Signatures of vector field production during inflation

Marco Peloso, University of Minnesota

 $\phi F \tilde{F}$

- + Barnaby, Crowder, Mandic,
 Moxon, Mukohyama, Namba,
 Pajer, Shiu, Zhou
- + Barnaby, Bartolo, Komatsu,
 Matarrese, Namba,
 Ricciardone, Shiraishi

 $f(\phi) F^2$

Several experiments

with goal $r \lesssim 0.01 - 0.05$:

S: Planck

B: EBEX, PIPER, SPIDER

G: ABS, ACTpol, BICEP2, CLASS Keck Array, POLAR, PolarBear, QUBIC, QUIET, QUIJOTE, SPTpol

 $P_{\zeta} \propto \frac{V}{\epsilon}$, $P_{\rm GW} \propto V$

• Scale of inflation from tensors (GW).

 $V^{1/4} = 10^{16} \,\mathrm{GeV} \,\left(\frac{r}{0.01}\right)^{1/4}$

• Larger $r \to \text{larger } \epsilon \to \text{Inflaton moves more}$ $\Delta \phi \gtrsim M_p \left(\frac{r}{0.01}\right)^{1/2}$

Lyth '96

Flatness is a key requirement

Problem particularly relevant in models that give detectable r. Flatness must be preserved over the full range $\Delta \phi$ spanned during inflation (> M_p if r > 0.01).

For example,
$$\Delta V = \frac{\lambda}{4} \phi^4 \Rightarrow \lambda < 10^{-13}$$
 in large field inflation

- ⇒ inflaton weakly self coupled (this + weakness of gravitational interactions are the reasons why NG is small)
- \Rightarrow In a generic theory, small interactions with other fields to minimize radiative corrections to V

Quantum theory under control through symmetries

Shift symmetry $\phi \rightarrow \phi + C$. E.g. axion (natural) inflation Freese, Frieman, Olinto '90

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^{2} + V_{\text{spirit}} \left(\phi \right) + \frac{C}{f} \partial_{\mu} \phi \, \bar{\psi} \, \gamma^{\mu} \, \gamma_{5} \, \psi + \frac{\alpha}{f} \, \phi \, F_{\mu\nu} \, \tilde{F}^{\mu\nu}$$

- Smallness of $V_{\rm shift}$ technically natural. $\Delta V \propto V_{\rm shift}$
- Constrained couplings to matter (predictivity)

$$\Gamma_{\phi \to \psi \psi} \simeq \frac{C^2}{2\pi f^2} m_{\phi} m_{\psi}^2 \qquad \qquad \Gamma_{\phi \to AA} = \frac{\alpha^2}{64\pi f^2} m_{\phi}^3$$

 $\phi \rightarrow AA$ typically controls reheating. Only recently realized that it can play an important role also during inflation.

One tachyonic helicity at horizon crossing

$$\begin{split} \delta\ddot{\phi} + 3H\delta\dot{\phi} - \frac{\vec{\nabla}^2}{a^2}\delta\phi + m^2\delta\phi &= \frac{\alpha}{f}\vec{E}\cdot\vec{B} \\ \text{Additional interactions due to } \delta g \text{ negligible for } \frac{\alpha}{f} \gg \frac{1}{M_p} \end{split}$$

$$\begin{split} \delta\phi &= \delta\phi \text{vacuum} + \delta\phi \text{inv.decay} \\ \text{Barnaby, MP '11} \\ \text{Dncorrelated,} \quad \langle\delta\phi^n\rangle &= \langle\delta\phi^n_{\text{Vac}}\rangle + \langle\delta\phi^n_{\text{inv.dec}}\rangle \\ P_{\zeta}(k) \simeq \mathcal{P}_v \left(\frac{k}{k_0}\right)^{n-1} \left[1 + 7.5 \cdot 10^{-5} \mathcal{P}_v \frac{e^{4\pi\zeta}}{\xi^6}\right] \quad \text{and} \\ \mathcal{P}_v^{1/2} &\equiv \frac{H^2}{2\pi |\dot{\phi}|} \\ \xi &\equiv \frac{\alpha}{f} \frac{|\dot{\phi}|}{2H} \end{split}$$

At any moment, only δA with $\lambda \sim H^{-1}$ present \oint Nearly equilateral NG $\xi = O(1)$ for $f/\alpha \lesssim 10^{16}$ GeV

• $\delta A \sim e^{\pi\xi}$ and $\xi \propto \frac{\phi}{H}$. Inflaton speeds up during inflation.

 \Rightarrow other interesting effects / signatures

For instance, growth of $P_{\zeta}(k)$

$V \propto \phi^2$	WMAP7 P_{ζ}	WMAP7 $f_{\sf NL}$	WMAP7+ACT
flat prior	$\xi_{in} < 2.66$	$\xi_{in} < 2.45$	$\xi_{in} < 2.41$
log prior	$\xi_{\sf in} < 2.51$	$\xi_{in} < 2.22$	$\xi_{\sf in} < 2.15$

Meerburg, Pajer '12

To determine Ω_{GW} and Π need three detectors, or

combine info from $\neq f$ (need to assume $\Pi(f)$)

$$\Omega = \Omega_{\alpha} \left(\frac{f}{100 \, \text{Hz}} \right)^{\alpha} , \quad \Pi = \text{const}$$

-0.15

-0.2^L

50

100

150

Frequency (Hz)

Crowder et al

200

'12

300

250

Assume $|\Pi| = 1$; forecast to detect GW and exclude $\Pi = 0$ at 2σ

Axion inflation: $\xi \gtrsim 2$ in 3rd gen.

Particle production $X \rightarrow GW$ at CMB scales ?

 $r \gg 16\epsilon$? See also Sorbo '11; Senatore, Silverstein, Zaldarriaga '11 Carney, Kovetz, Fischler, Lorshbough, Paban '12 Most studied $(\phi - \phi_0)^2 X^2$

Twofold: (i) $X \to h$ and (ii) $X \not\to \zeta$

Barnaby, Moxon, Namba, MP, Shiu, Zhou '12

- No direct ϕX coupling
- Relativistic X (or suppressed quadrupole moment)

$$\psi F ilde{F} ~
ightarrow~ r \gg 16\,\epsilon$$
 and gaussian ζ

$f(\phi) F^2$ mechanism

With $\phi F \tilde{F}$, gauge field diluted away after horizon crossing However, reasons to produce and to keep δA alive

• Magnetogenesis:

 $\vec{B} > (10^{-20} - 10^{-14})$ G on extra-galactic scales inferred from γ -rays propagation Neronov, Vovk '10

• Statistical anisotropy $P_{\zeta}\left(\vec{k}\right) = P\left(k\right)\left[1 + g_*\cos^2\theta_{\hat{k}\hat{V}}\right]$:

 $g_* = 0.29 \pm 0.03$ Groeneboom et al '08, 09, but WMAP systematics Hanson, Lewis, A. Challinor '10

If primordial, other predictions ? Bispectrum ?

Seery '08; Barnaby, Namba, MP '12; Bartolo, Matarrese, MP, Ricciardone '12

In fact, current best bound $|g_*| < 0.05$ from bispectrum

Planck '13

$$\frac{f}{4}F^{2} \Rightarrow \begin{cases} \text{scale invariant } \vec{B} \text{ for } f \propto a^{4}, a^{-6} \\ \text{scale invariant } \vec{E} \text{ for } f \propto a^{-4}, a^{6} \end{cases} \qquad \text{Electric } \leftrightarrow \text{ magnetic duality} \\ \text{for } \langle f \rangle \leftrightarrow \frac{1}{\langle f \rangle} \\ \text{Ratra '92} \end{cases}$$

Functional form $f = f_{0} \exp \left[-\int \frac{n \, d\phi}{\sqrt{2\epsilon (\phi)} M_{p}} \right] , \quad \langle f \rangle \propto a^{n} \\ \text{Martin, Yokoyama '07} \end{cases}$

Anisotropic inflation: Classical background eom solved by $\vec{E}^{(0)}$ with

$$\frac{\Delta H}{H} = \frac{2\rho_{E^{(0)}}}{V(\phi)} \simeq \frac{\delta n \epsilon}{4}$$

$$n = -4 - \delta n$$
Watanabe, Kanno, Soda '09

Several models of vector curvaton

Dimopolos, Karciauskas, Lyth, Maeda, Soda, Yamamoto, Yokoyama,...

$$B_{\zeta} \propto \frac{1 - \cos^2 \theta_{\hat{k}_1, \hat{E}^{(0)}} - \cos^2 \theta_{\hat{k}_2, \hat{E}^{(0)}} + \cos \theta_{\hat{k}_1, \hat{E}^{(0)}} \cos \theta_{\hat{k}_2, \hat{E}^{(0)}} \cos^2 \theta_{\hat{k}_1, \hat{k}_2}}{k_1^3 k_2^3} , \quad k_1 \ll k_2, k_3$$
Peaked as local in squeezed limit
Nontivial angular
dependence
$$B_{\zeta}\Big|_{\text{isotropic measurement}} \propto \frac{1 + \cos^2 \theta_{\hat{k}_1, \hat{k}_2}}{k_1^3 k_2^3} \qquad \theta_{k_1}$$

Motivation for studying

The
$$fF^2$$
 model gives $c_0 = \frac{6}{5} f_{\text{NL}} \simeq 32 \frac{|g_*|}{0.1}$, $c_2 = \frac{c_0}{2}$

Figure 1. Absolute values of the shape function of L = 0, $(k_1k_2k_3)^2S_0$ (top left panel), that of L = 1, $(k_1k_2k_3)^2S_1$ (top right panel), and that of L = 2, $(k_1k_2k_3)^2S_2$ (bottom panel). We restrict the plot range to $k_3 \leq k_2 \leq k_1$ and $|k_1 - k_2| \leq k_3 \leq k_1 + k_2$ for symmetry and the triangular condition. The

 $c_0 = 3.2 \pm 7$ $c_1 = 11 \pm 113$ $c_2 = 3.8 \pm 27.8$ (68%CL)

- In "magnetogenesis" studies $(n = 4) \langle A_{\mu} \rangle = 0$ assumed $\Rightarrow g_* = 0$
- However, theoretically expected value, from the addition of the IR modes that left the horizon during the first $N_{tot} N_{CMB}$ e-folds

$$\rho = \frac{\left\langle \vec{E}^2 \right\rangle}{2} \sim H^4 \ (N_{\text{tot}} - 60)$$

The sum is a vector that points somewhere in space, breaking isotropy

$$g_*|_{ ext{expected}} \gtrsim 0.1 \;\; rac{N_{ ext{tot}} - N_{ ext{CMB}}}{37}$$

(generically, too anisotropic)

• If this model is realized in nature, either $N_{\text{tot}} \simeq 60$, or we live in a patch in which $\vec{E}^{(0)}$, or $\vec{B}^{(0)}$, is \ll that the expected value.

Conclusions

- Axion inflation well motivated model (V protected)
- Only recently, seen that $\frac{\alpha}{f}\phi F\tilde{F}$, with $f = O\left(10^{-2}M_p\right)$ leads to interesting phenomenology:
 - \simeq equilateral NG; chiral GW; primordial b.h.
- $f(\phi) F^2$ for magnetogenesis (difficult) and anisotropic inflation
- Novel NG shape, constrained by Planck
- Typically, (too) large statistical anisotropy