Applications of the characteristic formalism in relativity

Nigel T. Bishop

Department of Mathematics (Pure & Applied), Rhodes University, Grahamstown 6140, South Africa

Institut d'Astrophysique de Paris, 22 April 2013

Outline

- Background: Bondi-Sachs formalism
- Characteristic extraction
- Linearized solutions and applications
- Cosmology
- Conclusion

Figure 1. Null coordinates.

Background: Bondi-Sachs Formalism*

The Bondi-Sachs metric is

$$ds^{2} = -\left(e^{2\beta}(1+W_{c}r) - r^{2}h_{AB}U^{A}U^{B}\right)du^{2}$$
$$-2e^{2\beta}dudr - 2r^{2}h_{AB}U^{B}dudx^{A} + r^{2}h_{AB}dx^{A}dx^{B},$$

where r is an area coordinate so that $det(h_{AB}) = det(q_{AB})$ with q_{AB} a unit sphere metric. We introduce a complex dyad q_A (e.g. in spherical polars, $q_A = (1, i \sin \theta)$). Then h_{AB} can be represented by

$$J = h_{AB}q^A q^B / 2.$$

We use the spin-weighted field $U = U^A q_A$ as well as the (complex differential "angular gradient") eth operators \eth and \eth . Einstein's equations $R_{\alpha\beta} = 8\pi (T_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}T)$ can be categorized as

*N.T. Bishop et al.: Phys. Rev. D 56 6298 (1997)

• Hypersurface equations, R_{11} , $q^A R_{1A}$, $h^{AB} R_{AB}$,

$$\beta_{,r} = f_1(J)$$

$$U_{,rr} = f_2(J,\beta)$$

$$W_{c,r} = f_3(J,\beta,U)$$

• Evolution equation $q^A q^B R_{AB}$

$$J_{,ur} = f_4(J,\beta,U,W_c)$$

where the f_i include hypersurface derivatives (∂_r, ∂_A) of the variables

• Constraints $R_{0\alpha}$.

Compactify: $r \to x$ with $r = \infty \to x = 1$

Inclusion of matter to the characteristic formalism[†]

The matter is characterized by

Density ρ Pressure pCovariant 4-velocity $v_{\alpha} = (v_0, v_1, v_A)$ Equation of state $p = p(\rho)$

Define $V = v_A q^A$, apply the Einstein equations, as well as the fluid conservation equations $T_{b;a}^a = 0$, to get

[†]N.T. Bishop *et al.*, Phys. Rev. D **60**, 024005 (1999)

$$p = p(\rho)$$

$$\beta_{,r} = f_1 + 2\pi r(\rho + p)(v_1)^2$$

$$U_{,rr} = f_2 + (\rho + p)v_1VF_2(r,\beta,J)$$

$$W_{c,r} = f_3 + F_3(\rho, p, v_1, V, r, \beta, J)$$

$$J_{,ur} = f_4 + F_4(\rho, p, V, r, \beta, J)$$

$$v_0 = F_5(v_1, V, r, \beta, U, J)$$

$$\rho_{,u} = F_6(\rho, p, v_1, V, v_0, r, \beta, J, U, W_c)$$

$$v_{1,u} = F_7(\rho, p, v_1, V, v_0, r, \beta, J, U, W_c).$$

Evolution variables J, ρ, v_1, V Auxiliary variables p, β, U, W_c, v_0

Initial data: J, ρ , v_{1} , v_{A}

0

Characteristic extraction[‡]

- Gravitational radiation is defined at future null infinity (\mathcal{J}^+)
- But ... It is extracted by perturbative matching, or from $r\psi_4$, using data at a finite distance from the source
- Characteristic numerical relativity has many positive features
 stability, convergence, inclusion of null infinity
- \bullet Idea: use data on a finite worldtube as input to a characteristic code, and thereby calculate the radiation at \mathcal{J}^+

[‡]C. Reisswig, N. T. Bishop, D. Pollney, and B. Szilagyi: Phys. Rev. Lett. **103**, 221101 (2009); Class. Quantum Grav. **27**, 075014 (2010)

Characteristic extraction and matching

- Define a worldtube Γ , and use the Cauchy metric data to generate characteristic metric data on Γ ; then use the characteristic Einstein equations to find metric data between Γ and \mathcal{J}^+ , and compute the radiation at \mathcal{J}^+
- In extraction: Impose a standard outer boundary condition for the Cauchy evolution at some surface well outside Γ
- (In matching): Use characteristic metric data to provide an outer boundary condition for the Cauchy evolution

Only in extraction Only in matching

Extraction procedure – analytic \S

[§]N.T. Bishop *et al.* in B. Iyer and B. Bhawal (Eds.) "Black Holes, Gravitational Radiation and the Universe", Kluwer, Dordrecht, The Netherlands (1999)

Binary black hole evolution

- Equal-mass binary black hole inspiral and merger in two cases
 (a) (a₁, a₂) = (0,0), and (b) (a₁, a₂) = (0.8, -0.8)
- Initial data parameters are determined from a post-Newtonian evolution to find the momenta for quasi-circular trajectories some 4 orbits before merger.
- BSSN evolution proceeds for $\approx 1350M$, followed by merger and ringdown $\approx 100M$.
- Outermost extraction sphere at 1000M, outer boundary at 3600M

Comparison with extrapolated Cauchy waveforms

- Evaluate ψ_4 in a radially oriented tetrad at six radii (r = 280, 300, 400, 500, 600, 1000M) and perform an extrapolation based on a 3rd order polynomial least-squares fit to the timeseries data
- Use the coordinate radius, r, as a radial coordinate for purposes of the extrapolation. The retarded time, t, is defined by $t_s r^*$, where the Schwarzschild time t_s is approximated by the coordinate time and r^* is the tortoise coordinate radius

- The error of extrapolation is estimated to be about 0.001% in amplitude and 0.001 radians in phase \P
- For the highest resolution h = 0.64M, the differences between extrapolated and characteristic extraction waveforms are 1.09% (max) and 0.17% (mean) in amplitude with a dephasing of 0.019 radians (max) and 0.004 radians (mean). The correction is towards slightly larger amplitudes and frequencies
- Recall, the mean error of CCE is about 0.03% in amplitude with a dephasing of 0.002 radians
- [¶]D. Pollney, C. Reisswig, N. Dorband, E. Schnetter, P. Diener, Phys.Rev.D 80, 121502 (2009)

Observational significance

- The differences are not important for event detection
- Parameter estimation: We determine^{||} the minimum signalto-noise ratio (SNR) at which an astrophysical interpretation of detector data would depend on whether the extrapolated or CCE waveform is used as template
- The Table shows the maximum distance for various merger events at which the difference between the two waveforms would be significant
- ^{II}L. Lindblom *el al.*, Phys. Rev. D **78** 124020 (2008)

Detector	Masses	Maximum distance
LIGO	$50M_{\odot} + 50M_{\odot}$	5Mpc
(e)LIGO	$50 M_{\odot} + 50 M_{\odot}$	8Mpc
Virgo	$50 M_{\odot} + 50 M_{\odot}$	14Mpc
AdLIGO	$50 M_{\odot} + 50 M_{\odot}$	197Mpc
AdVirgo	$50 M_{\odot} + 50 M_{\odot}$	177Mpc
LISA	$10^7 M_{\odot} + 10^7 M_{\odot}$	$> cH^{-1}$

Linearized solutions**

$$J = \Re(J_0(r)e^{i\nu u})\eth^2 Z_{\ell m}, \quad U = \Re(U_0(r)e^{i\nu u})\eth Z_{\ell m},$$
$$\beta = \Re(\beta_0(r)e^{i\nu u})Z_{\ell m}, \quad W_c = -\frac{2M}{r^2} + \Re(w_0(r)e^{i\nu u})Z_{\ell m},$$

where $Z_{\ell m}$ are the "real" $Y_{\ell m}$. Then the Einstein hypersurface equations reduce to a single master equation

$$-2(2x+8Mx^{2}+i\nu)J_{2}+2(2x^{2}+i\nu x-7x^{3}M)\frac{dJ_{2}}{dx}$$

$$+x^{3}(1-2xM)\frac{d^{2}J_{2}}{dx^{2}}=0$$

where $J_2(x) \equiv d^2 J_0/dx^2$ and x = 1/r, and so we write **N.T. Bishop, Class. Quantum Grav. **22** 2393 (2005)

$$J_0(r) = \frac{C_1}{r} + C_2 f(r) + C_3 g(r) + C_4$$

$$U_0(r) = F_U(C_1, C_2, C_3 f(r), C_4 g(r), C_5)$$

$$w_0(r) = F_W(C_1, C_2, C_3 f(r), C_4 g(r), C_5) + C_5$$

$$\beta_0(r) = C_6$$

The constraints, $R_{00} = q^A R_{0A} = 0$, impose 2 conditions on C_1, \dots, C_6 , so the general solution involves 4 arbitrary constants.

In the case M = 0, f(r), g(r) are simple, and for $\ell = 2$

$$J_{0} = \frac{C_{1}}{4r} - \frac{C_{2}}{12r^{3}} + \frac{e^{2i\nu r}C_{3}}{4r^{3}} \left(r^{2}\nu^{2} + 2ir\nu - 1\right) + \frac{iC_{4}}{\nu}$$

$$U_{0} = \frac{C_{1}}{2r^{2}} + \frac{C_{2}}{12r^{4}} \left(3 + 4i\nu r\right) + \frac{e^{2i\nu r}C_{3}}{4r^{4}} \left(3 - 2i\nu r\right) + C_{4} + \frac{2C_{6}}{r}$$

$$w_{0} = \frac{C_{2}}{2r^{4}} \left(1 + 2i\nu r\right) + \frac{3e^{2i\nu r}C_{3}}{2r^{4}} + 6C_{4} \left(\frac{2i}{\nu r} - 1\right) + \frac{C_{5}}{r^{2}} - 10\frac{C_{6}}{r}$$

$$\beta_{0} = C_{6}$$

with

$$C_5 = -\nu^2 C_2, \ C_1 = \frac{\nu^2}{3}C_2 + \frac{12}{\nu^2}C_4 + \frac{8i}{\nu}C_6$$

Application 1: Code verification

• Use the solution on a Minkowski background, with no incoming radiation so that $C_3 = 0$, as an exact solution against which to test characteristic numerical realtivity code. Formulas for the gravitational news and ψ_4 are

$$\mathcal{N} = \Re \left(i\nu^3 C_2 e^{i\nu u} \right) \, \eth^2 Z_{2m},$$
$$\lim_{r \to \infty} r \psi_4 = \Re \left(-2\nu^4 C_2 e^{i\nu u} \right) \, \bar{\eth}^2 Z_{2m}$$

• These solutions have been a crucial tool in debugging characteristic codes.

Application 2: Equal mass binary

- Two particles, each of mass M
- Circular orbit radius r_0 , at $\theta = \pi/2$, about common centre of mass
- Orbital angular velocity ν , particle velocity V

$$\rho = \frac{M}{r_0^2} \delta(r - r_0) \delta(\theta - \frac{\pi}{2}) [\delta(\phi - \nu u) + \delta(\phi - \nu u - \pi)]$$

We express ρ in terms of spherical harmonics

$$\rho = \sum_{\ell,m} \Re \left(\rho_{\ell,m} \exp(|m| i \nu u) \right) Z_{\ell,m},$$

For $\ell \leq 2, m \neq 0$, the only nonzero coefficients are

$$\rho_{2,2} = \delta(r - r_0) \frac{M}{2r_0^2} \sqrt{\frac{15}{\pi}}, \quad \rho_{2,-2} = -i\delta(r - r_0) \frac{M}{2r_0^2} \sqrt{\frac{15}{\pi}}.$$

Now construct two separate linearized solutions, one valid in $r < r_0$ with constants C_{1-}, \dots, C_{6-} , and the other valid in $r > r_0$ with constants C_{1+}, \dots, C_{6+} . The 12 constants satisfy the conditions

Number of conditions Description

2	Constraints in $r < r_0$
2	Constraints in $r > r_0$
1	No incoming radiation in $r > r_0$
3	As $r \rightarrow 0$, metric becomes Minkowskian
4	Boundary conditions at $r = r_0$

where the boundary conditions at $r = r_0$ are

$$J_{0+} = J_{0-}, \quad U_{0+} = U_{0-}, \\ \beta_{,r} = 2\pi r_0 \rho (1+V^2), \quad w_{,r} = -4\pi \rho (1+V^2)$$

leading to

$$\mathcal{N} = M(1+V^2)r_0^2\nu^3\sqrt{\frac{2\pi}{5}}2^4\left(\sin(2\nu u)_2 Z_{22} - \cos(2\nu u)_2 Z_{2-2}\right).$$

Integrating $N^2/(4\pi)$ over the sphere gives

$$\frac{dE}{du} = -\frac{M^2(1+V^2)^2 r_0^4 \nu^6 2^7}{5}$$

In Newtonian limit $V \ll 1$ and orbit is circular if $M = 2^2 r_0^3 \nu^2$

$$\frac{dE}{du} = -\frac{2M^5}{5r_0^5}$$

which is the standard quadrupole formula.

Higher multipoles

The formalism can also be used to evaluate the gravitational radiation in higher modes, e.g for $\ell = 4$,

$$N = Mr_0^4 \nu^5 \left(0.64 \left(\sin(2\nu u)_2 Z_{42} - \cos(2\nu u)_2 Z_{4-2} \right) \right)$$

+ 26.9 $\left(\sin(4\nu u)_2 Z_{44} - \cos(4\nu u)_2 Z_{4-4} \right) \right).$

Application 3: Quasi-normal modes^{††}

• Recall the master equation for a linearized solution

$$-2(2x + 8Mx^{2} + i\nu)J_{2} + 2\left(2x^{2} + i\nu x - 7x^{3}M\right)\frac{dJ_{2}}{dx}$$
$$+x^{3}(1 - 2xM)\frac{d^{2}J_{2}}{dx^{2}} = 0 \qquad (1$$

Eq. (1) has singularities at x = 0 and x = 0.5M. The problem is to find values of ν for which there exists a solution to Eq. (1) that is regular everywhere in the interval [0, 0.5M]; these values of ν are the quasi-normal modes.

^{††}N.T. Bishop and A.S. Kubeka, *Phys. Rev. D* **80**, 064011 (2009)

- While the differential equation is different, this is the same scenario as when finding the quasi-normal modes of a black hole. The first solution was obtained by using series solutions around the singular points, and a numerical solution in the interior of the interval. Nowadays, quasi-normal modes are usually found using the theory of 3-term recurrence relations, but for technical reasons that theory cannot be used here.
- We construct the asymptotic series about the essential singularity at x = 0, and use it to find a solution at a point $x_0 > 0$. We then use this solution as initial data for a numerical solution of Eq. (1) in the range (x_0, x_c) where $x_c < 0.5M$. Finally, we construct the regular series solution about x = 0.5M and use it to find a solution at $x = x_c$. Then a value of ν is a

quasi-normal mode if the difference at $x = x_c$ between the regular series solution and the numerical solution, vanishes.

• The difficult part is the essential singularity, because the asymptotic series is not convergent. However, we can calculate a rigorous bound on the error involved in approximating the solution by a given number of terms of the series, and ensure that this is less than machine precision.

Schematic plot of $v(x) = J_2(x)/J'_2(x)$ against x.

Results

• Defining

$$g_{\nu} = v_+ - v_-,$$

the quasi-normal modes are those values of ν such that g_{ν} is indistinguishable from zero.

• We calculated g_{ν} for values of ν in the range $\nu = a + ib$, $0.1 \le a \le 1.07$, $0.05 \le b \le 0.89$, in increments of 0.03.

Contour plot in the complex plane: $\Im(g_{\nu}) = 0$, $\Re(g_{\nu}) = 0$, Boundary of reliable computation.

• We then applied a secant method, and calculated bounds on the possible error, obtaining the lowest quasi-normal mode

 $\nu = 0.883 + 0.614i + 0.003k$

where k is a complex number satisfying $|k| \leq 1$.

v(x) for $\nu = 0.883 + 0.614i$.

v(x) for $\nu = 0.37367 + 0.08896i$, which is the lowest quasinormal mode of a Schwarzschild black hole.

Discussion

• How can the quasi-normal modes of Eq. (1) be different to the usual values of a Schwarzschild black hole?

- Geometrically, K is a typical hypersurface in the black hole case, and N is null. From the direction of wave propagation on N, the quasi-normal modes can be interpreted as perturbations of a white hole.
- Algebraically, Eq. (1) is a second order d.e., and there are two independent series solutions about the regular singularity at x = 0.5, i.e. at the horizon, say as₁(x)+bs₂(x) with s₂(x) unbounded near the horizon. For the calculations above we set b = 0, but if instead we set a = 0, the standard Schwarzschild QNM is found.

Application 4: Particle orbiting a Schwarzschild black hole

In principle, the calculation is similar to that on the Minkowski background, but is technically much more difficult because part of the solution is not known analytically.

• Black hole of mass M, particle of mass m_0 in circular orbit at $r_0 = 6M$, $\theta = \pi/2$

$$\frac{d\phi}{d\tau} = \frac{\sqrt{3}}{18M}, \quad \nu = \frac{d\phi}{du} = \frac{\sqrt{6}}{36M}$$
$$\rho = \frac{m_0}{r_0^2} \delta(r - r_0) \delta(\theta - \frac{\pi}{2}) \delta(\phi - \nu u)$$

We express ρ in terms of spherical harmonics

$$\rho = \sum_{\ell,m} \Re \left(\rho_{\ell,m} \exp(|m| i \nu u) \right) Z_{\ell,m},$$

For $\ell \leq 2, m \neq 0$, the only nonzero coefficients are

$$\rho_{2,2} = \delta(r - r_0) \frac{m_0}{r_0^2} \sqrt{\frac{15}{\pi}}, \quad \rho_{2,-2} = -i\delta(r - r_0) \frac{m_0}{r_0^2} \sqrt{\frac{15}{\pi}}.$$

Now construct two separate linearized solutions, one valid in $r < r_0$ with constants C_{1-}, \dots, C_{6-} , and the other valid in $r > r_0$ with constants C_{1+}, \dots, C_{6+} . The 12 constants satisfy the conditions

Number of conditions	Description
2	Constraints in $r < r_0$
2	Constraints in $r > r_0$
1	No incoming radiation in $r > r_0$
2	Bondi gauge conditions as $r o \infty$
1	Exclude well-behaved solution at horizon
4	Boundary conditions at $r = r_0$

where the boundary conditions at $r = r_0$ are

$$J_{0+} = J_{0-}, \quad U_{0+} = U_{0-},$$

$$\beta_{,r} = 4\pi r_0 \rho, \quad w_{,r} = -\frac{16}{3}\pi \rho$$

leading to

$$\mathcal{N} = \frac{m_0}{M} \left(\Re \left[(0.014267 + 0.093467i) \exp \left(\frac{2i\nu u}{M}\right) \right] {}_2Z_{2,2} - \Re \left[(0.014267i - 0.093467) \exp \left(\frac{2i\nu u}{M}\right) \right] {}_2Z_{2,-2} \right)$$
$$dE/du = -7.114 \times 10^{-4} \frac{m_0^2}{M^2}$$

Compare value from quadrupole formula $-8.2305 \times 10^{-4} m_0^2/M^2$.

Still work in progress – value for ${\cal N}$ should not be regarded as reliable.

Figure 1. Null coordinates.

COSMOLOGY

Observational cosmology^{‡‡}

- Cosmological data is (almost all) from the past null cone, and it is natural to apply the characteristic approach.
- These ideas were developed by Ellis and others, using a different formalism.
- Here, we adapt the characteristic code so that it actually computes the past behaviour of the Universe. We take the cosmological fluid as dust, with p = 0, $T_{ab} = \rho v_a v_b$.

^{‡‡}G.F.R. Ellis *et al.*, Phys. Rep., **124**, 315 (1985); P.J. van der Walt and N.T. Bishop, Phys. Rev. D: **82**, 084001 (2010); **85**, 044016 (2012)

Data on the past null cone

- Initial data required by the code: $J,\rho,v_1,V,$ as functions of $r,x^A.$
- Observational data

$$\begin{array}{ll} x^{A} & \text{Position on the sky} \\ d_{L} & \text{Luminosity distance: related to } r & \text{by } d_{L} = (1+z)^{2}r \\ z & \text{Red-shift}: v^{0} = 1+z, v_{1} = -e^{2\beta}(1+z) \\ \frac{dx^{A}}{du} & \text{Angular velocity}: v^{A} = (1+z)\frac{dx^{A}}{du}, v_{A} = F_{9}(r,z,\beta,U,J,\frac{dx^{A}}{du}) \\ n & \text{Observed number count}: N = \frac{ne^{-2\beta}}{1+z} \text{proper number count} \\ J & \text{Shear: from observed shape of spherical object} \end{array}$$

- A relationship for ρ needs to be assumed, say $\rho = F_{10}(N)$.
- The Einstein equation for R_{11} becomes

$$\beta_{,r} = f_1 + 2\pi r F_{10} \left(\frac{n e^{-2\beta}}{1+z} \right) \left(-e^{2\beta} (1+z) \right)^2$$

which remains an o.d.e. for β . Once solved, v_1 is also found.

• Similarly, the R_{1A} equations remain o.d.es. for U, and once solved, v_A and hence V are also found.

Spherical symmetry

- Cosmology code implemented and tested for spherical symmetry.
- Difficult numerical issues
 - Evolution near the origin
 - Outer boundary incoming null geodesic.

Code testing

• Use Lemaître-Tolman-Bondi (LTB) model as exact solution

$$ds^{2} = -dt^{2} + [R_{r}(t,r)]^{2}dr^{2} + [R(t,r)]^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$

- Spherically symmetric inhomogeneous model, with FRW recovered when R(t,r) = ra(t).
- We use $R(t,r) = r(t-br)^{2/3}$, so b = 0 is Einstein-de Sitter.
- Construct (numerically) coordinate transformation to characteristic coordinates.

LTB vs \CDM

- SnIa data is usually regarded as caused by dark energy, but could also be explained by large scale inhomogeneities, i.e. an LTB model.
- However, the past behaviour of LTB and ACDM models is different.

Suppose that we are in a $\Lambda = 0$, LTB universe. In the past, 6 Gyrs ago, could the observational data also have been interpreted as Λ CDM?

No: If the universe is LTB, then not only are we at a special place, but also at a special time

Going beyond the point of reconvergence on the past null cone

- Due to the expansion of the universe, the past null cone has a maximum size (where $r = r_{max}$), and beyond this it reconverges. In EdS, r_{max} is at z = 1.25.
- At $r = r_{max}$ the coordinates are singular, and the code can be used only in a domain $r < r_{max} \epsilon$.
- This is a coordinate problem and is resolved by using new coordinates.

Affine radial coordinate

From the geodesic equation

$$\frac{dr}{d\lambda} = e^{-2\beta}.$$
(2)

Apply the tensor transformation law to the Bondi-Sachs metric, and re-write it in the form

$$ds^{2} = -\left(1 + \frac{\hat{W}}{\hat{r}}\right)du^{2} - 2dud\lambda + \hat{r}^{2}\{d\theta^{2} + \sin^{2}\theta d\varphi^{2}\} \quad (3)$$

with: $\hat{W} = \hat{W}(u,\lambda)$ and $\hat{r} = \hat{r}(u,\lambda).$

Substitution into the Einstein field equations gives

$$\hat{r}_{,\lambda\lambda} = -\frac{1}{2}\kappa\hat{r}\rho(v_1)^2 \tag{4}$$

$$\hat{r}_{,u\lambda} = \frac{1}{2} \left\{ \hat{W}_{,\lambda} \hat{r}_{,\lambda} + \hat{r} \hat{r}_{,\lambda\lambda} + \hat{W} \hat{r}_{,\lambda\lambda} - 2\hat{r}_{,u} \hat{r}_{,\lambda} - 1 \right\}$$
(5)

$$+ (\hat{r}_{,\lambda})^2 + \frac{1}{2}\kappa\rho\hat{r}^2 - \Lambda\hat{r}^2 \bigg\} \bigg/ \hat{r}$$
(6)

$$\widehat{W}_{,\lambda\lambda} = \frac{\widehat{W}}{\widehat{r}}\widehat{r}_{,\lambda\lambda} + 4\widehat{r}_{,u\lambda} + 2\kappa\left(v_0v_1\rho - \frac{1}{2}\rho\right)\widehat{r} + 2\Lambda\widehat{r}$$
(7)

with: $\hat{r}(0) = \hat{W}(0) = \hat{W}_{\lambda}(0) = \hat{r}_{u}(0) = 0$ and $\hat{r}_{\lambda}(0) = 1$.

Then substituting the dust stress-tensor $(T_{ab} = \rho v_a v_b)$ into the conservation equation, $T^{ab}_{;b} = 0$, yields the fluid equations

$$v_{1,u} = \frac{1}{v_1} \left\{ \left(\hat{V}_w v_1 - v_0 \right) v_{1,\lambda} + \frac{1}{2} (v_1)^2 \hat{V}_{w,\lambda} \right\}$$
(8)

$$\rho_{,u} = \frac{1}{v_1} \left\{ \rho \left[\hat{V}_w \left(\frac{2v_1}{\hat{r}} \hat{r}_{,\lambda} + v_{1,\lambda} \right) - \left(\frac{2v_0}{\hat{r}} \hat{r}_{,\lambda} + v_{0,\lambda} \right) + \hat{V}_{w,\lambda} v_1 - \left(\frac{2\hat{r}_{,u}}{\hat{r}} \right) v_1 \right] + \rho_{,\lambda} \left(\hat{V}_w v_1 - v_0 \right) - \rho v_{1,u} \right\}$$
(9)

$$\hat{W}$$

with: $\hat{V}_w = 1 + \frac{\hat{W}}{\hat{r}}$.

Using the condition $g^{ab}v_av_b = -1$, v_0 can be written as

$$v_0 = \frac{1}{2}\hat{V}_w v_1 + \frac{1}{2}v_1^{-1}.$$
 (10)

Diameter distance against λ (A) and against of z (B) on PNCs at different proper times (u) evolved from a local PNC up to z = 5.

Density distribution (A) and covariant velocity (B) on PNCs at different proper times (u) evolved from a local PNC up to z = 5.

Conclusions

- The characteristic formalism can be used for numerical evolutions in vacuum, or with matter.
- The formalism is use for the extraction of gravitational radiation from a "3+1" simulation.
- Linearized solutions are used for code-testing, for gravitational wave calculations, and for the calculation of quasi-normal modes.
- The characteristic code can be used, in principle, to compute the past behaviour of the universe from observations.
- If the universe is $\Lambda = 0$ LTB rather than Λ CDM, then not only are we in a special position, but we are also at a special time.
- In order to get past the reconvergence of the past null cone, the code has been reformulated using an affine, rather than a surface area, radial parameter.

THANK YOU