Unveiling the Origin of Neutrinos Observed by IceCube

Kohta Murase Institute for Advanced Study, USA

IAP Seminar September 2013

Outline

- Previous extraterrestrial neutrinos from SN1987A
- MeV=10⁶ eV neutrinos
- Now PeV=10¹⁵ eV
- 1. Introduction

- 2. Demystifying the PeV neutrino origin (Nobel prize)
- 3. Multi-messenger tests

Introductory talk (for details, directly ask me later)

Motivation: Identifying Cosmic-Ray Accelerators

- <u>Neutrinos</u> direct probe of ion acceleration (straight, negligible absorption)
- <u>Gamma rays</u> interacting w. photons $\gamma + \gamma \rightarrow e^+ + e^$
 - $e + \gamma \rightarrow e + \gamma (IC)$ $e + B \rightarrow e + \gamma (syn)$ es are deflected by magnetic fields

CR accelerator

Cosmic rays

 $p + \gamma \rightarrow p / n + N\pi$

 $p + \gamma \rightarrow p + e^+ + e^-$

deflected by magnetic fields

interacting w. photons/matter

Neutrino: Weak Interaction

IceCube: Gton Neutrino Detector

How to Detect Neutrinos?

3 main event types

"Track" (detected)

 $\nu_{\mu}\text{+}\text{N}\rightarrow\mu\text{+}\text{X}$

~2 energy res. <1 deg ang res. "Shower" (detected)

"Double-bang & others" (not detected)

 ν_e +N \rightarrow e+X ν_x +N \rightarrow ν_x +X

~15% energy res. ~10 deg ang res. seen at >100 TeV $\nu_{\tau}\text{+}\text{N}\rightarrow\tau\text{+}\text{X}$

observable at higher E

Background: Atmospheric (Terrestrial) Neutrinos

Upgoing & Downgoing Neutrinos

Upgoing neutrinos

avoid atmospheric "muons" caveat: attenuation by Earth at > 0.1-1 PeV → powerful at relatively low E

Downgoing neutrinos

avoid attenuation by Earth caveat: atm. muons (rapidly decreasing as E) → powerful at sufficiently higher E Signal: Astrophysical (Extraterrestrial) Neutrinos

E_v ~ 0.04 E_p: PeV neutrino ⇔ 20-30 PeV proton (or nucleon) "on-source" <u>neutrino</u> <u>"off-source</u>" neutrino

Benchmark Flux Level of Astrophysical Neutrinos

Waxman-Bahcall bound (Waxman & Bahcall 98 PRD)

- meson production efficiency f_{mes} (< 1) \rightarrow 1: "formal" limit (ex. $f_{mes} \sim n_v \kappa_{pv} \sigma_{pv}$ (r/ Γ) for py)
- reasonable bound for *cumulative* vs from UHECR sources (exceptions: non-UHECR sources, hidden neutrino sources)

Various Astrophysical Predictions

Classical Strategy

Hints from Classical Strategy

• IC59 upgoing track (1.8 σ) • IC40 shower (2.7 σ)

IC59 muon neutrino limit higher than IC40 limit

IceCube 13 TAUP

PeV Events Reported in Neutrino 2012

- Two year data of IC-79/IC-86
- PeV downgoing showers in cosmogenic neutrino search

Follow-up Analysis: 2+26 Events (4.1σ)

- $E_v^2 \Phi_v = (1.2 \pm 0.4) \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ (per flavor)
- Potential cutoff at 1.6 PeV for a E_v^{-2} spectrum
- Consistent w. flavor ratio 1:1:1

After May 2013

2. Demystifying the PeV Neutrino Origin

Q. Where Do They Come from: Astrophysical or Not?

- Our (independent) analyses suggest conventional atm.: unlikely cosmogenic: unlikely prompt: disfavored
 - → astrophysical (on-source): plausible hard spectra (like E⁻²) w. a possible cutoff

% Of course more data are needed (still < 5 σ)

Setup of Simple Analyses

Shower Event Rates

What It Cannot Be

- conventional atm.: unlikely
 - conventional atm. ν_e flux is too low
 - sneaking muons are not enough
- cosmogenic neutrinos: unlikely
 - neutrino flux at PeV is typically low
 - even if PeV events are explained, peak at EeV is inconsistent w. 0 events at >> 2 PeV

What It Could Be

Too steep spectra: violating measured flux at < 0.3 PeV Hard spectra: not extended to too high E due to large A_{eff}

- prompt atm.: disfavored
 - too steep spectra & zenith-angle dependence
- astrophysical (on-source): plausible
 - disfavoring too steep spectra (like E^{-2.5}, E⁻³)
 - favoring hard spectra (like E⁻²) w. a PeV cutoff or steep spectra (like E^{-2.3}) w.o. a cutoff

3. Multi-Messenger Tests

What is the Origin of the IceCube "Excess"?

 $E_{\gamma}^{-} \Phi_{\gamma} \sim (1/6) I_{\text{mes}} E_{CR}^{-} \Phi_{CR} \qquad E_{\gamma}^{-} \Phi_{\gamma} \sim (1/6) I_{\text{mes}} E_{CR}^{-} \Phi_{CR} \\ \rightarrow E_{\gamma}^{2} \Phi_{\gamma} \sim (1/3) f_{\text{mes}} E_{CR}^{2} \Phi_{CR} \qquad E_{\gamma}^{2} \Phi_{\gamma} \sim (1/2) f_{\text{mes}} E_{CR}^{2} \Phi_{CR} \\ \rightarrow E_{\gamma}^{2} \Phi_{\gamma} = 2 E_{\gamma}^{2} \Phi_{\gamma} (\text{pp}) \qquad \rightarrow E_{\gamma}^{2} \Phi_{\gamma} = 4 E_{\gamma}^{2} \Phi_{\gamma} (\text{py})$

"multi-messenger connection"

Q1. Galactic or Extragalactic

Proposed Galactic scenarios:

diffuse Galactic emission, hypernova remnants, Fermi bubbles

(Hypothetical) Isotropic Galactic Sources?

- Existing gamma-ray limits support extragalactic scenarios
- Galactic sources are probably subdominant

Subdominant Sources in the Galactic Plane?

For |b| < 2 deg, ~1/28 of the IceCube excess $\Leftrightarrow 2x10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

proposed possibilities

- diffuse Galactic emission consistent w. gamma limits but too steep for neutrino
- hypernova remnants
 violating gamma limits

Association of IceCube events w. the Galactic plane is unlikely

Interesting Case: Fermi Bubbles?

Ahlers & KM 13

- up to 7 (among 28) can be associated w. Fermi bubbles
- consistent w. $\Gamma=2.2$ (giving better fits)
- testable w. future gamma-ray detectors (ex. CTA, HWC)

Which Extragalactic Sources are Viable?

Requirements: isotropic flux w. $E_v^2 \Phi_v \sim 10^{-8}$ GeV cm⁻² s⁻¹ sr⁻¹ (break/cutoff around PeV for hard spectra)

Proposed "viable" extragalactic sources (as far as I know) GRB, AGN, starburst galaxies, galaxy clusters/groups

Main contributions come from many distant sources

Q2. How to Get Clues to the Origin: pp or pγ?

There is difference between pp and $p\gamma$ scenarios

$$p + p \rightarrow N\pi + X$$

- extending from GeV energies
- following CR spectra E_p^{-s}
- gamma rays can typically escape
- \rightarrow tight neutrino-gamma connection

$$p + \gamma \rightarrow N\pi + X$$

- threshold effect $E_{\nu} \sim 640 \text{ PeV} (\Gamma_j/10)^2 (\epsilon/1 \text{ eV})^{-1}$ GRB: $\Gamma_j \sim 100, \epsilon \sim 1 \text{ MeV} \rightarrow \sim 0.6 \text{ PeV}$ AGN: $\Gamma_i \sim 10, \epsilon \sim 10 \text{ eV} \rightarrow \sim 6 \text{ PeV}$
- depending on CR spectra E_p^{-s} as well as target photon spectra $\epsilon^{-\alpha}$
- target photons for $p\gamma$ cause $\gamma\gamma$ inside sources
- \rightarrow connection is quite often lost

First Multi-Messenger Tests with "Measured" Fluxes

- Γ <2.1-2.2 (for extragalactic), Γ <2.0 (for Galactic)
- contribution to diffuse sub-TeV gamma-ray flux: >30-40%
- limits are insensitive to redshift evolution models

Implications for Further Neutrino Studies

to distinguish between the spectra ex. if Γ >2.3 \rightarrow pp scenarios will be disfavored

Implications for Further Gamma-Ray Studies

- 1. Gamma-ray spectra should be hard (Γ <2.1-2.2)
 - \rightarrow deep obs. by future TeV gamma-ray detectors is crucial
- 2. Contributing >30-40% of diffuse sub-TeV gamma-ray flux \rightarrow improving and understanding the Fermi data are crucial

Summary

PeV neutrinos may start to be detected by IceCube

 (Likely) first evidence for extraterrestrial HE neutrinos favoring astrophysical "on-source" neutrinos (not cosmogenic)

Multi-messenger tests with the measured neutrino flux

- Galactic or extragalactic?
 - → supporting extragalactic scenarios but still interesting Galactic sources can be tested by sub-PeV gamma rays
- pp or pγ?
 - → most pp sources can be tested in the next several years
 1. determination of Γ in the sub-PeV range (IceCube)
 2. understanding the diffuse sub-TeV gamma-ray flux (Fermi)
 3. deep obs. of individual pp sources w. TeV gamma rays
- Need for more studies on pγ sources such as AGN and GRBs

J.N. Bahcall (IAS), Neutrino Astrophysics (1989)

"The title is more of an expression of hope than a description of the book's contents....the observational horizon of neutrino astrophysics may grow ... perhaps in a time as short as one or two decades"

Remarks on py Scenarios

- Viable pp scenarios can be tested w. IceCube (sub-PeV), Fermi (sub-TeV) and TeV gamma-ray telescopes
- $p\gamma$ scenarios can be favored by disfavoring pp scenarios

Viable py scenarios?

GRB: independent limit from stacking analysis for bright GRBs strong limit $E_v^2 \Phi_v < 10^{-9}$ GeV cm⁻² s⁻¹ sr⁻¹ \rightarrow undetected low-luminosity GRBs (KM & loka 13)

AGN: jet models predict ~ 100-1000 PeV peak inconsistent w. 0 neutrino events at >> PeV → hidden AGN core scenario (Stecker et al. 93)