=t—1r, u=t+r.

These special structure is known as the null structure.

Identifying a similar structure in the Einstein equations was key to the
proof of the non-linear stability of Minkowski space by

Christodoulou-Klainerman.



Quantitative decay estimate is important:

A quantitative decay estimate is an inequality of the form:
For all regular solutions to ¢ = 0, for all £ > 1,

1
6(t,2)] < 7 Ildol

where ||¢g]|| is a norm depending only on the initial data, for instance

the energy of ¢ and of some of its derivatives.
A non-quantitative statement is typically:

there exists no growing mode solutions
or
o(t,z)| — 0, t—0.

The importance of quantitative decay estimates is that all proofs of
non-linear stability for pdes such as the Einstein equations use them all

the time.



Here, we shall consider (scalar) linear stability of solutions which are
asymptotically Anti-de-Sitter.
Roughly, our results can be summarized as follows:

e We consider a linear equation ([, + m) (¢) = 0 where [, + m is a
Klein Gordon operator associated to a Kerr-AdS spacetime (with
natural conditions on the parameters).

e We prove that solutions v of (, + m) (¢) = 0 satisfies the
following decay estimate

E1oc[¥](t) < Es|9](t = 0).

where
o [y 10c(t) ="local energy” at time t.
e 5 second order energy, controls v, O, 8%y in L?
Moreover, we prove that the estimate is sharp.

The slow decay rate is a consequence of a stable trapping phenomenon.
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Anti-de-Sitter
Fix A < 0. Consider the manifold R* with Lorentzian metric

2 2 —1
JAds = — (1 + 1—2) dt* + (1 + l_2) dr® + r’do g,

where dog2 is standard metric on S? and [? = —%.
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Energy spaces for Klein-Gordon equation on Anti-de-Sitter

Consider the r-weighted energy norms

H@DHHO,—2 = /3 7“_2?7b27“2d?“d0'52,
R

AdS
H@bHH}MS — /IR{?’ (T2|¢r|2 + |W¢|2 + |¢|2) 7‘2de0'52.
2 2
Wi, = Il

b [ @0 + 190, 0 + X0 | arsinoavas
R3

and define the energy norms

Big] = 110l 0.2 + [l

AdS

Bald] = [10uxtllgo—s + 10y, +11llis, + S 11200,

AdS
i=1,2,3
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gaqs invariant by vector field T' = 9; in AdS so get conservation of

the following energy

/ (L) 707+ (14 17)0]
t=const
V)2 + mﬂr?drdw.

Note that the conformal wave operator is [, — %R which in AdS

corresponds to m = —l%, l.e. a negative term in the above energy.

Use Hardy type inequalities to control the m-term

V2ridrdw < C’H/ r4p? drdw

Et Zt

For any asymptotically AdS spacetime, the equation Ll ¢ = ma) is
well-posed in the H fx 15 spaces provided that m > —%.
(Breitenlohner-Freedmann, Ishibashi-Wald, Bachelot, Holzegel,

Vasy, Warnick).
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Wave confinement in AdS

e In AdS, there are periodic finite energy solutions to the wave
equation (spectrum of the associated elliptic operator is discrete).
So no decay !

e No decay together with the strong nonlinearities in the Einstein
equations leads to

Conjecture 1 (Dafermos-Holzegel, Anderson). AdS is dynamically

unstable.

Remark 1: Numerics and heuristics of Bizon-Rostworowski, see also
Dias-Horowitz-Santos.
Remark 2: Dynamics in AdS may be dependent upon choice of

boundary conditions.
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Wave confinement in AdS 11

e This can be understood in a compactification of the problem. Ex:
take 1) spherically symmetric solution, let r* = arctan; and u = rv
then u solves

Ut — Upsrr + V(1 )u =0

in a strip 0 < r* < 7/2 with Dirichlet data at both boundaries.
e In other words, no radiation can escape through infinity.

e Use vector field method using T' = 0; and commutation by 1": Hil’is
norms for s > 0 can be propagated by the equations, i.e. stronger

norms than the energy norm are propagated.
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Scalar waves in asymptotically AdS black holes

Black hole region

L, r= o0

Exterior region

/
.
.
.
.
.
.
\//

null directions
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The Schwarzschild-AdS metrics
Let M.l > 0 and consider the metric

ds* = —(1 — p)dt* + (1 — p) " tdr? + r?do2s
e where (1—#):1—%4‘7{—227
e M > 0,] = oo corresponds to the Schwarzschild metric,
e 1 — u has one real root denoted r > 0, which depends on M and /.
e The black hole exterior+horizon is R = R; X [ry,00) x SZ.

e The wave operator is

Ogtp :=—(1— ) e + 720, (r*(1 — ) + 17 *Ag2p,
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The Kerr-AdS black holes
e Let M > 0,l >0 and let a be a real number such that |a| <.

e Schematically, the Kerr-AdS metric takes the form
g = gttdtQ + 9rrd7“2 T 999d92 + 9¢¢d¢2 + 2g14dtdo,

where all coeflicients depend on r and 6 only and g, is singular at

some 74 > 0.

e As before, R = [r,,00) x S2.
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More precisely,

2 . 92
DD ) A (7“2+a,2) — A_a®sin“ 0 5 5
JKAdS — Idr + A—gd(g + =75 sin” Odo
Ag (r* +a®) — A_ A_ — Aga?sin®
e _ ) asin? 0 dedt — 09 S Y 12
=2 >
with
2
Y =1r? 4+ a’cos? 0, Ai:(rz—kaz) (1—|—l—2>:|:2M'r
a’ _ a’
Agzl—l—26082(9, ::1—Z—2.

Moreover, 7, is the largest real root of A_(r).
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In Schwarzschild(-AdS) and Kerr(-AdS), the coordinates
e (t,r,w) are singular at the horizon,

e As is usual, we can introduce another coordinate system (t*,r, @),

with g regular at OR = {r =r}.
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Problem: Prove quantitative decay for solutions of [;1) = ma) pour
(¥, ) € H g x Higs.
On Schwarzschild /Kerr, huge litterature (Tataru-Tohaneanu,

Tohaneanu, Dafermos-Rodnianski, Blue-Sterbenz, Andersson-Blue,

Donninger-Schlag-Soffer...).

Also other results concerning tails of of mode solutions (Price,
Gundlach-Price-Pulin, Andersson, Barack, Barack-Ori,

Donninger-Schlag-Soffer,..)

Idem on Schwarzschild-de-Sitter, Kerr-de-Sitter (Dafermos-Rodnianksi,
Bony-Héfner, Melrose-Sa Barreto-Vasy, Vasy, Dyatlov, ..)

For Schwarzschild-AdS or Kerr-AdS, uniform boundedness results
(Holzegel 2009, Holzegel-Warnick 2012) if |a| not too large compared to

T+.
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Log decay of Klein-Gordon waves in Kerr-AdS

We prove

Theorem 1 (Holzegel-J.S., 2011-2013). Let ¢ be a solution in H3 ;4 of
Oy = my in (R, g), g metric of a Kerr-AdS spacetime such that

all <r2, m>—2%. Let R>r,. Then, for allt >0,
+ il -

¢ E
2+ 1)

Braoetl(0) 1= (1Wllmsg oy +llgz ) () < o

AdS,{r>R} AdS,{r>R}

where C' > 0 1s some universal constant depending only on the

parameters (a,l, M,m). Moreover, the estimate is sharp.

Remark 1: If |a|l > 3, then it is conjectured that not even boundedness
of solutions hold! (cf Shlapentokh-Rothman, Cardoso-Dias).
Remark 2: Initially range of parameters smaller (cf recent work of

Holzegel-Warnick).
Remark 3: Lower bounds actually holds without restrictions on a.
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Sharpness

Let SCH? 4 be the set of solutions with finite second energy Fa(1)).
Let t5 > 0 be fixed and define for any non-zero ¥ and t* > 0

QW) = s ) |

Then there exists a universal constant C' > 0 such that

lim sup sup Q) (t*) >C >0.
t*—+00 heSCH? ;4,90
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Equivalently, sharpness means that the statement

There exists a function t — 6(t) such that 6(t) — 0 as t — +o00 and

such that for all solutions v, we have the estimate

0(t)

(11112 sz, ) O < o

AdS,{r>R} AdS,{r>R}

is false.
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Elements of proof of decay

Typical elements in analysis of wave equations on black hole spacetimes
e Red-shift
e Superradiance

e Trapping
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Red-shift
Consider first Schwarzschild-AdS.

e ¢ is invariant by T' = 0; — conservation of a T' energy.
e But T becomes null at HT.

e Hence, the energy

1
/ <?,D,52 + —(r —r )2 + ) . ridrdw.
t=const r

degenerate at .

e For Kerr-AdS, the energy density can even be negative!

(superradiance)

e However, near r, can construct multiplier (Rodnianski-Dafermos,
Holzegel in AdS case with m < 0)
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The trapping: the geodesic low on Kerr-AdS

is integrable (cf Carter constant).
If a = 0, there exists null geodesics orbiting around r» = 3M.

For a # 0, there still exists periodic null geodesics in a
neighbourdhood (of size a) of r = 3M.

But, viewed in T'M*, this behaviour is unstable. (the trapped set is

of positive codimension.)

In asymptotically flat Kerr, this is all the trapping, but in the
asymptotically AdS, there is also a trapping at infinity !
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Elements of the proof for decay

Give yourself a frequency cutt-off. Decompose v into a high-low
frequency & = Y<p + Vs 1.

Note that this will be a spacetime frequency decomposition.

Prove a multiplier estimate on ¢<y, of the form

/thLH?{l < e“VE(v)

AdS,r>R

For ¢>r,, we would like a Poincaré type inequality

1
\W>LH?—{}MS < ZE1(¢)-

However, because of spacetime frequency decompostion, we can

only get a spacetime type of Poincaré inequality of the type

' 1
/0 s L ()|l ' < FE1 ()T

AdS

Then interpolate.
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1-d reduction: Kerr-AdS case
Use carter seperation of variables (and some rescaling of ) to obtain

an equation of form

+ (M (@) V (r*) + m* W (r*) + wmU (r*) + R(r*)) .

Here the A, (aw) are angular frequencies corresponging to the
eigenvalues of (modified)-oblate-spheroidal operator.
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(modified)-oblate-spheroidal-harmonics

The Q(w)g2 operator is defined by
=2 1,

1
— = Agsin 6 -
Q w)f sin@ae( 9 sin 00y f) + A, Sin298¢f
a,2w2 = 2
A, COS Hf—QzawA—el— cos® 93
where Ag =1 — l2 cos’fand ==1— ‘;—22

Eigenvalues of Q(w)?% denoted by A, (w).

Eingenfunctions Sk, (w).
Lemma 1 (estimates for the Agpn). Agm + a?w? > [m|(m + 1).
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Superradiance ?
e Recall that g;; is not always negative.

e This means that the natural conserved energy associated to the
invariance of g by 0; is a priori not coercive.

e However, g is also invariant by J, and there is a special
combination of the type K = 0; + C(a, M,1)0, such the conserved
energy associated to K is coercive in r > r; (and degenerate near
r4), provided that |all < r3.

e The vector field K is called the Hawking-Real vectorfield.

In frequency space: need to combine the frequency associated to ¢t and
the frequency associated to ¢. For instance, Helmhotz equation in the
form

(w—Cm)*u = —u" 4+ V(w,m, k,r,0)u.

Superradiance can lead to unboundedness: Growing mode solutions
have been constructed for some Klein-Gordon equation on Kerr (Yakov

Shlapentokh-Rothman 2012, cf also Cardoso-Dias).
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The frequency sets
Let L > 0 be a large number. We first do a high-low frequency
decomposition:

1. The high frequency set is {|w — Cm|? + Apm(w) > L}

2. The low frequency set is {|w — Cm|? + Apm(w) < L}

The low frequency set must also be decomposed to single out the

almost stationary frequency set
{lw — Cm|? < LY/?}

We then construct multipliers for all low frequencies.
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Quasimodes
To probe the decay of solutions, there is a well known technique in
semi-classical analysis, which is the construction of the so-called

quasimodes.

e A quasimode is an approximate solution v,
(Dg -+ m) vy = F.

e A quasimode is periodic in time (like a mode solution)
he = (1, 0, 9).

e A quasimode is (typically) localized in space.

e Finally, the error Fy goes to zero as ¢ (the frequency scale) goes to

infinity:.
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Quasimodes and sharpness of the main estimate

e Using the so-called Duhamel Formula, the existence of quasimodes
translates into lower bounds for the decay estimate.

e If rate of decay of Fy is polynomial in 1/¢, then we get that
solutions cannot decay faster than a certain polynomial in 1/%.

o If rate of decay of F} is of type e~ ©*, then we get that solutions
cannot decay faster than (logt)™!.

e Quasimodes are also strongly related to the quasi-normal modes.
Many results in math litterature (cf Tang-Zworski) of type:
existence of quasimodes implies existence of quasi-normal-modes

with similar frequencies.
e This has been done for Schwarzschild-AdS (Gannot 2012).

e Cf Numerical work on quasinormal modes for AdS black holes
(Festuccia-Liu..)
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Existence of quasimodes: the Schwarzschild-AdS case

After seperation of variable, we get equation of type

y 1 Y w?
VAR CT 1)

Uy

for a potential V, (),
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e To construct quasimodes, we first construct a sequence of solutions
(u¢)een to an eigenvalue problem with Dirichlet boundary

conditions at r = 3M.

e The uy are solutions to

v/ 1
Co(e+1)

+ Vyup = Koy

with the k, converging to any fixed £ < V. as £ — 400.

e In a the region where V., > ky, we show that the solutions becomes
exponentially small as £ — +o0o. These are the so-called Agmon
estimates which in quantum mechanics are used to quantify how

small is the tunnel-effect.
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e We then defined our quasimodes as follows. For each #, define

wi = ke b0+ 1)
and

e = € x(r)rueSeo(0, ¢),

where Syo(0, ¢) is a spherical harmonic with angular momentum
number ¢ and x/(r) is cuttoff function with is 1 for » > 3M + § and
0 for » < 3M, for some small enough ¢ > 0.

e Then 7, is a solution to the Klein-Gordon equation on
Schwarzschild-AdS apart in a small strip of size §, where the cuttoff

function is not constant.

e In this strip, it satisfies
(Dg ‘|‘m)¢£ — Fﬁv

with the error being exponentially small in £ as £ — 4o0.
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In Kerr, we want to apply the same technique (in axisymmetry) but the

eigenvalue equation becomes non-linear
2
/) 1 W

_ Vg = . 4
Uy e (a2w2) + Uy 11 (&2(,()2)“6 ( )

The operator now depends on w? but w? is constructed from the
eigenvalue!

Solution: consider the eigenvalue k, as function of ¢ and w and use the
implicit function theorem (IFT). k¢(a = 0,w) is then the
Schwarzschild-AdS eigenvalue found earlier. (actually, we also need to
modify the Schwarzschild-AdS operator).
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Then, for small a, one can use the IFT to construct x,, wy and wuy.

To go from small a to any a (such that |a| <), we prove global
estimates (in |a|) for all relevant functions in the application of the

IFT.
For instance, we prove an estimate from below on %.

Thus, we each £, we get the existence of k¢, wy and u, as before.

The Agmon estimates can be carried over as before provided we
still have ky(a) < Viax-

This follows from monotonicity argument: k; is decreasing with |a|

(modulo lower order terms).
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Theorem 2 (Quasimodes for Kerr-AdS). Let (g, R) denote the black
hole exterior of a Kerr-AdS spacetime, with mass M > 0, angular
momentum per unit mass a and cosmological constant A = —l%.
Assume that the parameters satisfy a < 2, |a| < l. Then, for § >0
suffictently small, there exists a family of non-zero functions 1, € fods

for any k > 0 such that

1. g (t,7,0,0) = e“y,(r,0) (azisymmetric and time-periodic),
2
Wy

2. 0<c< ) < C', for constants c and C' independent of £
(uniform bounds on the frequencies),

3. for all t* > tj, for all k > 0,

| (Og + %) Vellar  (3,.) < Cke_CkEHWHHgds(Etg)’ for some Cy >0
independent of £ (approximate solutions to the wave equation),

4. the support of Fy := (Dg -+ l%) Wy 1S contained in
{rmaz <7 < Timae + 0} (spatial localization of the error),

5. the support of wu(r,0) is contained in {r > rpyaz}t

(spatial localization of the solution).
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A non-linear model problem: spherically symmetric

Einstein-Klein-Gordon-system

The Einstein-Klein-Gordon system:
1
Ric(g) — §Rg +Ag = 87T |y,

Uy = map, ()
where T[] is

T[] = dp @ dip — %g (9(Ve), Vip) + map?) .

Local existence in H% 4 (for 1) and some continuation criterion of

solutions are known for this system (Holzegel-J.S. 2011).

Remark 1: spherically symmetric solutions to the Ric(g) = Ag are
either AdS or Schwarzschild-AdS, i.e. no spherically-symmetric

dynamics in the vacuum, hence the coupled system.
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Stability of Schwarzschild-AdS for the spherically-symmetric
Einstein-Klein-Gordon system

Theorem 3 (Holzegel, J.S. 2011). Asymptotic and orbital stability of
Schwarzschild-AdS hold.

Our analysis contains:
e Integrated decay types estimate controlling [, [|¢]| H s oromy

e Pointwise decay estimate for 1.

e Bootstrap argument to propagate “good” geometrical properties of
Schwarzschild-AdS.
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