Signatures of vector field production during inflation

Marco Peloso, University of Minnesota

$$
\phi F \tilde{F}
$$

$$
f(\phi) F^{2}
$$

+ Barnaby, Crowder, Mandic, Moxon, Mukohyama, Namba, Pajer, Shiu, Zhou
+ Barnaby, Bartolo, Komatsu, Matarrese, Namba, Ricciardone, Shiraishi
\simeq scale invariant, adiabatic, \simeq gaussian primordial scalar perturbations; tensor \ll scalar

	Planck+WP
-	Planck+WP+highL
	Planck+WP+BAO
	Natural Inflation
--	Power law inflation
-	Low Scale SSB SUSY
-	R^{2} Inflation
-	$V \propto \phi^{2 / 3}$
-	$V \propto \phi$
-	$V \propto \phi^{2}$
-	$V \propto \phi^{3}$
-	$N_{*}=50$
-	$N_{*}=60$

Local NG: $\Phi(x)=\Phi_{g}(x)+f_{N L}^{\text {local }}\left[\Phi_{g}^{2}(x)-\left\langle\Phi_{g}^{2}\right\rangle\right]$
From $\left\langle T^{3}\right\rangle \neq 0$. Many shapes

$$
\begin{aligned}
f_{\mathrm{NL}}^{\mathrm{lOC}} & =2.7 \pm 5.8 \\
f_{\mathrm{NL}}^{\mathrm{eq}} & =-42 \pm 75 \\
f_{\mathrm{NL}}^{\mathrm{orth}} & =-25 \pm 39
\end{aligned}
$$

Agreement with single field slow roll inflation

$$
\epsilon \equiv \frac{M_{p}^{2}}{2}\left(\frac{V_{, \phi}}{V}\right)^{2} \ll 1
$$

$$
r, n_{s}-1, f_{\mathrm{NL}}=\bigcirc(\epsilon, \eta)
$$

$$
\eta \equiv M_{p}^{2} \frac{V_{, \phi \phi}}{V} \ll 1
$$

$P_{\zeta} \propto \frac{V}{\epsilon}, \quad P_{\mathrm{GW}} \propto V$

Several experiments

```
with goal r}\lesssim0.01-0.05
```

S: Planck
B: EBEX, PIPER, SPIDER
G: ABS, ACTpol, BICEP2, CLASS Keck Array, POLAR, PolarBear, QUBIC, QUIET, QUIJOTE, SPTpol

- Scale of inflation from tensors (GW).

$$
V^{1 / 4}=10^{16} \mathrm{GeV}\left(\frac{r}{0.01}\right)^{1 / 4}
$$

- Larger $r \rightarrow$ larger $\epsilon \rightarrow$ Inflaton moves more

$$
\Delta \phi \gtrsim M_{p}\left(\frac{r}{0.01}\right)^{1 / 2}
$$

Flatness is a key requirement
Problem particularly relevant in models that give detectable r.
Flatness must be preserved over the full range $\Delta \phi$ spanned during inflation ($>M_{p}$ if $r>0.01$).

For example, $\Delta V=\frac{\lambda}{4} \phi^{4} \Rightarrow \lambda<10^{-13}$ in large field inflation
\Rightarrow inflaton weakly self coupled (this + weakness of gravitational interactions are the reasons why NG is small)
\Rightarrow In a generic theory, small interactions with other fields to minimize radiative corrections to V

Quantum theory under control through symmetries

Shift symmetry $\phi \rightarrow \phi+C$. E.g. axion (natural) inflation
$\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+V_{\text {shiff }}(\phi)+\frac{C}{f} \partial_{\mu} \phi \bar{\psi} \gamma^{\mu} \gamma_{5} \psi+\frac{\alpha}{f} \phi F_{\mu \nu} \widetilde{F}^{\mu \nu}$

- Smallness of $V_{\text {shift }}$ technically natural. $\Delta V \propto V_{\text {shift }}$
- Constrained couplings to matter (predictivity)

$$
\Gamma_{\phi \rightarrow \psi \psi} \simeq \frac{C^{2}}{2 \pi f^{2}} m_{\phi} m_{\psi}^{2}
$$

$$
\Gamma_{\phi \rightarrow A A}=\frac{\alpha^{2}}{64 \pi f^{2}} m_{\phi}^{3}
$$

$\phi \rightarrow A A$ typically controls reheating. Only recently realized that it can play an important role also during inflation.
$\mathcal{L} \supset-\frac{1}{4} F^{2}-\frac{\alpha}{f} \phi^{(0)} F \tilde{F}$
Classical motion $\phi^{(0)}(t)$ affects dispersion relations of \pm helicities
$\Rightarrow\left(\frac{\partial^{2}}{\partial \tau^{2}}+k^{2} \mp 2 a H k \xi\right) A_{ \pm}(\tau, k)=0 \quad \xi \equiv \frac{\alpha \dot{\phi}^{(0)}}{2 f H} \simeq$ const.

One tachyonic helicity at horizon crossing
Anber, Sorbo '10

- Growth $A \sim \mathrm{e}^{\pi \xi}$ at hor. cross.
- Then diluted away

$$
\delta \ddot{\phi}+3 H \delta \dot{\phi}-\frac{\vec{\nabla}^{2}}{a^{2}} \delta \phi+m^{2} \delta \phi=\frac{\alpha}{f} \vec{E} \cdot \vec{B}
$$

(Additional interactions due to δg negligible for $\frac{\alpha}{f} \gg \frac{1}{M_{p}}$)

$\delta \phi=\delta \phi_{\text {vacuum }}+\delta \phi_{\text {inv.decay }}$
Uncorrelated, $\quad\left\langle\delta \phi^{n}\right\rangle=\left\langle\delta \phi_{\text {vac }}^{n}\right\rangle+\left\langle\delta \phi_{\text {inv.dec }}^{n}\right\rangle$

Barnaby, MP '11

Barnaby, Namba, MP '11

$$
\begin{gathered}
P_{\zeta}(k) \simeq \mathcal{P}_{v}\left(\frac{k}{k_{0}}\right)^{n_{s}-1}\left[1+7.5 \cdot 10^{-5} \mathcal{P}_{v} \frac{e^{4 \pi \xi}}{\xi^{6}}\right] \\
\mathcal{P}_{v}^{1 / 2} \equiv \frac{H^{2}}{2 \pi|\dot{\phi}|} \\
\xi \equiv \frac{\alpha}{f} \frac{|\dot{\phi}|}{2 H}
\end{gathered}
$$

At any moment, only δA with $\lambda \sim H^{-1}$ present

\#

Nearly equilateral NG

$$
\xi=\mathrm{O}(1) \text { for } f / \alpha \lesssim 10^{16} \mathrm{GeV}
$$

- $\delta A \sim \mathrm{e}^{\pi \xi}$ and $\xi \propto \frac{\dot{\phi}}{H}$. Inflaton speeds up during inflation.
\Rightarrow other interesting effects / signatures
For instance, growth of $P_{\zeta}(k)$

$V \propto \phi^{2}$	WMAP7 P_{ζ}	WMAP7 $f_{N L}$	WMAP7+ACT
flat prior	$\xi_{\text {in }}<2.66$	$\xi_{\text {in }}<2.45$	$\xi_{\text {in }}<2.41$
log prior	$\xi_{\text {in }}<2.51$	$\xi_{\text {in }}<2.22$	$\xi_{\text {in }}<2.15$

Later stages

(1) Backreaction on background $\phi^{(0)}$
$\ddot{\phi}^{(0)}+3 H \dot{\phi}^{(0)}+\frac{d V}{d \phi}=\frac{\alpha}{f} \vec{E} \cdot \vec{B}$

(2) Estimated saturation of P_{ζ}

Anber, Sorbo '09
Barnaby, Pajer, MP '12

(3) Chiral GW production $A_{+} A_{+} \rightarrow h_{L}$ Cook, Sorbo '11
Barnaby, Pajer, MP '12
Crowder, Namba, Mandic,
Mukohyama, MP '12

Chiral GW @ interferometers

$\Pi \equiv \frac{P_{R}-P_{L}}{P_{R}+P_{L}}$
$\left\langle s_{1} s_{2}\right\rangle \propto \Omega_{G W}(f)\left[\gamma_{I}(f)+\Pi(f) \gamma_{\Pi}(f)\right]$

$$
\Omega=\Omega_{\alpha}\left(\frac{f}{100 \mathrm{~Hz}}\right)^{\alpha}, \quad \Pi=\mathrm{const}
$$

Assume $|\Pi|=1$; forecast to detect GW and exclude $\Pi=0$ at 2σ

Axion inflation: $\xi \gtrsim 2$ in 3rd gen.

Particle production $X \rightarrow \mathrm{GW}$ at CMB scales ?
$r \gg 16 \epsilon$? See also Sorbo '11; Senatore, Silverstein, Zaldarriaga '11 Carney, Kovetz, Fischler, Lorshbough, Paban '12 Most studied $\left(\phi-\phi_{0}\right)^{2} X^{2}$

Twofold: (i) $X \rightarrow h$ and (ii) $X \nrightarrow \zeta$

- No direct $\phi-X$ coupling
- Relativistic X (or suppressed quadrupole moment)
$\psi F \tilde{F} \rightarrow r \gg 16 \epsilon$ and gaussian ζ

$f(\phi) F^{2}$ mechanism

With $\phi F \tilde{F}$, gauge field diluted away after horizon crossing However, reasons to produce and to keep δA alive

- Magnetogenesis:
$\vec{B}>\left(10^{-20}-10^{-14}\right) G$ on extra-galactic scales inferred from γ-rays propagation Neronov, Vovk '10
- Statistical anisotropy $P_{\zeta}(\vec{k})=P(k)\left[1+g_{*} \cos ^{2} \theta_{\hat{k} \hat{V}}\right]$:
$g_{*}=0.29 \pm 0.03$ Groeneboom et al '08, 09, but WMAP systematics Hanson, Lewis, A. Challinor '10

If primordial, other predictions ? Bispectrum ?
Seery '08; Barnaby, Namba, MP '12; Bartolo, Matarrese, MP, Ricciardone '12
In fact, current best bound $\left|g_{*}\right|<0.05$ from bispectrum
$-\frac{f}{4} F^{2} \Rightarrow \quad \begin{aligned} & \text { scale invariant } \vec{B} \text { for } f \propto a^{4}, a^{-6} \\ & \text { scale invariant } \vec{E} \text { for } f \propto a^{-4}, a^{6}\end{aligned}$

Electric \leftrightarrow magnetic duality for $\langle f\rangle \leftrightarrow \frac{1}{\langle f\rangle}$

Ratra '92

Functional form $\quad f=f_{0} \exp \left[-\int \frac{n d \phi}{\sqrt{2 \epsilon(\phi)} M_{p}}\right] \quad, \quad\langle f\rangle \propto a^{n}$

Anisotropic inflation: Classical background eom solved by $\vec{E}^{(0)}$ with

$$
\begin{aligned}
& \frac{\Delta H}{H}=\frac{2 \rho_{E^{(0)}}}{V(\phi)} \simeq \frac{\delta n \epsilon}{4} \\
& n=-4-\delta n
\end{aligned}
$$

Watanabe, Kanno, Soda '09

Several models of vector curvaton

Dimopolos, Karciauskas, Lyth, Maeda, Soda, Yamamoto, Yokoyama,...

$$
\begin{aligned}
& -\frac{f}{4} F^{2} \quad \text { scale invariant } \vec{B} \text { for } f \propto a^{4}, \phi \quad \text { Electric } \leftrightarrow \text { magnetic duality } \\
& \text { scale invariant } \vec{E} \text { for } f \propto a^{-4}, \varnothing^{8} \quad \text { for }\langle f\rangle \leftrightarrow \frac{1}{\langle f\rangle} \\
& \Rightarrow \quad \rho_{B} \simeq H^{4} \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{in}}}=H^{4} N_{\mathrm{tot}} \quad \text { Too much energy in IR modes for }|n|>4 \\
& \text { Demozzi, Mukhanov, Rubinstein '09 } \\
& \alpha_{\text {phys }} \propto f^{-1} \propto a^{-n}
\end{aligned}
$$

A) Bad for $n>0$ and $\alpha_{\text {end }}=\alpha_{0}$ (magnetogenesis)

Demozzi et al '09
B) No pbm if $n<0$ (statistical anisotropy)
C) No pbm if $n>0$ but $\alpha_{\text {end }} \ll \alpha_{0}$ (NG study for a generic A_{μ})

Perturbations with $\vec{E}^{(0)} \neq 0$

Expanding $f(\phi) F^{2}, \quad \mathcal{L}_{\text {int }} \supset a^{4}\left[4 \vec{E}^{(0)} \cdot \delta \vec{E} \zeta+2 \delta \vec{E} \cdot \delta \vec{E} \zeta\right]$

$$
\begin{aligned}
& \text { (1) (1) }
\end{aligned}
$$

$$
\begin{aligned}
& P(\vec{k}) \simeq P(k)\left[1+g_{*} \cos ^{2} \theta_{\vec{k}, \vec{E}(0)}\right] \\
& g_{*} \simeq-\frac{48}{\epsilon} N_{\mathrm{CMB}}^{2} \frac{2 \rho_{E(0)}}{V(\phi)} \\
& g_{*}=0.1 \text { for } \frac{\rho_{E^{(0)}}}{V(\phi)} \simeq 6 \cdot 10^{-9} \\
& \left(n=-4-10^{-6}\right) \\
& \text { Strict relation between } P_{\zeta}(\vec{k}) \text { and } B_{\zeta} \\
& B_{\zeta} \rightarrow \frac{\bigcirc(1)}{k_{1}^{3} k_{2}^{3}} \quad, \quad k_{1} \ll k_{2}, k_{3} \\
& f_{N L}^{\text {eff.local }} \simeq 24 \frac{\left|g_{*}\right|}{0.1} \\
& \text { Bartolo, Matarrese, } \\
& \text { MP, Ricciardone '12 }
\end{aligned}
$$

$B_{\zeta} \propto \frac{1-\cos ^{2} \theta_{\hat{k}_{1}, \hat{E}^{(0)}}-\cos ^{2} \theta_{\hat{k}_{2}, \hat{E}^{(0)}}+\cos \theta_{\widehat{k}_{1}, \hat{E}^{(0)}} \cos \theta_{\hat{k}_{2}, \hat{E}^{(0)}} \cos ^{2} \theta_{\hat{k}_{1}, \hat{k}_{2}}}{k_{1}^{3} k_{2}^{3}}, \quad k_{1} \ll k_{2}, k_{3}$

Peaked as local in squeezed limit
Nontivial angular dependence

$$
\left.B_{\zeta}\right|_{\text {isotropic measurement }} \propto \frac{1+\cos ^{2} \theta_{\hat{k}_{1}, \hat{k}_{2}}}{k_{1}^{3} k_{2}^{3}}
$$

Motivation for studying

$$
B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right)=\sum_{L} c_{L} P_{L}\left(\hat{\mathbf{k}}_{1} \cdot \hat{\mathbf{k}}_{2}\right) P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{2}\right)+(2 \text { perm })
$$

Shiraishi, Komatsu, MP, Barnaby, '13

The $f F^{2}$ model gives $c_{0}=\frac{6}{5} f_{\mathrm{NL}} \simeq 32 \frac{\left|g_{*}\right|}{0.1}, \quad c_{2}=\frac{c_{0}}{2}$

$$
B_{\zeta}\left(k_{1}, k_{2}, k_{3}\right)=\sum_{L} c_{L} P_{L}\left(\hat{\mathbf{k}}_{1} \cdot \hat{\mathbf{k}}_{2}\right) P_{\zeta}\left(k_{1}\right) P_{\zeta}\left(k_{2}\right)+(2 \text { perm })
$$

Figure 1. Absolute values of the shape function of $L=0,\left(k_{1} k_{2} k_{3}\right)^{2} S_{0}$ (top left panel), that of $L=1$, $\left(k_{1} k_{2} k_{3}\right)^{2} S_{1}$ (top right panel), and that of $L=2,\left(k_{1} k_{2} k_{3}\right)^{2} S_{2}$ (bottom panel). We restrict the plot range to $k_{3} \leq k_{2} \leq k_{1}$ and $\left|k_{1}-k_{2}\right| \leq k_{3} \leq k_{1}+k_{2}$ for symmetry and the triangular condition. The
$c_{0}=\frac{6}{5} f_{\mathrm{NL}}$

Full sky

CV-limited up
to $\ell_{\max }=2000$:
$\delta c_{0}=4.4, \quad \delta c_{1}=61$
$\delta c_{2}=13 \quad(68 \% \mathrm{CL})$

Planck
$c_{0}=3.2 \pm 7$
$c_{1}=11 \pm 113$
$c_{2}=3.8 \pm 27.8$
(68\%CL)

- In "magnetogenesis" studies $(n=4)\left\langle A_{\mu}\right\rangle=0$ assumed $\Rightarrow g_{*}=0$
- However, theoretically expected value, from the addition of the IR modes that left the horizon during the first $N_{\text {tot }}-N_{\text {CMB }}$ e-folds

$$
\rho=\frac{\left\langle\vec{E}^{2}\right\rangle}{2} \sim H^{4}\left(N_{\text {tot }}-60\right)
$$

The sum is a vector that points somewhere in space, breaking isotropy

$$
\left|g_{*}\right|_{\text {expected }} \gtrsim 0.1 \frac{N_{\mathrm{tot}}-N_{\mathrm{CMB}}}{37} \quad \text { (generically, too anisotropic) }
$$

- If this model is realized in nature, either $N_{\text {tot }} \simeq 60$, or we live in a patch in which $\vec{E}^{(0)}$, or $\vec{B}^{(0)}$, is \ll that the expected value.

Conclusions

- Axion inflation well motivated model (V protected)
- Only recently, seen that $\frac{\alpha}{f} \phi F \tilde{F}$, with $f=O\left(10^{-2} M_{p}\right)$ leads to interesting phenomenology:
\simeq equilateral NG; chiral GW; primordial b.h.
- $f(\phi) F^{2}$ for magnetogenesis (difficult) and anisotropic inflation
- Novel NG shape, constrained by Planck
- Typically, (too) large statistical anisotropy

