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Figure 1. Null coordinates,



Background: Bondi-Sachs Formalism*

The Bondi-Sachs metric is
ds?® = — (625(1 + Wer) — rzhABUAUB) du?
—2e2Pdudr — 2r2h A, gUP dudz™ + r2h s gdz?da®,

where r is an area coordinate so that det(hsp) = det(gap) with
gap A unit sphere metric. We introduce a complex dyad gy
(e.g. in spherical polars, g4 = (1,7sinf) ). Then hyp can be
represented by

J = hapa’d®/2.

We use the spin-weighted field U = UAqA as well as the (complex
differential “angular gradient”) eth operators & and 9. Einstein’s
equations R,g = 8m(T,3 — %gaﬁT) can be categorized as

*N.T. Bishop et al.: Phys. Rev. D 56 6298 (1997)



e Hypersurface equations, Rll,qARlA,hABRAB,

5,7“ = f1(J)
Urr = f2(J, B)
WC,?“ — f3(J757 U)

e Evolution equation ¢¢PR
Jur = f4(‘]767 U7WC)

Y

where the f; include hypersurface derivatives (9r,04) of the
variables

e Constraints Rp,-

Compactify: r >z withr=oc0 >z =1
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Inclusion of matter to the characteristic formalism?

The matter is characterized by

Density p
Pressure p
Covariant 4-velocity  wvq = (vg,v1,v4)
Equation of state p = p(p)

Define V = quqA, apply the Einstein equations, as well as the
fluid conservation equations Tg%a — 0, to get

fN.T. Bishop et al., Phys. Rev. D 60, 024005 (1999)



p(p)

Br = f1+2rr(p+p)(v1)?

, fo+ (p+p)v1iVFa(r,B,J)

, fa+ F3(p,p,v1,V,7,8,J)
Jur = fa+ Fa(p,p,V,7,B8,J)
Fs(v1,V,r,B8,U,J)
Fs(p,p,,v1,V,vo,m, B8, J, U, We)
via = Fr(p,p,v1,V,r,B,J,U We)
Fs(p,p,v1,V,vo,r, 3,J, U We).
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Evolution variables  J,p,v1,V
Auxiliary variables p, 8,U, W, vg



No boundary condition, but

/ regularity must be satisfied

Find: p, B, U, W, Jd,v,,p,V, Vv

Au

Initial data: J, p, v, v
1 A



Characteristic extraction®
e Gravitational radiation is defined at future null infinity (J71)

e But ... It is extracted by perturbative matching, or from riyg4,
using data at a finite distance from the source

e Characteristic numerical relativity has many positive features
— stability, convergence, inclusion of null infinity

e Idea: use data on a finite worldtube as input to a character-
istic code, and thereby calculate the radiation at JT

IC. Reisswig, N. T. Bishop, D. Pollney, and B. Szilagyi: Phys. Rev. Lett.
103, 221101 (2009); Class. Quantum Grav. 27, 075014 (2010)






Characteristic extraction and matching

e Define a worldtube ', and use the Cauchy metric data to
generate characteristic metric data on I; then use the char-
acteristic Einstein equations to find metric data between I
and 771, and compute the radiation at J 7T

e In extraction: Impose a standard outer boundary condition
for the Cauchy evolution at some surface well outside I

e (In matching): Use characteristic metric data to provide an
outer boundary condition for the Cauchy evolution
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Worldtube

Only 1n extraction

Outer X,V,Z
boundary

Only 1n matching



Extraction procedure — analytic?

r

Geodesic
X0 = X (A u,cpA)

| | SO(
| S:x2+y2+72= R?,

H(t)

SN.T. Bishop et al. in B. Iyer and B. Bhawal (Eds.) ‘“Black Holes, Gravi-
tational Radiation and the Universe”, Kluwer, Dordrecht, The Netherlands

(1999)



Binary black hole evolution

Equal-mass binary black hole inspiral and merger in two cases
(a) (a1,a2) = (0,0), and (b) (a1,a2) = (0.8,—-0.8)

Initial data parameters are determined from a post-Newtonian
evolution to find the momenta for quasi-circular trajectories
some 4 orbits before merger.

BSSN evolution proceeds for ~ 1350M, followed by merger
and ringdown =~ 100M.

Outermost extraction sphere at 1000M, outer boundary at
3600M



Comparison with extrapolated Cauchy waveforms

e Evaluate 4 in a radially oriented tetrad at six radii (r =
280, 300,400,500, 600,1000M) and perform an extrapolation
based on a 3rd order polynomial least-squares fit to the time-
series data

e Use the coordinate radius, r, as a radial coordinate for pur-
poses of the extrapolation. The retarded time, t, is defined
by ts—7*, where the Schwarzschild time ts is approximated by
the coordinate time and r* is the tortoise coordinate radius



e The error of extrapolation is estimated to be about 0.001%
in amplitude and 0.001 radians in phase’

e For the highest resolution h = 0.64M, the differences be-
tween extrapolated and characteristic extraction waveforms
are 1.09% (max) and 0.17% (mean) in amplitude with a de-
phasing of 0.019 radians (max) and 0.004 radians (mean).
The correction is towards slightly larger amplitudes and fre-
quencies

e Recall, the mean error of CCE is about 0.03% in amplitude
with a dephasing of 0.002 radians

ID. Pollney, C. Reisswig, N. Dorband, E. Schnetter, P. Diener, Phys.Rev.D
80, 121502 (2009)
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Observational significance

The differences are not important for event detection

Parameter estimation: We determinell the minimum signal-
to-noise ratio (SNR) at which an astrophysical interpretation
of detector data would depend on whether the extrapolated
or CCE waveform is used as template

The Table shows the maximum distance for various merger
events at which the difference between the two waveforms
would be significant

. Lindblom el al., Phys. Rev. D 78 124020 (2008)



Detector | Masses Maximum distance
LIGO 5OM@ —I— 5OM@ 5Mpc

(e)LIGO | 50M + 50M, 8Mpc

Virgo 50M¢q + 50M¢ 14Mpc

AdLIGO | 50Mqg 4+ 50Mq 197Mpc

AdVirgo | 50Mqg + 50Mp 177Mpc

LISA 10"Mo +10"Mg > cH™ 1




Linearized solutions™*

J = R(Jo(r)e)d° Zy,,, U = R(Uo(r)e™)dZy,,,

- 2M
B = R(Bo(r)e™™) Zpmm, We= ——5 + R(wo(r)e™”™) Zpm,

where Z,,, are the “real” Yy,,. Then the Einstein hypersurface
equations reduce to a single master equation
) &2

dx

—2(2x + 8Mz2 + iv)Jo + 2 (2:132 + ive — 723 M

d2 J2

+23(1 — =0

where J>(z) = d?Jy/dz? and = = 1/r, and so we write

*N.T. Bishop, Class. Quantum Grav. 22 2393 (2005)



Jo(r) = L Caf(r) + Cag(r) + Ca

Uo(r) Fy(C1,C2,C3f(r),Cag(r),Cs)
wo(r) = Fy(C1,Cs,C3f(r),Cag(r),Cs) + Cs
Bo(r) Ce

The constraints, Rgg = qAROA — 0O, impose 2 conditions on
Cq,---,Cg, SO the general solution involves 4 arbitrary constants.



In the case M =0, f(r),g(r) are simple, and for £ =2

01 Cy | e2MTC3 5 5 | iCy
Jog = 47“_127“ -+ e (7“1/ —|—27,r1/—1>—|——
C 2z1/7“C 20
Ug = —1 (3 4 4ivr) + 3 (3—2wwr)+Cq+ — 6
2r 12 4
221/7“6« 2 C
wo = (1—|—2wr)—|— 3+6C4(—Z—1)-|———10—6
’I" vr
Bo = C6
with
5 2 12
Cs = —v°C5, C1—§Cz+ C4+ C6



Application 1: Code verification

e Use the solution on a Minkowski background, with no incom-
ing radiation so that '3 = 0, as an exact solution against
which to test characteristic numerical realtivity code. For-
mulas for the gravitational news and 4 are

N

i, riéa

e [ hese solutions have
acteristic codes.

= R (i3Coe™") 5% Zom,
= %(—2V4C’2€wu) 02 Zo,

been a crucial tool in debugging char-



Application 2: Equal mass binary

e [ wo particles, each of mass M

e Circular orbit radius rqg, at § = n/2, about common centre of
mass

e Orbital angular velocity v, particle velocity V

Mza(r —10)8(0 — —)[5(¢ —vu) + (¢ — vu — )]
7o






We express p in terms of spherical harmonics
p = Z I (pg’m exp(|m|’wu)> Zg’m,

Lm

For £ < 2,m #* 0, the only nonzero coefficients are

_ 15 — _ _ 15
p22 = 6(r — 10 )27,,0 =, p2,_2 = —id(r —rg )27,,0 —

Now construct two separate linearized solutions, one valid in r <

rog wWith constants C;_,--- ,Cg_, and the other valid in » > rg with

constants Cy4,---,Cg4. The 12 constants satisfy the conditions

Number of conditions Description

Constraints in r < rg

Constraints in r > rg

No incoming radiation in r > rg

As r — 0, metric becomes Minkowskian
Boundary conditions at »r = rg

A WEFE NN



where the boundary conditions at r = rg are

Jo—, Up4+ = Up-—,
2nrop(l + V2), wr = —4mp(l + V2)

Jot
B

leading to

2
N =M1+ V2)rZ3, ?”24 (sin(2uu) 5200 — cos(2vu) 2Z2_2) .
Integrating N2/(4x) over the sphere gives

dE  M?(1+ V2)2r31027
du 5

In Newtonian limit V < 1 and orbit is circular if M = 227312
dE  2M?>
du 5r8

which is the standard quadrupole formula.



Higher multipoles

The formalism can also be used to evaluate the gravitational
radiation in higher modes, e.g for ¢ = 4,

N = Mr8u5( 0.64 (sin(2vu) 2245 — cos(2vu) 9 Z4_2)

+  26.9 (sin(4vu) pZ44 — COS(4vu) 9Z4_4) )



Application 3: Quasi-normal modes'T

e Recall the master equation for a linearized solution

dJ
—2(2z + SMz2 + iv)Jo + 2 (23:2 + wvx — 73:3M) d—2

T

2
+23(1 - 290M)d 72 _ o (1)

e Eq. (1) has singularities at x = 0 and z = 0.5M. The
problem is to find values of v for which there exists a solution
to Eq. (1) that is regular everywhere in the interval [0, 0.5M];
these values of v are the quasi-normal modes.

ITN.T. Bishop and A.S. Kubeka, Phys. Rev. D 80, 064011 (2009)



e \While the differential equation is different, this is the same
scenario as when finding the quasi-normal modes of a black
hole. The first solution was obtained by using series solutions
around the singular points, and a numerical solution in the
interior of the interval. Nowadays, quasi-normal modes are
usually found using the theory of 3-term recurrence relations,
but for technical reasons that theory cannot be used here.

e \We construct the asymptotic series about the essential singu-
larity at £ = 0, and use it to find a solution at a point xg > 0.
We then use this solution as initial data for a numerical solu-
tion of Eq. (1) in the range (xg, zc) where z. < 0.5M. Finally,
we construct the regular series solution about x = 0.5M and
use it to find a solution at * = x.. Then a value of v is a



quasi-normal mode if the difference at * = x. between the
regular series solution and the numerical solution, vanishes.

The difficult part is the essential singularity, because the
asymptotic series is not convergent. However, we can calcu-
late a rigorous bound on the error involved in approximating
the solution by a given number of terms of the series, and
ensure that this is less than machine precision.
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Results

e Defining

g — V4 — U,
the quasi-normal modes are those values of v such that g, is
indistinguishable from zero.

e \We calculated g, for values of v in the range v = a + b,
0.1 <a<1.07, 0.05<b5<0.89, in increments of 0.03.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 11

Contour plot in the complex plane: , R(gr) = O,
Boundary of reliable computation.



e \We then applied a secant method, and calculated bounds on
the possible error, obtaining the lowest quasi-normal mode

v = 0.883 + 0.614: + 0.003%

where k is a complex number satisfying |k| < 1.
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v(xz) for v = 0.37367 4+ 0.088967, which is the lowest quasi-
normal mode of a Schwarzschild black hole.



Discussion

e How can the quasi-normal modes of Eq. (1) be different to
the usual values of a Schwarzschild black hole?




e Geometrically, K is a typical hypersurface in the black hole
case, and N is null. From the direction of wave propaga-
tion on N, the quasi-normal modes can be interpreted as
perturbations of a white hole.

e Algebraically, Eq. (1) is a second order d.e., and there are two
independent series solutions about the regular singularity at
x = 0.5, i.e. at the horizon, say as1(x)+bs>(x) with so(x) un-
bounded near the horizon. For the calculations above we set
b= 0, but if instead we set a = 0, the standard Schwarzschild
QNM is found.



Application 4: Particle orbiting a Schwarzschild black hole

In principle, the calculation is similar to that on the Minkowski
background, but is technically much more difficult because part
of the solution is not known analytically.

e Black hole of mass M, particle of mass mg in circular orbit
at ro=6M, 0 = 7/2

dp V3 _dé¢ _ V6

dr _18M’ ° T du  36M

p= %5(’” —10)3(0 — gw — vu)






We express p in terms of spherical harmonics

p = Z e (pg’m exp(|m|wu)> Zf,m7

Lm

For £ < 2,m # 0, the only nonzero coefficients are

15 — 15

p2.2 = 0(r — TO)T—(%O =2, pp_o=—id(r — 7“0)7;',,7’—80 =2
Now construct two separate linearized solutions, one valid in r <
rog with constants Cy_,--- ,Cg_, and the other valid in r > rg with

constants Cy4,---,Cg4. The 12 constants satisfy the conditions



Number of conditions Description

Constraints in r < rg

Constraints in r > rg

NO incoming radiation in r > rqg

Bondi gauge conditions as r — oo
Exclude well-behaved solution at horizon

4 Boundary conditions at » = rg
where the boundary conditions at »r = rg are

R NN NN

Jo+ = Jo-, Up4 = Uo-,
16
B

Admrop, Wy = ——TpP

3



leading to

o
N = 10 3%[(0.0142674—0.093467@ exp( “’“) 575 5
M M ’
"
R [(0.01426773— 0.093467) exp( ;\;’“)] 222,_2>
m2
dE/du = —-7.114x 10740

M2

Compare value from quadrupole formula —8.2305 x 10~*m3/M?.

Still work in progress — value for A/ should not be regarded as
reliable.
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Observational cosmology*

e Cosmological data is (almost all) from the past null cone,
and it is natural to apply the characteristic approach.

e [ hese ideas were developed by Ellis and others, using a dif-
ferent formalism.

e Here, we adapt the characteristic code so that it actually
computes the past behaviour of the Universe. We take the
cosmological fluid as dust, with p = 0, T, = pvavp.

"G.F.R. Ellis et al., Phys. Rep., 124, 315 (1985); P.J. van der Walt and
N.T. Bishop, Phys. Rev. D: 82, 084001 (2010); 85, 044016 (2012)



Data on the past null cone

e Initial data required by the code: J,p,v1,V, as functions of

T, 4.

e Observational data

z  Position on the sky
d;, Luminosity distance: related to r by dy = (1 + z)2r
z Red-shift: 10 =1+ 2,01 = —e2%(1 + 2)

A A
d;u vy = Fo(r, 2, 8,U, J, %)
ne_Qﬁ

zZ
J Shear: from observed shape of spherical object

A
ddiu Angular velocity : v = (1 + 2)

Observed number count : N = proper number count



e A relationship for p needs to be assumed, say p = Fg(N).

e [ he Einstein equation for R11 becomes

_26 >
Br = f1+27rF10 (Ti:_ z) (—625(1 -+ z))

which remains an o.d.e. for 8. Once solved, v1 is also found.

e Similarly, the Ry 4 equations remain o.d.es. for U, and once
solved, v4 and hence V are also found.



Spherical symmetry

e Cosmology code implemented and tested for spherical sym-
metry.

e Difficult numerical issues
— Evolution near the origin

— Quter boundary — incoming null geodesic.



r - diameter distance

u - proper time __|

r=10
u=ty LI N

domain of

calculation:

charactenstic
line




Code testing

Use Lemattre-Tolman-Bondi (LTB) model as exact solution

ds? = —dt? + [R,(t,7)]%dr? + [R(t,7)]%(d0? + sin®0d¢?).

Spherically symmetric inhomogeneous model, with FRW re-
covered when R(t,r) = ra(t).

We use R(t,r) = r(t —br)2/3, so b= 0 is Einstein-de Sitter.

Construct (numerically) coordinate transformation to char-
acteristic coordinates.
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LTB vs ACDM

e Snla data is usually regarded as caused by dark energy, but
could also be explained by large scale inhomogeneities, i.e.
an LT B model.

e However, the past behaviour of LTB and ACDM models is
different.
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No: If the universe is LTB, then not only are we at a special
place, but also at a special time



Going beyond the point of reconvergence on the past null
cone

e Due to the expansion of the universe, the past null cone
has a maximum size (where » = rmax), and beyond this it
reconverges. In EdS, rmax is at z = 1.25.

e At r = rmax the coordinates are singular, and the code can
be used only in @ domain r < rmax — €.

e [his is a coordinate problem and is resolved by using new
coordinates.



Affine radial coordinate

From the geodesic equation

dr _26

— —=e , 2

N (2)
Apply the tensor transformation law to the Bondi-Sachs metric,
and re-write it in the form

ds® = — <1 + 1) du® — 2dud) + 72{d6? + sin 0dp?}  (3)
T

with: W =W (u,\) and 7=7(u,\).



Substitution into the Einstein field equations gives
1

P = —55?/)(’01)2 (4)
Foux = %{W,/\Q+WM+W$M—2fF,u’F,A— 1 (5)
+ (7% + %H‘,pr - /\Fz}/? (6)

1

Taxt 47 )+ 2k (vovlp—§p>’r—|—2/\fr (7)
with: 7(0) = W(O) = W)\(O) = 74(0) =0 and T’A(O) = 1.

Then substituting the dust stress-tensor (T,, = pvqv,) into the
conservation equation, Ta.% — 0, yields the fluid equations



=l
=t

val — vo vy x T+ (vl) } (8)
i

2V _ 2v0 _ ~
<—1"“ AT U1 /\) (TO"“ A T V0 A) + Vip,av1

\,

_(f ) ]+p>\(va1—vo)—PU1u} (9)

~

_ %4
r

Using the condition gabvavb = —1, vg can be written as

1. 1 _
vy = vavl + 5V1 1 (10)

=3)
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Conclusions

The characteristic formalism can be used for numerical evolutions in
vacuum, or with matter.

The formalism is use for the extraction of gravitational radiation from a
“341" simulation.

Linearized solutions are used for code-testing, for gravitational wave cal-
culations, and for the calculation of quasi-normal modes.

The characteristic code can be used, in principle, to compute the past
behaviour of the universe from observations.

If the universe is A =0 LTB rather than ACDM, then not only are we in
a special position, but we are also at a special time.

In order to get past the reconvergence of the past null cone, the code
has been reformulated using an affine, rather than a surface area, radial
parameter.



THANK YOU



