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Introduction

• Astrophysicists and theoretical physicists are interested in the

solutions of the Einstein equations.

• The Einstein equations is system of hyperbolic PDEs, for which we

can formulate a Cauchy problem.

• We know certain stationary solutions (Minkowski space, de-Sitter

space, Anti-de-Sitter (AdS), Schwarzschild spacetime, Kerr

spacetime, Kerr-AdS spacetime, etc.).

• Question: which of these solutions are stable, linearly, non-linearly ?
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The trivial solutions

We look for the simplest solutions of Ric(g) = Λg.

• When Λ = 0, Minkowski space.

• When Λ > 0, de-Sitter space.

• When Λ < 0, Anti-de-Sitter space.
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Anti-de-Sitter

Fix Λ < 0. Consider the manifold R4 with Lorentzian metric

gAdS = −
(

1 +
r2

l2

)
dt2 +

(
1 +

r2

l2

)−1

dr2 + r2dσS2 ,

where dσS2 is standard metric on S2 and l2 = − 3
Λ .

�gAdSψ = −
(

1 +
r2

l2

)−1

ψtt +
1

r2
∂r

(
r2

(
1 +

r2

l2

)
ψr

)
+

1

r2
∆S2ψ.
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The non-linear stability of the trivial solutions

• Minkowski space is non-linearly stable (Christodoulou-Klainerman,

1993, Lindblad-Rodnianski 2003,..).

• de-Sitter is non-linearly stable (Friedrich, 1986).

• Conjecture for Anti-de-Sitter [Dafermos-Holzegel, Anderson]:

Instability (Numerics and heuristics of Bizoń-Rostworowski, see also

Dias-Horowitz-Santos).
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Non-linear stability of spacetimes

For the study of non-linear problems, it is important to keep in mind

the following:

• The non-linear structure is important: Linear stability does not

imply non-linear stability.

• A linear stability result is only usefull if it leads to a quantitative

decay estimate.
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Examples:

Consider the following non-linear wave equations:

�φ = (∂tφ)
2

(1)

�φ = (∂tφ)
2 − (∂rφ)

2
(2)

φ = 0 is a solution to both equations. However, it is a stable solution

for only one of them, which one ?
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Answer: the second one (example due to Fritz John), because the

non-linearity has a special structure:

(∂tφ)
2 − (∂rφ)

2
= ∂vφ · ∂uφ

with

v = t− r, u = t+ r.

These special structure is known as the null structure.

Identifying a similar structure in the Einstein equations was key to the

proof of the non-linear stability of Minkowski space by

Christodoulou-Klainerman.
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Quantitative decay estimate is important:

A quantitative decay estimate is an inequality of the form:

For all regular solutions to �φ = 0, for all t ≥ 1,

|φ(t, x)| ≤ 1

t
||φ0||

where ||φ0|| is a norm depending only on the initial data, for instance

the energy of φ and of some of its derivatives.

A non-quantitative statement is typically:

there exists no growing mode solutions

or

|φ(t, x)| → 0, t→ 0.

The importance of quantitative decay estimates is that all proofs of

non-linear stability for pdes such as the Einstein equations use them all

the time.
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Here, we shall consider (scalar) linear stability of solutions which are

asymptotically Anti-de-Sitter.

Roughly, our results can be summarized as follows:

• We consider a linear equation (�g +m) (ψ) = 0 where �g +m is a

Klein Gordon operator associated to a Kerr-AdS spacetime (with

natural conditions on the parameters).

• We prove that solutions ψ of (�g +m) (ψ) = 0 satisfies the

following decay estimate

E1,loc[ψ](t) .
1

log(2 + t)
E2[ψ](t = 0).

where

• E1,loc(t) = ”local energy” at time t.

• E2 second order energy, controls ψ, ∂ψ, ∂2ψ in L2

Moreover, we prove that the estimate is sharp.

The slow decay rate is a consequence of a stable trapping phenomenon.
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Anti-de-Sitter

Fix Λ < 0. Consider the manifold R4 with Lorentzian metric

gAdS = −
(

1 +
r2

l2

)
dt2 +

(
1 +

r2

l2

)−1

dr2 + r2dσS2 ,

where dσS2 is standard metric on S2 and l2 = − 3
Λ .

�gAdSψ = −
(

1 +
r2

l2

)−1

ψtt +
1

r2
∂r

((
1 +

r2

l2

)
ψr

)
+

1

r2
∆S2ψ.
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Energy spaces for Klein-Gordon equation on Anti-de-Sitter

Consider the r-weighted energy norms

||ψ||H0,−2
AdS

=

∫
R3

r−2ψ2r2drdσS2 ,

||ψ||H1
AdS

=

∫
R3

(
r2|ψr|2 + |∇/ψ|2 + |ψ|2

)
r2drdσS2 .

‖ψ‖2H2
AdS

= ‖ψ‖2H1
AdS

+

∫
R3

[
r4 (∂r∂rψ)

2
+ r2|∇/ ∂rψ|2 + |∇/∇/ψ|2

]
r2dr sin θdθdφ

and define the energy norms

E1[ψ] = ||∂tψ||H0,−2
AdS

+ ||ψ||H1
AdS

E2[ψ] = ||∂ttψ||H0,−2
AdS

+ ||∂tψ||H1
AdS

+ ||ψ||H2
AdS

+
∑

i=1,2,3

||Ωiψ||H1
AdS
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• gAdS invariant by vector field T = ∂t in AdS so get conservation of

the following energy∫
t=const

[
(1 + r2)−1ψ2

t + (1 + r2)ψ2
r

+|∇/ψ|2 +mψ2
]
r2drdω.

• Note that the conformal wave operator is �g − 1
6R which in AdS

corresponds to m = − 2
l2 , i.e. a negative term in the above energy.

• Use Hardy type inequalities to control the m-term∫
Σt

ψ2r2drdω ≤ CH
∫

Σt

r4ψ2
rdrdω

• For any asymptotically AdS spacetime, the equation �gψ = mψ is

well-posed in the Hk
AdS spaces provided that m > − 9

4l2 .

(Breitenlohner-Freedmann, Ishibashi-Wald, Bachelot, Holzegel,

Vasy, Warnick).
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Wave confinement in AdS

• In AdS, there are periodic finite energy solutions to the wave

equation (spectrum of the associated elliptic operator is discrete).

So no decay !

• No decay together with the strong nonlinearities in the Einstein

equations leads to

Conjecture 1 (Dafermos-Holzegel, Anderson). AdS is dynamically

unstable.

Remark 1: Numerics and heuristics of Bizoń-Rostworowski, see also

Dias-Horowitz-Santos.

Remark 2: Dynamics in AdS may be dependent upon choice of

boundary conditions.
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Wave confinement in AdS II

• This can be understood in a compactification of the problem. Ex:

take ψ spherically symmetric solution, let r? = arctan rl and u = rψ

then u solves

utt − ur?r? + V (r?)u = 0

in a strip 0 ≤ r? ≤ π/2 with Dirichlet data at both boundaries.

• In other words, no radiation can escape through infinity.

• Use vector field method using T = ∂t and commutation by T : H1,s
AdS

norms for s > 0 can be propagated by the equations, i.e. stronger

norms than the energy norm are propagated.

14



Scalar waves in asymptotically AdS black holes

I, r = ∞

Black hole region

Exterior region

null directions
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The Schwarzschild-AdS metrics

Let M, l > 0 and consider the metric

ds2 = −(1− µ)dt2 + (1− µ)−1dr2 + r2dσ2
S2

• where (1− µ) = 1− 2M
r + r2

l2 ,

• M > 0, l =∞ corresponds to the Schwarzschild metric,

• 1− µ has one real root denoted r+ > 0, which depends on M and l.

• The black hole exterior+horizon is R = Rt × [r+,∞)× S2.

• The wave operator is

�gψ := −(1− µ)−1ψtt + r−2∂r(r
2(1− µ)ψr) + r−2∆S2ψ,
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The Kerr-AdS black holes

• Let M > 0, l > 0 and let a be a real number such that |a| ≤ l.

• Schematically, the Kerr-AdS metric takes the form

g = gttdt
2 + grrdr

2 + gθθdθ
2 + gφφdφ

2 + 2gtφdtdφ,

where all coefficients depend on r and θ only and grr is singular at

some r+ > 0.

• As before, R = [r+,∞)× S2.
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More precisely,

gKAdS =
Σ

∆−
dr2 +

Σ

∆θ
dθ2 +

∆θ

(
r2 + a2

)2 −∆−a
2 sin2 θ

Ξ2Σ
sin2 θdφ2

−2
∆θ

(
r2 + a2

)
−∆−

ΞΣ
a sin2 θ dφdt− ∆− −∆θa

2 sin2 θ

Σ
dt2

with

Σ = r2 + a2 cos2 θ, ∆± =
(
r2 + a2

)(
1 +

r2

l2

)
± 2Mr

∆θ = 1− a2

l2
cos2 θ, Ξ = 1− a2

l2
.

Moreover, r+ is the largest real root of ∆−(r).
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In Schwarzschild(-AdS) and Kerr(-AdS), the coordinates

• (t, r, ω) are singular at the horizon,

• As is usual, we can introduce another coordinate system (t∗, r, ω̃),

with g regular at ∂R = {r = r+}.
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Problem: Prove quantitative decay for solutions of �gψ = mψ pour

(ψ,ψt) ∈ Hk
AdS ×H

k−1
AdS .

On Schwarzschild/Kerr, huge litterature (Tataru-Tohaneanu,

Tohaneanu, Dafermos-Rodnianski, Blue-Sterbenz, Andersson-Blue,

Donninger-Schlag-Soffer...).

Also other results concerning tails of of mode solutions (Price,

Gundlach-Price-Pulin, Andersson, Barack, Barack-Ori,

Donninger-Schlag-Soffer,..)

Idem on Schwarzschild-de-Sitter, Kerr-de-Sitter (Dafermos-Rodnianksi,

Bony-Häfner, Melrose-Sa Barreto-Vasy, Vasy, Dyatlov, ..)

For Schwarzschild-AdS or Kerr-AdS, uniform boundedness results

(Holzegel 2009, Holzegel-Warnick 2012) if |a| not too large compared to

r+.
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Log decay of Klein-Gordon waves in Kerr-AdS

We prove

Theorem 1 (Holzegel-J.S., 2011-2013). Let ψ be a solution in H2
AdS of

�gψ = mψ in (R, g), g metric of a Kerr-AdS spacetime such that

|a|l < r2
+, m ≥ − 9

4l2 . Let R > r+. Then, for all t ≥ 0,

E1,loc[ψ](t) :=
(
||ψ||H1

AdS,{r≥R}
+ ||ψt||H0,−2

AdS,{r≥R}

)
(t) ≤ C

log(2 + t)
E2(ψ)(t = 0),

where C > 0 is some universal constant depending only on the

parameters (a, l,M,m). Moreover, the estimate is sharp.

Remark 1: If |a|l > r2
+, then it is conjectured that not even boundedness

of solutions hold! (cf Shlapentokh-Rothman, Cardoso-Dias).

Remark 2: Initially range of parameters smaller (cf recent work of

Holzegel-Warnick).

Remark 3: Lower bounds actually holds without restrictions on a.
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Sharpness

Let SCH2
AdS be the set of solutions with finite second energy E2(ψ).

Let t?0 ≥ 0 be fixed and define for any non-zero ψ and t? ≥ 0

Q [ψ] (t?) := log(2 + t?)

[
E1,loc(ψ)(t)

E2(ψ)(t?0)

] 1
2

.

Then there exists a universal constant C > 0 such that

lim sup
t?→+∞

sup
ψ∈SCH2

AdS ,ψ 6=0

Q [ψ] (t?) > C > 0.
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Equivalently, sharpness means that the statement

There exists a function t→ δ(t) such that δ(t)→ 0 as t→ +∞ and

such that for all solutions ψ, we have the estimate(
||ψ||H1

AdS,{r≥R}
+ ||ψt||H0,−2

AdS,{r≥R}

)
(t) ≤ δ(t)

log(2 + t)
E2(ψ)(t = 0),

is false.
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Elements of proof of decay

Typical elements in analysis of wave equations on black hole spacetimes

• Red-shift

• Superradiance

• Trapping

24



Red-shift

Consider first Schwarzschild-AdS.

• g is invariant by T = ∂t → conservation of a T energy.

• But T becomes null at H+.

• Hence, the energy∫
t=const

(
ψ2
t +

1

r
(r − r+)ψ2

r + ...

)
... r2drdω.

degenerate at r+.

• For Kerr-AdS, the energy density can even be negative!

(superradiance)

• However, near r+ can construct multiplier (Rodnianski-Dafermos,

Holzegel in AdS case with m < 0)
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The trapping: the geodesic flow on Kerr-AdS

• is integrable (cf Carter constant).

• If a = 0, there exists null geodesics orbiting around r = 3M .

• For a 6= 0, there still exists periodic null geodesics in a

neighbourdhood (of size a) of r = 3M .

• But, viewed in TM∗, this behaviour is unstable. (the trapped set is

of positive codimension.)

• In asymptotically flat Kerr, this is all the trapping, but in the

asymptotically AdS, there is also a trapping at infinity !
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Elements of the proof for decay

• Give yourself a frequency cutt-off. Decompose ψ into a high-low

frequency ψ = ψ≤L + ψ>L.

• Note that this will be a spacetime frequency decomposition.

• Prove a multiplier estimate on ψ≤L of the form∫
t

||ψ≤L||2H1
AdS,r≥R

≤ eCLE1(ψ)

• For ψ≥L, we would like a Poincaré type inequality

||ψ>L||2H1
AdS
≤ 1

L
E1(ψ).

However, because of spacetime frequency decompostion, we can

only get a spacetime type of Poincaré inequality of the type∫ τ

0

||ψ>L(t′)||2H1
AdS

dt′ ≤ 1

L
E1(ψ)τ.

• Then interpolate.
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1-d reduction: Kerr-AdS case

Use carter seperation of variables (and some rescaling of ψ) to obtain

an equation of form

ω2u = − d2u

(dr?)2
+
(
λkm(aω)V (r?) +m2W (r?) + ωmU(r?) +R(r?)

)
u.

Here the λkm(aω) are angular frequencies corresponging to the

eigenvalues of (modified)-oblate-spheroidal operator.
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(modified)-oblate-spheroidal-harmonics

The Q(ω)S2 operator is defined by

−Q (ω) f =
1

sin θ
∂θ (∆θ sin θ∂θf) +

Ξ2

∆θ

1

sin2 θ
∂2
φ̃
f

+ Ξ
a2ω2

∆θ
cos2 θf − 2iaω

Ξ

∆θ

a2

l2
cos2 θ ∂φ̃f ,

where ∆θ = 1− a2

l2 cos2 θ and Ξ = 1− a2

l2 .

Eigenvalues of Q(ω)2
S denoted by λkm(ω).

Eingenfunctions Skm(ω).

Lemma 1 (estimates for the λkm). λkm + a2ω2 ≥ |m|(m+ 1).
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Superradiance ?

• Recall that gtt is not always negative.

• This means that the natural conserved energy associated to the

invariance of g by ∂t is a priori not coercive.

• However, g is also invariant by ∂φ and there is a special

combination of the type K = ∂t + C(a,M, l)∂φ such the conserved

energy associated to K is coercive in r > r+ (and degenerate near

r+), provided that |a|l < r2
+.

• The vector field K is called the Hawking-Real vectorfield.

In frequency space: need to combine the frequency associated to t and

the frequency associated to φ. For instance, Helmhotz equation in the

form

(ω − Cm)2u = −u′′ + V (ω,m, k, r, θ)u.

Superradiance can lead to unboundedness: Growing mode solutions

have been constructed for some Klein-Gordon equation on Kerr (Yakov

Shlapentokh-Rothman 2012, cf also Cardoso-Dias).
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The frequency sets

Let L > 0 be a large number. We first do a high-low frequency

decomposition:

1. The high frequency set is {|ω − Cm|2 + λkm(ω) > L}

2. The low frequency set is {|ω − Cm|2 + λkm(ω) ≤ L}

The low frequency set must also be decomposed to single out the

almost stationary frequency set

{|ω − Cm|2 ≤ L1/2}

We then construct multipliers for all low frequencies.
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Quasimodes

To probe the decay of solutions, there is a well known technique in

semi-classical analysis, which is the construction of the so-called

quasimodes.

• A quasimode is an approximate solution ψ`

(�g +m)ψ` = F`.

• A quasimode is periodic in time (like a mode solution)

ψ` = eiω`tϕ`(r, θ, φ).

• A quasimode is (typically) localized in space.

• Finally, the error F` goes to zero as ` (the frequency scale) goes to

infinity.
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Quasimodes and sharpness of the main estimate

• Using the so-called Duhamel Formula, the existence of quasimodes

translates into lower bounds for the decay estimate.

• If rate of decay of F` is polynomial in 1/`, then we get that

solutions cannot decay faster than a certain polynomial in 1/t.

• If rate of decay of F` is of type e−C`, then we get that solutions

cannot decay faster than (log t)−1.

• Quasimodes are also strongly related to the quasi-normal modes.

Many results in math litterature (cf Tang-Zworski) of type:

existence of quasimodes implies existence of quasi-normal-modes

with similar frequencies.

• This has been done for Schwarzschild-AdS (Gannot 2012).

• Cf Numerical work on quasinormal modes for AdS black holes

(Festuccia-Liu..)
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Existence of quasimodes: the Schwarzschild-AdS case

After seperation of variable, we get equation of type

−u′′`
1

` (`+ 1)
+ Vσu` =

ω2

` (`+ 1)
u` (3)

for a potential Vσ (r),

34



Vσ

u = 0

r = rmax + δ′

r = rmax

r =∞
r? = π/2

1
l2

E − δ
E
E + δ

u = 0
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• To construct quasimodes, we first construct a sequence of solutions

(u`)`∈N to an eigenvalue problem with Dirichlet boundary

conditions at r = 3M .

• The u` are solutions to

−u′′`
1

` (`+ 1)
+ Vσu` = κ`u`

with the κ` converging to any fixed E ≤ Vmax as `→ +∞.

• In a the region where Vσ ≥ κ`, we show that the solutions becomes

exponentially small as `→ +∞. These are the so-called Agmon

estimates which in quantum mechanics are used to quantify how

small is the tunnel-effect.
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• We then defined our quasimodes as follows. For each `, define

ω2
` = κ`.`(`+ 1)

and

ψ` = eiω`tχ(r)ru`S` 0(θ, φ),

where S` 0(θ, φ) is a spherical harmonic with angular momentum

number ` and χ(r) is cuttoff function with is 1 for r ≥ 3M + δ and

0 for r ≤ 3M , for some small enough δ > 0.

• Then ψ` is a solution to the Klein-Gordon equation on

Schwarzschild-AdS apart in a small strip of size δ, where the cuttoff

function is not constant.

• In this strip, it satisfies

(�g +m)ψ` = F`,

with the error being exponentially small in ` as `→ +∞.
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In Kerr, we want to apply the same technique (in axisymmetry) but the

eigenvalue equation becomes non-linear

−u′′`
1

µ` (a2ω2)
+ Vσu` =

ω2

µ` (a2ω2)
u`. (4)

The operator now depends on ω2 but ω2 is constructed from the

eigenvalue!

Solution: consider the eigenvalue κ` as function of a and ω and use the

implicit function theorem (IFT). κ`(a = 0, ω) is then the

Schwarzschild-AdS eigenvalue found earlier. (actually, we also need to

modify the Schwarzschild-AdS operator).
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• Then, for small a, one can use the IFT to construct κ`, ω` and u`.

• To go from small a to any a (such that |a| ≤ l), we prove global

estimates (in |a|) for all relevant functions in the application of the

IFT.

• For instance, we prove an estimate from below on ∂κ`
∂a .

• Thus, we each `, we get the existence of κ`, ω` and u` as before.

• The Agmon estimates can be carried over as before provided we

still have κ`(a) ≤ Vmax.

• This follows from monotonicity argument: κ` is decreasing with |a|
(modulo lower order terms).
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Theorem 2 (Quasimodes for Kerr-AdS). Let (g,R) denote the black

hole exterior of a Kerr-AdS spacetime, with mass M > 0, angular

momentum per unit mass a and cosmological constant Λ = − 3
l2 .

Assume that the parameters satisfy α < 9
4 , |a| < l. Then, for δ > 0

sufficiently small, there exists a family of non-zero functions ψ` ∈ Hk
AdS

for any k ≥ 0 such that

1. ψ` (t, r, θ, ϕ) = eiω`tϕ`(r, θ) (axisymmetric and time-periodic),

2. 0 < c <
ω2
`

`(`+1) < C, for constants c and C independent of `

(uniform bounds on the frequencies),

3. for all t? ≥ t?0, for all k ≥ 0,

||
(
�g + α

l2

)
ψ`||HkAds(Σt? ) ≤ Cke−Ck`||ψ`||H0

AdS(Σt?0
), for some Ck > 0

independent of ` (approximate solutions to the wave equation),

4. the support of F` :=
(
�g + α

l2

)
ψ` is contained in

{rmax ≤ r ≤ rmax + δ} (spatial localization of the error),

5. the support of ϕ`(r, θ) is contained in {r ≥ rmax}
(spatial localization of the solution).
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A non-linear model problem: spherically symmetric

Einstein-Klein-Gordon-system

The Einstein-Klein-Gordon system:

Ric(g)− 1

2
Rg + Λg = 8πT [ψ],

�gψ = mψ, (5)

where T [ψ] is

T [ψ] = dψ ⊗ dψ − 1

2
g
(
g(∇ψ,∇ψ) +mψ2

)
.

Local existence in H2
AdS (for ψ) and some continuation criterion of

solutions are known for this system (Holzegel-J.S. 2011).

Remark 1: spherically symmetric solutions to the Ric(g) = Λg are

either AdS or Schwarzschild-AdS, i.e. no spherically-symmetric

dynamics in the vacuum, hence the coupled system.
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Stability of Schwarzschild-AdS for the spherically-symmetric

Einstein-Klein-Gordon system

Theorem 3 (Holzegel, J.S. 2011). Asymptotic and orbital stability of

Schwarzschild-AdS hold.

Our analysis contains:

• Integrated decay types estimate controlling
∫
t
||ψ||H1

AdS,{r≥R}
.

• Pointwise decay estimate for ψ.

• Bootstrap argument to propagate “good” geometrical properties of

Schwarzschild-AdS.
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