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The most natural class of slow-roll inflation can provide:

• Detectable equilateral NG

• Detectable GW at CMB scales

• Detectable running of Pζ (k) and fNL (k)

• Detectable GW at interferometers

Motivations for axion inflation

Effect of
α

f
φ F F̃ on primordial perturbations

Distinctive non-Gaussianity from vector fields
coupled to the inflaton

Marco Peloso, University of Minnesota

�F F̃

f (�) F2

Barnaby, MP , PRL 106 (2011)

Barnaby, Namba, MP, JCAP 1104 (2011)

Barnaby, Namba, MP, PRD 85 (2012)

Bartolo, Matarrese, MP,

Ricciardone, arXiv:1210.3257

Distinctive non-Gaussianity from vector fields
coupled to the inflaton

Marco Peloso, University of Minnesota

�F F̃

f (�) F2

Barnaby, MP , PRL 106 (2011)

Barnaby, Namba, MP, JCAP 1104 (2011)

Barnaby, Namba, MP, PRD 85 (2012)

Bartolo, Matarrese, MP,

Ricciardone, arXiv:1210.3257

Observable NG, and chiral GW from

vector field production during inflation

Marco Peloso, University of Minnesota

�F F̃

f (�) F2

Barnaby, MP , PRL 106 (2011)

+ Barnaby, Crowder, Mandic,

Moxon, Mukohyama, Namba,

Pajer, Shiu, Zhou

+ Barnaby, Bartolo, Komatsu,

Matarrese, Namba,

Ricciardone, Shiraishi

Observable NG, and chiral GW from

vector field production during inflation

Marco Peloso, University of Minnesota

�F F̃

f (�) F2

Barnaby, MP , PRL 106 (2011)

+ Barnaby, Crowder, Mandic,

Moxon, Mukohyama, Namba,

Pajer, Shiu, Zhou

+ Barnaby, Bartolo, Komatsu,

Matarrese, Namba,

Ricciardone, Shiraishi

Observable NG, and chiral GW from

vector field production during inflation

Marco Peloso, University of Minnesota

�F F̃

f (�) F2

Barnaby, MP , PRL 106 (2011)

+ Barnaby, Crowder, Mandic,

Moxon, Mukohyama, Namba,

Pajer, Shiu, Zhou

+ Barnaby, Bartolo, Komatsu,

Matarrese, Namba,

Ricciardone, Shiraishi

Observable NG, and chiral GW from

vector field production during inflation

Marco Peloso, University of Minnesota

�F F̃

f (�) F2

Barnaby, MP , PRL 106 (2011)

+ Barnaby, Crowder, Mandic,

Moxon, Mukohyama, Namba,

Pajer, Shiu, Zhou

+ Barnaby, Bartolo, Komatsu,

Matarrese, Namba,

Ricciardone, Shiraishi

Observable NG, and chiral GW from

vector field production during inflation

Marco Peloso, University of Minnesota

�F F̃

f (�) F2

Barnaby, MP , PRL 106 (2011)

+ Barnaby, Crowder, Mandic,

Moxon, Mukohyama, Namba,

Pajer, Shiu, Zhou

+ Barnaby, Bartolo, Komatsu,

Matarrese, Namba,

Ricciardone, Shiraishi

Observable NG, and chiral GW from

vector field production during inflation

Marco Peloso, University of Minnesota

�F F̃

f (�) F2

Barnaby, MP , PRL 106 (2011)

+ Barnaby, Crowder, Mandic,

Moxon, Mukohyama, Namba,

Pajer, Shiu, Zhou

+ Barnaby, Bartolo, Komatsu,

Matarrese, Namba,

Ricciardone, Shiraishi

Signatures of vector field production

during inflation

Marco Peloso, University of Minnesota

�F F̃

f (�) F2

Barnaby, MP , PRL 106 (2011)

+ Barnaby, Crowder, Mandic,

Moxon, Mukohyama, Namba,

Pajer, Shiu, Zhou

+ Barnaby, Bartolo, Komatsu,

Matarrese, Namba,

Ricciardone, Shiraishi

Signatures of vector field production

during inflation

Marco Peloso, University of Minnesota

�F F̃

f (�) F2

Barnaby, MP , PRL 106 (2011)

+ Barnaby, Crowder, Mandic,

Moxon, Mukohyama, Namba,

Pajer, Shiu, Zhou

+ Barnaby, Bartolo, Komatsu,

Matarrese, Namba,

Ricciardone, Shiraishi



' scale invariant, adiabatic, ' gaussian primordial scalar perturbations;

tensor ⌧ scalar

WMAP9+ACT+SPT

+ BAO+H0

Ps / kns�1 , r =
Pt

Ps

Couplings restricted by:

• Shift symmetry

• Parity

• Gauge invariance

Lint =
C

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

��!  '
C2

2⇡f2
m�m

2
 ��!AA =

↵2

64⇡ f2
m3
�

' scale invariant, adiabatic, ' gaussian primordial scalar perturbations;

tensor ⌧ scalar

WMAP9+ACT+SPT

+ BAO+H0

Ps / kns�1 , r =
Pt

Ps

Couplings restricted by:

• Shift symmetry

• Parity

• Gauge invariance

Lint =
C

f
@µ�  ̄ �

µ �5  +
↵

f
�Fµ⌫ F̃

µ⌫

��!  '
C2

2⇡f2
m�m

2
 ��!AA =

↵2

64⇡ f2
m3
�

10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�
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lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the
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We have ordered the momenta such that x3 ⇤ x2 ⇤ 1. The triangle inequality implies x2+x3 > 1. In
the following we plot S(1, x2, x3) (see Figs. 29, 31, and 32). We use the normalization, S(1, 1, 1) ⇥ 1.
To avoid showing equivalent configurations twice S(1, x2, x3) is set to zero outside the triangular
region 1 � x2 ⇤ x3 ⇤ x2. We see in Fig. 29 that the signal for the local shape is concentrated at
x3 ⌅ 0, x2 ⌅ 1, while the equilateral shape peaks at x2 ⌅ x3 ⌅ 1. Fig. 30 illustrates how the di�erent
triangle shapes are distributed in the x2-x3 plane.
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x2 < 1 and satsify the triangle inequality x2 + x3 > 1.
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Model Parameter Planck+WP Planck+WP+lensing Planck+WP+high-` Planck+WP+BAO

⇤CDM + dns/d ln k

ns 0.9561 ± 0.0080 0.9615 ± 0.0072 0.9548 ± 0.0073 0.9596 ± 0.0063
dns/d ln k �0.0134 ± 0.0090 �0.0094 ± 0.0085 �0.0149 ± 0.0085 �0.0130 ± 0.0090

�2� lnLmax -1.50 -0.77 -2.95 -1.45

+ d2ns/d ln k2

ns 0.9514+0.087
�0.090 0.9573+0.077

�0.079 0.9476+0.086
�0.088 0.9568+0.068

�0.063
⇤CDM + dns/d ln k dns/d ln k 0.001+0.016

�0.014 0.006+0.015
�0.014 0.001+0.013

�0.014 0.000+0.016
�0.013

d2ns/d ln k2 0.020+0.016
�0.015 0.019+0.018

�0.014 0.022+0.016
�0.013 0.017+0.016

�0.014

�2� lnLmax -2.65 -2.14 -5.42 -2.40

⇤CDM + r + dns/d ln k

ns 0.9583 ± 0.0081 0.9633 ± 0.0072 0.9570 ± 0.0075 0.9607 ± 0.0063
r < 0.25 < 0.26 < 0.23 < 0.25

dns/d ln k 0.021 ± 0.012 0.017 ± 0.012 �0.022+0.011
�0.010 �0.021+0.012

+0.010

�2� lnLmax -1.53 -0.26 -3.25 -1.5

Table 5. Constraints on the primordial perturbation parameters for ⇤CDM+dns/d ln k, ⇤CDM+dns/d ln k+r and
⇤CDM+dns/d ln k+d2ns/d ln k2 models from Planck combined with other data sets. Constraints on the spectral index and its de-
pendence on the wavelength are given at the pivot scale of k⇤ = 0.05 Mpc�1.

Fig. 3. Marginalized joint 68% and 95% CL regions for
(d2ns/d ln k2 , dns/d ln k) using Planck+WP+BAO.

count (McAllister et al., 2010) giving the potential

V(�) = µ3� + ⇤4 cos
 

�

f

!

. (46)

4.4. Open inflation

Most models of inflation predict a nearly flat spatial geome-
try with small deviations from perfect spatial flatness of order
|⌦K | ⇠ 10�5. Curvature fluctuations may be regarded as local
fluctuations in the spatial curvature, and even in models of infla-
tion where the perturbations are calculated about a spatially flat
background, the spatial curvature on the largest scales accessible
to observation now are subject to fluctuations from perfect spa-
tial flatness (i.e., ⌦K = 0). This prediction for this fluctuation is
calculated by simply extrapolating the power law spectrum to the
largest scale accessible today, so that ⌦K as probed by the CMB
roughly represents the local curvature fluctuation averaged over
our (causal) horizon volume. Although it has sometimes been
claimed that spatial flatness is a firm prediction of inflation, it
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Fig. 4. Marginalized joint 68% and 95% CL regions for (r , ns),
using Planck+WP+BAO with and without a running spectral in-
dex.

was realized early on that spatial flatness is not an inexorable
consequence of inflation, and large amounts of spatial curvature
(i.e., large compared to the above prediction) can be introduced
in a precise way while retaining all the advantages of inflation
(Gott, 1982; Gott & Statler, 1984) through bubble nucleation by
false vacuum decay (Coleman & De Luccia, 1980). This pro-
posal gained credence when it was shown how to calculate the
perturbations in this model around and beyond the curvature
scale (Bucher et al., 1995; Bucher & Turok, 1995; Yamamoto
et al., 1995; Tanaka & Sasaki, 1994). See also (Ratra & Peebles,
1995, 1994; Lyth & Stewart, 1990). For more refined later cal-
culations see for example Garriga et al. (1998, 1999); Gratton &
Turok (1999) and references therein. For predictions of the ten-
sor perturbations see for example Bucher & Cohn (1997); Sasaki
et al. (1997); Hertog & Turok (2000).

An interesting proposal using singular instantons and not
requiring a false vaccum may be found in Hawking & Turok
(1998), and for calculations of the resulting perturbation spectra
see (Hertog & Turok, 2000; Gratton et al., 2000). Models of this
sort have been studied more recently in the context of the string
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FIG. 5. Evolution of our estimate for the power spectrum as a
function of N . In dashed red is the result for ⇠[N = 64] = 2.2.
Other lines are for ⇠[N = 64] = 2.5 (solid brown), ⇠[N = 64] = 2
(solid blue), ⇠[N = 64] = 1.5 (solid green), ⇠[N = 64] = 1 (solid
yellow) and ⇠[N = 64] = 0.5 (solid orange). The black hole bound
is in dashed black.

and in deriving its observational upper bound, our es-
timate could well be off by some order one factor and
therefore we can not draw a definitive conclusion. It is
clear though that the parameter values giving rise to an
observable but not yet ruled out violation of scale invari-
ance and non-Gaussianity in the CMB-window produce
a late time power spectrum that comes at least very close
to the primordial black hole bound. A more precise com-
putation is needed to establish whether this bound is
actually violated or not.

However, if such a computation revealed that primor-
dial black holes do indeed constrain these models, that
would yield a much stronger bound on ⇠ as the ones com-
ing from non-Gaussianity and the violation of scale in-
variance. Since we have seen that the power spectrum
has a late-time asymptotic of (2⇡⇠[N ])

�1, this problem
persists on a wide range of values for ⇠.

For all values of ⇠, our estimate for the power spectrum
sharply increases before the end of inflation, the closer to
the end the smaller ⇠ is. However, if we disregard black
hole bounds for MBH . 10

8 g, which rely on uncertain
model dependent assumptions, there are no black hole
bounds for N . 8. From figure 5 we then see that we get

⇠(NCMB) . 1.5 (43)

for the bound on ⇠ at CMB scales from primordial black
hole production. In terms of the coupling constant ↵,
this bound implies the constraint

↵ . 23. (44)

This bound is derived using (42), i.e. radiation domina-
tion right after the end of inflation. This assumption fixes

the expansion history of the universe and therefore speci-
fies NCMB ' 64, for the N corresponding to CMB scales
(see appendix E for a derivation). This is required for
consistency but changes the numerics very little. There-
fore in all other sections we still use NCMB = 60.

For the matter domination regime, the black hole
masses would be greater, for a given N , see (41), and
therefore we would have a slightly stronger constraint on
⇠ and ↵. We find ⇠ . 1.3 which corresponds to ↵ . 20.
Instead of concentrating on it, we will now investigate the
model where non-Gaussian perturbations may be gener-
ated for much smaller ⇠ and ↵, without leading to the
primordial black hole problem.

V. LOCAL NON-GAUSSIANITY FROM HEAVY
VECTOR FIELDS

Now let us turn to a scenario, described in [33], in
which the produced gauge fields are massive. The pro-
duction of gauge quanta decreases with the mass of the
gauge fields: for mA ⇠ ⇠H all production is killed. In this
scenario, the gauge fields get their mass via the Higgs
mechanism. Fluctuations in the Higgs field h lead to
fluctuations in mA, which in turn generate fluctuations
in the amount of produced gauge quanta, and therefore
in the amount of extra friction in the dynamics of � and
H. In the end, one has perturbations in �N , namely
the number of extra e-folds of inflation due to gauge field
production. This leads to a non-Gaussian signal in the
CMB of the local type [33]. Using the �N formalism one
finds

f local

NL

⇠ 10

2

 
�N3/4

max

e

⇠ 10�3

!
4 ✓

mA

⇠H

◆
2

. (45)

Here h is the Higgs-like field responsible for the sponta-
neous symmetry breaking that gives a mass to the gauge
fields, e is its U(1) charge, mA = eh and assumed a
quadratic potential H =

m�p
6

.

For a complete description we refer the reader to the
original reference [33], section 7. Here we only want to
stress that this scenario can also work for ⇠ ⇠ 1. Then
it will surely satisfy the bounds from primordial black
holes. However, this scenario requires that mh ⌧ H,
which seems rather unnatural. In the next two sections
we want to explain how this model, that can produce an
observable local non-Gaussian signal, can be embedded
in a supergravity model that is a slight extension of the
models considered so far. In this model one can easily
have mh ⌧ H, as we will argue.
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IV. GRAVITATIONAL WAVES AT INTERFEROMETERS

In Section III we discussed the observable cosmological fluctuations on CMB/LSS scales. Such scales left the horizon
roughly 55 to 60 e-foldings before the end of inflation, during the phase where backreaction e�ects are negligible. In
this section, we instead study scalar and tensor fluctuations on much smaller scales. These modes left the horizon
closer to the end of inflation, when backreaction e�ects start to play an important role in determining the evolution
of the homogeneous background, ⇤(t) and H(t). Our main results are summarized in figure 6, where we show that
Advanced LIGO/VIRGO could detect a stochastic background of gravitational waves from inflation for ⇥CMB as small
as 2.33 (equivalent to f/(Mp�) � 0.021) in the case of a linear inflaton potential, and as small as 2.23 (equivalent to
f/(Mp�) � 0.031) in the case of a quadratic potential.
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FIG. 2: Left panel: The tensor-to-scalar ratio as a function of ⇠, for several illustrative choices of ✏. The horizontal line
corresponds to r = 0.1, the approximate current observational limit. Notice that an observable tensor-to-scalar ratio can
be achieved for any inflationary potential, by suitably tuning the dynamics in the hidden sector. Right panel: The e↵ective
nonlinearity parameter as a function of ⇠, for several illustrative choices of ✏. The horizontal line corresponds to fNL = 266,
the approximate current observational limit on non-Gaussianity.

on the inflationary potential and the dynamics of the hidden sector fields. In Fig. 2 we plot our results for r and fNL

as a function of ⇠, for various representative choices of ✏.
The observational bound on the tensor-to-scalar ratio forces us into a region of parameter space where non-

Gaussianity is undetectably small. Therefore gravitational wave fluctuations constitute the most interesting phe-
nomenology associated with the model (87). This is shown in Fig. 3 where we plot contours in the ⇠� ✏ plane leading
to various phenomenologically interesting scenarios. We note that our findings are relevant also for values of ✏ smaller
than those shown in the figure.
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FIG. 3: Here we plot contours in the ⇠ � ✏ plane leading to fNL = 266 (the current observational bound on non-Gaussianity),
r = 0.1 (the current observational bound on tensor modes), and r = 0.01 (which may be detectable in the near future). The
region above the solid red line is ruled out by producing too much non-Gaussianity while the region above the dashed green
line is ruled out by non-detection of tensor fluctuations. We see that the non-Gaussianity bound is weaker, meaning that the
dominant signature of the model comes from gravitational waves.

As discussed in [45, 46, 52], the sourced contribution to the tensor spectrum is chiral; only one helicity state is
e�ciently sourced by the gauge field fluctuations (89). This e↵ect may be detected through TB and EB correlations

25

in the CMB [72, 73]. This was first explored by [46] in the case in which the inflaton is the pseudo-scalar sourcing
the vector modes; in this case, the direct inflaton-gauge field coupling is so strong that, typically, the main bound
on the gauge field production is given by the sourced scalar perturbations (non-gaussianity [44, 45] and, depending
on the inflaton potential, increased power at small scales [23, 50]). To overcome this, [46] assumed the presence
of ⇠ 1000 sourcing gauge fields (this decreases the amount of non-gaussianity), or the curvaton mechanism for the
generation of the scalar perturbations. For some values of parameters, the signal can be above the 1� detection line
for a cosmic-variance limited experiment [46]. As we shall now discuss, a more optimistic conclusion is reached if one
assumes that the gauge field production occurs in a sector only gravitationally coupled to the inflaton, as we have
studied here.

A measure of the net handedness of the tensor modes is the following quantity:
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3.4 · 10�5✏P e4⇡⇠
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1 + 3.4 · 10�5✏P e4⇡⇠

⇠6

' 1� 16 ✏
r

, (114)

which interpolates between zero (at small ⇠, when the vacuum fluctuations dominate the tensor mode spectrum) and
unity (at large ⇠ when the sourced GW dominate the tensor mode spectrum). In the final approximation we have
used the fact that, for r < 0.1, the scalar power spectrum in this model is dominated by the vacuum modes.
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FIG. 4: Red/solid lines: Predictions for r vs �� in the model (87); each line is obtained for a fixed value of ✏, and for varying ⇠,
with greater ⇠ corresponding to greater particle production, and therefore larger signal. Black/dotted lines: 1� detection lines
for the Planck (P), SPIDER (S), CMB-Pol (C), and a cosmic-variance limited (CV) experiment. The signal needs to be above
a line to be detectable at 1� by that experiment. These experimental forecasts are an approximate copy of the lines shown in
Figure 2 of [73].

In Figure 4 we plot the relation (114) in the r vs �� plane, for a few representative values of ✏; each of the red/solid
lines is characterized by a given ✏, and by varying ⇠ (growing ⇠ leads to more gravity wave production, and therefore
greater values of r and ⇠). We stress that arbitrary large values of r in the range shown in the figure can be reached
for any value of ✏. As ✏ decreases, this requires a greater and greater amount of sourced modes, which in turn leads
to a greater and greater ��. This explain why, for any given obtained r, greater �� correspond to smaller ✏. These
predictions are superimposed in the figure to 1� detection lines from various experiments; from top to bottom, the
lines shown are for the ongoing and forthcoming Planck (P) [71] and SPIDER (S) [74] experiments, for the suggested
CMB-Pol experiment (C) [1], and for a hypothetical cosmic-variance limited experiment (CV). The signal needs to
be above a line to be detectable at 1� by that experiment. These lines are taken by Figure 2 of [73]. We observe
that, for some values of parameters, the parity-violation could be detected (at least at 1�) already by the ongoing /
forthcoming Planck and SPIDER experiments.

Before concluding this section, we comment on the constraints (91) and (92) which are necessary for the consistency
of our calculation. We find:
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Figure 1. Absolute values of the shape function of L = 0, (k1k2k3)2S0 (top left panel), that of L = 1,
(k1k2k3)2S1 (top right panel), and that of L = 2, (k1k2k3)2S2 (bottom panel). We restrict the plot
range to k3 ≤ k2 ≤ k1 and |k1 − k2| ≤ k3 ≤ k1 + k2 for symmetry and the triangular condition. The
shape of L = 2 peaks at the squeezed configuration, k3/k1 # 1 and k2/k1 ≈ 1, in the same way as
that of L = 0 whereas the shape of L = 1 is suppressed at the squeezed configuration. While the
shape function of L = 0 has positive values for all k2/k1 and k3/k1, those of L = 1 and 2 have negative
values except in the flattened configurations, k2/k1 + k3/k1 ≈ 1.

If the Planck collaboration finds evidence for fNL, or the lack thereof, what is next?
Measuring the local-form four-point function (trispectrum) [15–17] to check the so-called
Suyama-Yamaguchi inequality between the amplitude of the local-form trispectrum and fNL,
i.e., τNL ≥ (6fNL/5)2 [18–25], would be an important next step to understand the nature of
sources of non-Gaussianity (or the absence thereof). We shall discuss the Suyama-Yamaguchi
inequality within the context of higher-spin fields in Sec. 4.

Can we learn more about sources of non-Gaussianity by further scrutinizing the behavior
of the bispectrum in the squeezed configuration? The answer is yes, and this is the main goal
of this paper. Namely, in this paper, we shall investigate phenomenological consequences of
the following new parametrization of the bispectrum of primordial curvature perturbations:

Bζ(k1, k2, k3) =
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cLPL(k̂1 · k̂2)Pζ(k1)Pζ(k2) + (2 perm) , (1.1)

where PL(µ) is the usual Legendre polynomials, i.e., P0(µ) = 1, P1(µ) = µ, and P2(µ) =
1
2(3µ2 − 1). Here, c0 is equal to 6fNL/5.2

2Note that, due to symmetry, the c1 term as well as any odd L terms vanish in the exact squeezed limit,
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Figure 1. Absolute values of the shape function of L = 0, (k1k2k3)2S0 (top left panel), that of L = 1,
(k1k2k3)2S1 (top right panel), and that of L = 2, (k1k2k3)2S2 (bottom panel). We restrict the plot
range to k3 ≤ k2 ≤ k1 and |k1 − k2| ≤ k3 ≤ k1 + k2 for symmetry and the triangular condition. The
shape of L = 2 peaks at the squeezed configuration, k3/k1 # 1 and k2/k1 ≈ 1, in the same way as
that of L = 0 whereas the shape of L = 1 is suppressed at the squeezed configuration. While the
shape function of L = 0 has positive values for all k2/k1 and k3/k1, those of L = 1 and 2 have negative
values except in the flattened configurations, k2/k1 + k3/k1 ≈ 1.
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shape of L = 2 peaks at the squeezed configuration, k3/k1 # 1 and k2/k1 ≈ 1, in the same way as
that of L = 0 whereas the shape of L = 1 is suppressed at the squeezed configuration. While the
shape function of L = 0 has positive values for all k2/k1 and k3/k1, those of L = 1 and 2 have negative
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• If this model is realized in nature, either Ntot ' 60, or we live

in a patch in which ~E(0), or ~B(0), is ⌧ that the expected value.
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