Pulsar winds and magnetospheres: emission, acceleration and magnetic reconnection

Jérôme Pétri

Observatoire Astronomique de Strasbourg Université de Strasbourg

17/6/2013

Jérôme Pétri (Université de Strasbourg)

< □ >

17/6/2013 1 / 47

Outline

A broad overview

basic facts

- orders of magnitude
- radio and high-energy emission

Pulsar magnetosphere

- an artistic view
- nebula : link with the central pulsar

The striped wind

- structure
- light-curves
- gamma-ray luminosity
- Magnetic reconnection/annihilation
 - a central problem
 - brief reminder
 - plasma instabilities
 - the termination shock

Conclusion & Perspectives

- basic facts
- orders of magnitude
- radio and high-energy emission

- an artistic view
- nebula : link with the central pulsar

- ۲
- gamma-ray luminosity

- a central problem
- brief reminder
- plasma instabilities
- the termination shock

What is a pulsar?

What is a pulsar?

neutron star

compact object \Rightarrow strong gravity effects

What is a pulsar?

neutron star

compact object \Rightarrow strong gravity effects

strongly magnetized 2

 \Rightarrow plasmas, QED effects (pair creation)

Pulsar magnetosphere : general picture

What is a pulsar?

Ineutron star compact object ⇒ strong gravity effects

strongly magnetized

- \Rightarrow plasmas, QED effects (pair creation)
- rotating
 - \Rightarrow huge electric fields

Pulsar magnetosphere : general picture

What is a pulsar?

neutron star

compact object \Rightarrow strong gravity effects

2 strongly magnetized

 \Rightarrow plasmas, QED effects (pair creation)

- rotating
 - \Rightarrow huge electric fields

Credit : A.K. Harding

Pulsar magnetosphere : general picture

What is a pulsar?

neutron star

compact object \Rightarrow strong gravity effects

strongly magnetized

 \Rightarrow plasmas, QED effects (pair creation)

rotating

 \Rightarrow huge electric fields

Credit : A.K. Harding

Some useful definitions

- obliquity χ : angle between magnetic $\vec{\mu}$ and rotation $\vec{\Omega}$ axis
- aligned/perpendicular/oblique rotator : $\chi = 0/90^{\circ}/any$ value
- light cylinder radius : surface on which a particle corotating with the neutron star reaches the speed of light c : $r_L = c/\Omega_*$
 - \Rightarrow transition from quasi-static to wave zone

Some questions related to pulsars/neutron stars

From the interior to the nebula

- their internal structure : composition & equation of state at very high densities (higher than those of a nucleus)
 - \Rightarrow consequences for their global properties : *M*, *R*, *I*, *B*, Ω .
- **(a)** their magnetosphere : what are the composition/distribution functions $f(\vec{r}, \vec{p}, t)$ of the particles (electrons, positrons, maybe protons and/or ions) ?
- the emission mechanism : a high and very high energy (GeV, TeV) activity ill understood.
- acceleration and structure of the stellar wind : analogy with the solar wind?
- dissipation of the magnetic field into kinetic energy for the particles : magnetic reconnection at work?
- pulsars : why pulsed emission ?

5/47

17/6/2013

Neutron stars main classes

FIGURE: Les différentes classes de pulsars dont la distinction se fait par la source d'énergie à l'origine de l'activité de l'étoile à neutrons.

Pulsar magnetosphere : orders of magnitude

From observations

- period $P \in [1 \text{ ms}, 1 \text{ s}]$.
- period derivative $\dot{P} \in [10^{-18}, 10^{-15}]$.
- spin-down losses well constrained

 $L_{\rm sp} = 4 \, \pi^2 \, I \, \dot{P} \, P^{-3} \approx 10^{24-31} \, W$

very different from black holes or accreting neutron stars.

inferred magnetic field estimate by dipole radiation

$$B = 3.2 imes 10^{15} \sqrt{P \dot{P}} = 10^{5-8} T$$

Electromagnetic and gravitational field characteristics

electric field induced at the stellar crust

 $E = \Omega BR = 10^{13} \text{ V/m}$

⇒ instantaneous acceleration at ultra-relativistic speeds, Lorentz factor $\gamma \gg 1$ ($\tau_{\rm acc} < 10^{-20}$ s)

negligible gravitational force because for protons

$$\frac{F_{\rm grav}}{F_{\rm em}} \approx \frac{G M m_p / R^2}{e \,\Omega B R} \approx 10^{-12} \ll 1 \tag{1}$$

- even smaller for electrons/positrons (m_e/m_p) .
- \Rightarrow dynamic of the magnetosphere dominated by the electromagnetic field.

Neutron star average characteristics

- mass $M \approx 1.4 M_{\odot}$.
- radius $R \approx 10$ km.
- central density $\rho_{\rm c} \approx 10^{17} \, \rm kg/m^3$.

Difficult to summarize all observations and behaviors faithfully.

Observations

- individual observation of pulses impossible (except for rare cases).
- very strong variability of individual pulses.
- but mean (averaged/integrated) profile extremely stable.
- \Rightarrow average over several hundredth of periods.
- ⇒ signature unique to each pulsar (its fingerprint).

In a pictural way

- mean profile = climate
- one pulse = weather

FIGURE: Mean profile and individual pulses of PSR B0943+10 (Deshpande ApJ, 1999)

- more than 125(145?) gamma-ray pulsars known so far
 - (a) young and energetic, visible in the whole electromagnetic spectrum (Crab).
 - (b) young and radio-quiet (Geminga).
 - (c) old (millisecond).
- light-curves are usually double peaked (75%), separated by 0.3 in phase.
- flux above 100 MeV is about $dN/dE \approx 10^{-8} \text{ ph/cm}^2\text{/s}.$
- mean spectra (integrated over the period) described by a power-law with exponential cut-off

$$\frac{dN}{dE} \propto E^{-\Gamma} e^{-E/E_c}$$
(2)

index $\Gamma \approx 1-2$ whereas cut-off energy $E_{\rm cut} \approx 1-5$ GeV.

- spin-down luminosity spreads over many decades, $L_{\rm rot} \approx 10^{26} 10^{31}$ W.
- gamma-ray luminosity L_{γ} between 0.1% and almost 100% of L_{rot} \Rightarrow all the reservoir of energy converted into photons !
- cut-off *E*_{cut} gives some hints about the sites of production of radiation.

(Abdo et al, ApJS, 2009, update by The Fermi-LAT collaboration, arXiv 43054385

Gamma-ray pulsars : examples

Jérôme Pétri (Université de Strasbourg)

17/6/2013 11 / 47

Towards very high-energies $\geq 100 \text{ GeV}$

- detection of pulsed emission from the Crab at 200-400 GeV.
- compatible with the spectrum in the Fermi band.
- spectrum as a broken power low rather exponential cut-off.
- ⇒ kills all existing magnetospheric emission models !

- radio and high-energy emission

Pulsar magnetosphere

- an artistic view
- nebula : link with the central pulsar

- ۲
- gamma-ray luminosity

- a central problem
- plasma instabilities
- the termination shock

The "standard model" of a pulsar

The "standard model" of a pulsar

Basic underlying assumption : force-free magnetosphere

$$ho_{e}\,ec{E}+ec{j}\wedgeec{B}=ec{0}$$

magnetic energy density $\frac{B^2}{2\mu_0} \gg$ any other energy densities

- particle inertia neglected : zero mass limit.
- no dissipation : ideal MHD

$$\vec{E} + \vec{v} \wedge \vec{B} = \vec{0}.$$

no pressure : cold plasma.

Two interpretations

- charge-separated plasma \Rightarrow low particle density.
- MHD model ⇒ quasi-neutral plasma, high particle density.

Who is right? Pulsar Wind Nebula (PWN) will give some clues.

A problem

- \Rightarrow the total charge of the system is not conserved a priori.
- ⇒ total electric current does not vanish !

Force-free magnetosphere

Equatorial magnetic field lines for the orthogonal rotator

 \Rightarrow more realistic formula than the magneto-dipole in vacuum

$$L_{sp}^{vac} \approx L_{dip}^{\perp} \sin^2 \chi$$

$$\Rightarrow B_{\perp} \text{ AND } B_{\parallel} \text{ constrained (not the case for vacuum).}$$
(Pétri, MNRAS, 2012a)
(4a)

(3a)

Space-time curvature and frame dragging modify the structure of the electromagnetic field close to the neutron star surface

- amplification of the intensity of the electric field in the neighborhood of the stellar surface because of the gravitational field (Schwarzschild metric, static diagonal part).
- appearance of a longitudinal electric field (along \vec{B}) by Lense-Thirring effect (Kerr black hole, off diagonal elements of the metric).

(Muslimov & Tsygan, 1992)

Consequences on the magnetosphere

Quantitative modifications of

- the geometry of the polar caps, opening angle.
- the shape of the radio pulses.
- the modulation of the light-curves in X-rays for accreting pulsars.
- the spin-down luminosity, increase by a factor 5-6 (Pétri, MNRAS, in press)

- curvature radiation : a charged particle accelerated along a curved magnetic path will radiate (obliged to follow magnetic field lines).
- cyclotron emission : a charged particle evolving non-relativistically in a magnetic field (special case of curvature radiation for a circular trajectory).
- synchrotron emission : when the same charged particle reaches relativistic speeds, foward beaming of radiation ⇒ transition from cyclotron to synchrotron.
- inverse Compton scattering(IC) : relativistic leptons scattering photons
 - thermal photons from the (X-rays).
 - photons from the surrounding nebula.
 - photons from a companion (if binary).
 - cosmic microwave background.
- synchroton-self Compton emission(SSC) : IC of the synchrotron photons produced by the leptons themselves.

BUT does not explain the radio which is peculiar because it is coherent \Rightarrow need for a coherent emission mechanism.

Some candidates are

• antenna : beam of particles with dispersion in velocity negligible and radiate in phase

curvature radiation by a coherent beam for example

- \Rightarrow difficult to set up because beam must be thin and coherence destroyed quickly.
- plasma instability : weak dispersion in velocity, particles in phase with increasing perturbation, two-stream for instance.
- maser effect with negative absorption : population inversion in the Landau levels.

No agreement yet on the processes really at work in the magnetosphere.

The different magnetospheric models

• the pulsar and its magnetosphere, source of *relativistic* e[±] pairs.

- the pulsar and its magnetosphere, source of relativistic e[±] pairs.
- the cold ultra-relativistic wind streaming to the nebula.

- the pulsar and its magnetosphere, source of relativistic e[±] pairs.
- the cold ultra-relativistic wind streaming to the nebula.
- the shocked wind composed of particles heated after crossing the *MHD* shock

 \Rightarrow main source of radiation observed in radio, optics, X-rays and gamma-rays.

choc terminal (MHD)

FIGURE: Link between the pulsar and its surrounding nebula.

- the pulsar and its magnetosphere, source of relativistic e[±] pairs.
- the cold ultra-relativistic wind streaming to the nebula.
- the shocked wind composed of particles heated after crossing the MHD shock

 \Rightarrow main source of radiation observed in radio, optics, X-rays and gamma-rays.

• the supernova remnant.

choc terminal (MHD)

FIGURE: Link between the pulsar and its surrounding nebula.

- the pulsar and its magnetosphere, source of *relativistic* e[±] pairs.
- the cold ultra-relativistic wind streaming to the nebula.
- the shocked wind composed of particles heated after crossing the MHD shock

 \Rightarrow main source of radiation observed in radio, optics, X-rays and gamma-rays.

- the supernova remnant.
- the interstellar medium.

choc terminal (MHD)

FIGURE: Link between the pulsar and its surrounding nebula.

A broad overview

- basic facts
- orders of magnitude
- radio and high-energy emission

2 Pulsar magnetosphere

- an artistic view
- nebula : link with the central pulsar

3 The striped wind

- structure
- light-curves
- gamma-ray luminosity
- Magnetic reconnection/annihilation
 - a central problem
 - brief reminder
 - plasma instabilities
 - the termination shock

Conclusion & Perspectives

The structure of the striped wind

Near the star : a magnetic dipole

At large distances : striped wind (Bogovalov 1999)

- $\vec{\Omega}$: rotation axis
- χ : magnetic axis inclination with respect to Ω
- ζ : line of sight inclination with respect to $\vec{\Omega}$
- hot and magnetized plasma in the sheet relativistic beaming $\Gamma_{\text{vent}}\gg 1$

pulsed emission

Properties

- assumes only $B_{\varphi} \propto 1/r$.
- independent of the magnetospheric structure inside the light cylinder.
- discontinuous magnetic polarity reversal
 ⇒ infinitely thin current sheet ≡ striped wind (more realistic model = finite thickness).

UNIVERSITÉ DE S

High-energy emission from gamma-ray pulsars

Objectives

- high-energy pulsed emission (MeV/GeV)
- spectral variability of several gamma-ray pulsars.

Processes

- synchrotron radiation from hot and magnetized plasma in the stripe
- inverse Compton with target photons
 - cosmic microwave background, CMB
 - synchrotron photons from the nebula, X-ray
 - thermal emission from the neutron star surface, black body with $T_{bb} \approx 10^{6}$ K
 - photons from companion star

Applications

- isolated pulsars => gamma ray pulsars
- binary pulsars => PSR B1259-63
- Link to other wavelengths?
 - polar cap for radio emission : phenomenological
 - striped wind for optical up to gamma rays
 - \Rightarrow geometry could be defined (χ and ζ).

Processes

• synchrotron radiation from hot and magnetized plasma in the stripe

Applications

isolated pulsars => gamma ray pulsars

Processes

photons from companion star

Applications 3

binary pulsars => PSR B1259-63

Relation between radio and gamma-ray pulses : phase-plot

Radio time lag and gamma-ray peak separation

From pure geometric considerations

Gamma-ray peak separation Δ

 $\cos(\pi \Delta) = |\cot \zeta \cot \chi|$

Radio time lag δ

$$\delta \approx \frac{1-\Delta}{2}$$

Jérôme Pétri (Université de Strasbourg)

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

(Pétri, MNRAS, 2011)

Jérôme Pétri (Université de Strasbourg)

7/6/2013 28 / 47

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

What about luminosities?

Assumptions

- synchrotron emission in the stripe.
- radiative cooling compensated by reheating due to magnetic reconnection.

Main results

the predicted luminosity function

$$L_{\gamma} \approx 2 \times 10^{26} \text{ W} \left(\frac{L_{sd}}{10^{28} \text{ W}}\right)^{1/2} \left(\frac{P}{1 \text{ s}}\right)^{-1/2}$$

condition for pulsed emission

$$\frac{L_{\rm sd}}{P} \geq 10^{27} \, {\rm W/s}$$

7/6/2013 29 / 47

A broad overview

- basic facts
- orders of magnitude
- radio and high-energy emission

2 Pulsar magnetosphere

- an artistic view
- nebula : link with the central pulsar

3 The striped wind

- structure
- light-curves
- gamma-ray luminosity

Magnetic reconnection/annihilation

- a central problem
- brief reminder
- plasma instabilities
- the termination shock

Conclusion & Perspectives

Description of the system

in the nebula, $r \approx R_{TS}$	
from PWNe theory	
and observations	
$\sigma \ll$ 1 and $\Gamma_{v} \approx 10^{3-6}$	
a weak magnetic field	
ultra-relativistic particles	
(synchrotron radiation)	
\Rightarrow dynamics dominated by	
the particles	

A fundamental problem

- How to convert the electromagnetic energy into kinetic energy for the particles?
- How to do the transition between the neutron star, $\sigma \gg 1$, to the nebula, $\sigma \ll 1$?

Idea

Magnetic energy dissipation/annihilation/reconnection at the termination shock of a striped wind. Lyubarsky & Kirk (2002), Pétri & Lyubarsky (2007)

Goal

Study the mechanism of magnetic reconnection in the pulsar wind :

- acceleration of the wind.
- magnetic energy conversion into kinetic energy for the particles.

Method

- analytical and semi-analytical
 - linear study of the electromagnetic instabilities by solving numerically the linearized Vlasov-Maxwell equations.
 - find the condition for magnetic field dissipation when the wind crosses the termination shock.
- numerical : PIC simulations.

Applications

- instabilities in relativistic plasmas.
- relativistic Harris current sheet.
- striped wind.
- gamma-ray bursts.

Heuristic definition

Reorganization of the magnetic field configuration because of the finite resistivity of the plasma \Rightarrow violation of the ideal MHD approximation in regions where strong \vec{B} gradient exists.

Different kind of reconnection

- forced reconnection, plasma is compressed by the flow
- spontaneous reconnection, plasma is subject to an instability (tearing mode for example)

In the reconnecting sheet

- flux of incoming matter in the sheet (thickness δ , length *L*) at a speed V_R .
- incoming magnetic flux compensated by magnetic diffusion.
- outcoming flow at the Alfvèn speed V_A .
- the reconnection rate is defined by

$$V_R/V_A = \delta/L = S^{-1/2}$$

$$S = L V_A/\eta$$
UNIVERSITÉ DE STRASBOURC

Composition of the wind

- e[±] pairs in drift motion equal but opposite in direction
- relativistic speeds.

Description of the structure of a stripe

Exact solution : the relativistic Harris current sheet

- magnetic field : $B_{z}(x) = B_{0} \tanh(x/a);$
- particle density of each species : $n(x) = N_s \operatorname{sech}^2(x/a)$;
- temperature : $\Theta = k_B T_s / m c^2$;
- distribution function of the particles : $f(x, \vec{p}) = \frac{n(x)}{4 \pi m^3 c^3 \Theta K_2(1/\Theta)}$ $e^{-\Gamma_s (E \pm c \beta_s p_y) / \Theta m c^2}.$

Vlasov-Maxwell equation

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \frac{\partial f}{\partial \vec{r}} + q \left(\vec{E} + \vec{v} \wedge \vec{B} \right) \cdot \frac{\partial f}{\partial \vec{p}} = 0$$

The perturbation of f_s is computed by numerical integration of the trajectories of the particles along the equilibrium orbits. Charge and current densities are obtained by integration over the momentum (by Gauss-Hermite quadrature).

Eigenvalue system

For the electromagnetic potential (ϕ, \vec{A})

$$\phi''(\mathbf{x}) - \left(k^2 - \frac{\omega^2}{c^2}\right)\phi(\mathbf{x}) + \frac{\rho(\mathbf{x})}{\varepsilon_0} = 0$$
$$\vec{A}''(\mathbf{x}) - \left(k^2 - \frac{\omega^2}{c^2}\right)\vec{A}(\mathbf{x}) + \mu_0\vec{j}(\mathbf{x}) = 0$$

• charge density : $ho(x) \propto \sum_{s} \int_{\mathbb{R}^3} f_s(x, \vec{p}) \, d^3 \vec{p}$

• current density : $\vec{j}(x) \propto \sum_{s} \int_{\mathbb{R}^3} \vec{v} f_s(x, \vec{p}) d^3 \vec{p}$

36/47

Growth rate of the two-stream and tearing mode instabilities

Goal

this study should help to estimate the reconnection rate in the wind.

Principle

striped wind structure preserved

 \Rightarrow Rankine-Hugoniot relations for the jump in the spatially averaged MHD quantities

 \Rightarrow conservation of particles, energy and momentum (over one period of the wind)

shock region not described physically.

Properties

- distance between 2 current sheets /
- relative thickness of the current sheet δ
- magnetization σ
- Larmor radius r_B
- Lorentz factor Γ of the bulk velocity
- particle number density, "cold and hot" components, n_c, n_h

Principe

- conservation of the striped wind structure
- the shock region is not described physically.

Scheme

Only one free parameter ξ

Relates the downstream current sheet thickness to the downstream Larmor radius (subscript 2)

$$\delta_2 = \xi r_{\rm B2}$$

where $\xi > 1$.

Ultra-relativistic limit $(\Gamma_1, \sigma_1) \gg 1$

$$\delta_2 + \frac{1}{4\,\sigma_1} = \frac{1}{4\,\Gamma_2^2}$$

• for $\sigma_1 \gg \frac{5l_1}{\xi r_{B1}}$, full dissipation : $\delta_2 \approx 1, \Gamma_2 \approx 1$ • for $\sigma_1 \ll \left(\frac{5l_1}{4\xi r_{B1}}\right)^{2/3}$, negligible dissipation : $\delta_2 \ll 1, \Gamma_2 \approx \sqrt{\sigma_1} \Rightarrow$ ideal MHD

Numerical resolution

- Numerical search for the MHD jump condition in the most general case for which the upstream magnetization σ₁ is arbitrary.
- Search for the roots of a system of non-linear equations
 ⇒ needs a good first guess for the solution (therefore the previous analytical study).

The magnetization σ_2/σ_1

PIC simulation : negligible dissipation

17/6/2013 42 / 47

PIC simulations : full dissipation

17/6/2013 43 / 47

Summary of the PIC simulations

From this we deduce the parameter ξ introduced in the analytical model : $\xi \approx 10$

Magnetic reconnection at the termination shock significant if the analytical criterion is satisfied

- for $h_1/r_{B1} \sigma_1 \le 3$, full dissipation, downstream flow purely hydrodynamical, $\Gamma_2 \approx 1$, particles heated to relativistic temperatures
- for $\sigma_1 \leq (l_1/12 r_{B1})^{2/3}$, no reconnection. Striped wind structure is preserved, simple compression, $\Gamma_2 = \sqrt{\sigma_1}$

A broad overview

- basic facts
- orders of magnitude
- radio and high-energy emission

2 Pulsar magnetosphere

- an artistic view
- nebula : link with the central pulsar

3 The striped wind

- structure
- light-curves
- gamma-ray luminosity

Magnetic reconnection/annihilation

- a central problem
- brief reminder
- plasma instabilities
- the termination shock

Conclusion & Perspectives

Pulsed emission

- high-energy emission from the striped wind.
- luminosity in agreement with latest Fermi/LAT results.

In the wind

- magnetic reconnection important when crossing the termination shock
 - simple analytical criteria
 - confirmed by PIC simulations

In the wind

- influence of the electromagnetic precursor on the upstream flow.
- application to gamma-ray bursts and jets in active galactic nuclei : relativistic and magnetized flow (similar to pulsar winds).
- magnetic energy release into particle kinetic energy in the current sheet poorly understood.

