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2 Interesting features arise on its motion (gravitational force balance
effects).
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(The angle of aberration is extremely small,
P rad since the radiation is moving at the speed of
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orbital motion.
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K%y =0,

K=null geo, known
®= obtained by integrating
conservation eqs of T

k is assumed to be tangent to an affinely parametrized outgoing null geodesic in
~ the equatorial plane, i.e., k*V,k? = 0 with k = 0. We will only consider photons in

Photons with L=0:
Special situation,
to be generalized
later




i

_—

Test-pal - -
M moves on the eauatorial plane 0 =m/2
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Special solutions: m
(radial inward/outward motion wrt ZAMOS)

. particle in geodesic motion

U=yU,n)n+vU,n), v(U,n) =Vve + v‘i"e&-, = vsinae; + v cosae,




gro = 0, g, = 1/N?, Goo =12,

The radially outgoing (geodesic) photons on the equatorial plane have 4-momentum
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Geos in green

. The orbit of the particle in the Schwarzschild spacetime with M = 1,
AI."M' = IEI &, "lerit) = 31250 . The inner circle is the horizon » = 20, 1.-.]1115
the outer circle is at the critical radius which is inside the initial data pDSlthI]:l

Initial conditions have ({0}, @(0), a(0)) = (40, 0,0} and v (0) = 0.2,0.5,0.8, The
corresponding geodesics A /M = 0 are in gray.




The orbit of the particle in the Schwarzschild spacetime with M = 1, A/M = 0.8,
Feriy = 3.9M,vg = 0.7071. The inner circle is the horizon r = 2M, while the outer circle is
at the critical radius which is outside the initial data position. Initial conditions have (r(0), ¢(0).
a(0)) = (4M, 0, 0) and for the left figure v(0) = 0.2,0.3, ..., 0.7 < vg while for the right figure
0.71,0.72, ...,0.75 = vg. The corresponding geodesics A/M = 0 are in gray, and those in the
left figure come to rest at the horizon in the Schwarzschild coordinates.




The orbit of the particle in the Schwarzschild spacetime with M = 1, A/M = 0.01,
reriny &~ 2M and initial conditions (r(0), ¢(0), @(0)) = (10M, 0, 0) with the circular geodesic
speed v(0) = vg = 0.3536. The circular geodesic (gray) is shown with the in-spiraling orbit
(black) with the same initial conditions.
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In the equatorial plane of the Kerr metric, the metric is
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The orbit of the particle in the Kerr spacetime with M = 1,a = 0.5 (left figure),
a = —0.5 (right figure), A/M = 0.8, ricriy = 5.351M. The inner circle is the horizon r =
1.866 M, while the outer circle is at the critical radius which is outside the initial data position.
Initial conditions have (r(0), ¢(0), a(0)) = (4M, 0, 0) and v(0) = 0.2, 0.5, 0.8 for the left figure,
while in the right figure v(0) = 0.2, 0.5, 0.8, 0.847 for both the accelerated and geodesic curves
and then finally v(0) = 0.9 for the accelerated curve and v(0) = 0.848 for the geodesic, both of
which escape to infinity. The corresponding geodesics A/M = 0 are in gray. The bound orbits
end up co-rotating with the hole at the horizon (geodesics) or at the critical radius (accelerated).




The orbit of the particle in the Kerr spacetime with M = 1, a = 0.5
(left figure), a = —0.5 (right figure), A/M = 0.6, r(;py) = 3.154M. The inner
circle is the horizon v = 18660, while the outer circle is at the critical radius
which is inside the initial data position. Initial conditions have (v{0),$(0), a(0)) =
(4M,0.0) and 11{0) = 0.2,0.5,0.8. The corresponding geodesics A/M = 0 are in

gray.
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Critical “equilibrium”orbits
are circular orbits with
speed depending on A/M.
There exist stability regions

(in gray)

Critical orbits at r=fixed
can be more than 1

at the same A/M, if one
Is close to the horizon

The critical azimuthal velocity l{: versus critical radius ro/M = 2 for the
S-.hu..]rzsthld case for selected values of A/ M. P'h}"il al velocities are confined to the interval

-1 = ln < 1, with A/M — o0 corresponding to |LD | = 1 indicated by the thick dot—dash lines,
and the thick HDlld curves indicating the geodesic velocities corresponding to A = 0., enclosing

the outgoing photon region, outside of which is the ingoing photon region. The thick closed loop
curves enclosing the shaded regions are explained below. For context the thick dashed curves
correspond to A/M = 1. Arrows indicate the direction of increasing values of A. Note the two
pairs of accumulation points of the family of curves near the horizon at unit velocity.




a/M = 0.5.

Slightly deformed picture
In comparison with the
analogous in
Schwarzschild

- : . @ - . A - -
The critical azimuthal velocity v; versus critical radius ro/M for the Kerr case for

equally spaced values of A
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B The spacetime and photon parameters are a/M = 0.5, A/M = 0.3 and b/M = 3,
showing two orbits moving initially from the bullet point on the horizontal axis in the two
azimuthal directions just inside the outer critical radius with 1.2 times the cntical speed for
that counterclockwise critical orbit. The umt velocity direction field ©(k, n) of the radiation with
respect to the ZAMOs is superimposed on the plot, showing the additional counterclockwise
rotation of the photon trajectories with respect to the counterclockwise rotating ZAMOs. The
dashed circles are the two null circular geodesics orbits. The gray filled circle extends to
the horizon. The counterclockwise moving orbit settles down to the outermost critical orbit,
while the clockwise moving orbit quickly falls into the innermost critical orbit near the horizon.

The gray circle between the null orbits 1s the unstable critical orbit. The axes show units
of r/M.
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M = M(t, r) sy
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P
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ds? =_(&) e dr
M,) 1T—2M/r 1 —2Myr

+ r*(dB” + sin” 8 d¢™)

du=F 13 BN = VT =2MW)/r Upper sign:
- out-going radiation

2 _ _JI,IIIFE -EIHZ T 2dudr <+ rl [d.l'_-}: + Eri[‘jE g d'{b: }

In the entire article, upper signs correspond to M, = 0 (outgoing radiation), while lower signs to M , = 0 {ingoing
radiation), so that =M , = 0. The advanced null coordinate is conventionally denoted by v, but we keep u in both
cases (distinguishing them by signs).



The most natural test observers suitable for physical interpretation are lh-:-at rest in the
spatial coordinate grid at r = const, # = const and ¢ = const; their 4-velocity field is
1
N
A convenient spatial orthonormal triad tied to this observer congruence is
I

-~

= 'Eﬁ. —

a I

da .

—

+/ 800

ma(U)* = —oP(U)*,T* ,U" = Fraa(U)*




For a particle moving in the equatorial plane # = 7 /2, so that v(U, ) =0 =1U", the
equations of motion (3.1) become

dv’ __ M,
: . v)7) [1_“‘*"' FM,(1F "’r'}] i
dr riv- “lor '

i

ar Jﬂf - - E_J_- T
- i
(v¥)* L

r N- UF V)7
- _ v[N . - T, -
V2 EM,(F vfil] - v - S E ),

' F =

dr o

"
with y(U, 1) = y = 1,'“1‘,#'1 — ()2 —( v )2. To complete this system one must add the
evolution equations for u, r and ¢, 1.e.

du dr

Y ;\ ; dp  yv®
= —(1Fv"), — =y NV, — = :
N Fv dr ! dr r




. m under special assumptions of M(u)
M{u) = Mpexp(—4dmua/o)

& N@—N)
r_élﬂr a
M) =M, + M2 ;Ml}{l + tanh Bu)

outgoing (M; = M>) and ingoing radiation (M = M?3) cases

In this case (tanh-case) one has asymptotically
two Schwarzschild spacetimes, of which we already
know the properties.

Evolution of the guasi-equilibrium radius r with time u for the mass profile M{u) =
M) + (M2 — My){1 + tanh fu)/2 with the following parameter choice: M} = 1. M> = 0.65,
B = 10~ and different values of & = [3, 5, 5.5] x 107, with the axes given in units of M. The
black dashed curve corresponds to the apparent horizon. During the transition phase the quasi-
equilibrium radius is even more enhanced for increasing values of o, i.e. when the interaction with
the radiation field becomes stronger.




PR-orbits (capture) T~

153 =lb=

The behavior of r(r) is shown in (a) in the case of outgoing radiation with the following
parameter choice: M} = 1, Ma = 0.65, # = 1072 and & = 0 (geodesic, thick dashed line) and
& = 107 (solid line), with the axes giwzn in units of M. The initial conditions are ui(0) = — 100,
riy =4, $(0) =0, v (0 = 0, v?(0) = 0.707, which correspond to a circular geodesic in the
past asymptotic Schwarzschild spacetime with mass M. The corresponding orbits are shown in
(h). In the geodesic case, the orbit escapes outward after a few loops. In contrast, the accelerated
particle spirals toward the apparent horizon, which is reached in a finite proper time interval at
r#s 2. The asymptotic inner apparent horizon at r = 1.3 is also shown.
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The signal from an emitting source moving in a
Schwarzschild spacetime under the influence of a
radiation field
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The emitting source now undergoes PR effects...i.e. it spirals up to
a critical radius
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The apparent position (direct image only), light curve, redshift factor and solid angle
of the emitting spot are shown for the orbit depicted in the vpper left panel in the case of a
radially outgoing radiation field. The orbital parameters and initial conditions are A/M = 0.01,
Fem(0) = 10M, ¢y (0) = 0, ve (0) = vg 72 035 and aery (0) = 0. The distant observer is located
at the polar angle f,ps = B0°. x = (fem/M) cOsS e and ¥ = (rem /M) sin ¢y are the Cartesian-
like coordinates expressed in units of M. The black circle represents the Schwarzschild horizon
r = 2M. The critical radius approaches the horizon in this case (rig & 2.0002M). The flux is
given in arbitrary units as a function of the coordinate time given in seconds, corresponding to the
choice of M = 1.0M . The observed time is given by the orbital time plus the light-bending travel
time delay. The relative time delay is then evaluated by using the geodesic equations in such a way
that the first photon emitted at the starting point defines the reference time which is set to zero. For
comparison purposes, the corresponding curves for an emitting spot in circular geodesic orbit at
fem = 10OM on the equatorial plane of a Schwarzschild spacetime are shown (dashed curves).
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The same as in figure | but with A/M = 0.1. The crnitical radius approaches the horizon
also in this case (rq) = 2.02M).
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Spinning bodies and the Poynting—Robertson effect
in the Schwarzschild spacetime
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D PH P = mu

_ FtSFiﬂlI-‘- _l_F':Tﬂd]'I-‘-
dr

u = y,[n+v,(sina, e; +cosa, e;)]

e
g
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The orbit of a spinning particle (solid curve) subject to the Poyvnting—Robertson effect
is shown for the choice of the parameters A/M =08 and s =0.5(X = rcosd and ¥ = rsind
are the Cartesian-like coordinates). The starting point is located at rp(0) = 4M and d}r]:n{ﬂ]l =0

with Uuufﬂ} = ﬂ._l", ﬂ'uufﬂ'} = ﬂ, f.;fD:l- = ﬂ, Fy [ﬂ'] = 0 and tllrl';{D:l- = '._]'f 1-'_: I:ﬂ'} = 0 and 'I-'_fﬂ]‘} = (.
The values of the spin parameter have been exaggerated in order to distinguish the difference
from the motion of a spinless particle (dashed curve). The inner circle is at the horizon r = 2M,
while the outer circle is at the critical radius ricry, = 5.5M which is outside the initial data position.
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In the absence of both spin and radiation we assume the geodesic motion of the particle
to be circular at r = rg (rg = 3M in order Uy to be timelike), that is

U=Ug =yx(nLvgey),

where the Keplerian value of speed (vk ) and the associated Lorentz factor (yx ) and angular
velocity (£ ) are given by

M
| — —— —
K ro— 2M YK

The parametric equations of Uy are
K
= rK=r9+F—r =+ T,
= Ny

r = ro. E'=%.

YK VK
i

G = ¢+ T =¢@px kT,

t =t + fty +5§t;, r=ro+ fry+35r;, & =g+ for +5¢;,

7 FooaF ; b o~
1 =fuf+su;¢ ud’=:|:u;;+fuf+3ug.

vy = g + f”ﬂj’ + Suys, Oy = fﬂﬂf + Satys,




| U =Ug+ fU; +3U;

e

U, =
T ro

u=U+ fuyr+35u;
= . rl]l

To first order in § and f the spin force and radiation force are given by

FSP) — m3m M5y civk e;,

—Vg — i :IZ’F

U; = (—U‘g— :I:}'K

o _
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- 3/2
S L BN U (_) " _3m M(ro — 6M)
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M O,
r
g €2
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ve | . Qg
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For instance, for the motion of the Earth about the Sun wi find

{E} = fTD m-”[”’:%]g a3 1075 T4 1015 s 10715,
since rp 7= 1.5 % 10" em, M = Mg = 1.5 x 10° cm and the ratio (s/m)g = 200 cm for
the Earth; the nction parameter s related to the ratio between the solar lnminosity
Lo 72 3.8 % 10™ erg/s and the Eddington lnminosity [16, 17| LEdd == 1.3 = 107 erg /s,
and for the Sun is given by f == 3 = 10~'%. Therefore, in this case the effect of the
raciation field on the orhat 15 of the same order as that due to spin. Note that the
estimate of the contnbution due to spin 15 in agreement with [23].

The effect of the spin may become mmportant when the orliting extended body
15 & fast rotating object. To illustrate the order of magmtude of the effect, we
mayv consider the binary pulsar syvstem PSH O JOT37-3039 as orbiting Sgr A®, the
supermassive (1 — 10% M) black hole located at the Galactic Center [24, 25], at a
distance of ¥ = 10° Km. Thr_ PSR JOTIT-2039 system consists of two close neutron
stars (their separation is only da g ~ 8% 10° Km) of comparable masses ma = 1.4 Mg,
mpg == 1.2 Mg}, but very different intrinsic spin period (23 ms of pulsar A vs 2.8 5 of
pulsar B) [26]. Its orhital period s about 2.4 hours, the smallest yet known for such an
object. Since the mtrinsic rotations are neghgible with respect to the orbital perniod,
we can treat the binary system as a single ohject with reduced mass g = 0.7 Mg
and mtrnsic rotation equal to the orbital period. The spin parameter thus turns out
to be equal to & = 1.0 x 10-2. The luminosity of Sgr A* is about ]ﬂaﬂe: whereas its
Eddington lnmimnosity 15 Lggq = l[lln.ﬂe: so that f == 10—, Therefore, in this case

(5_’}::7.51 10-19 7 1.8 % 10-7 = 10-7 > PSR J
-

Therefore, m this case the effect of the spin on the orlit dommmates with respect to
the friction due to the radiation field.
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2.6

Charged particles in external magnetic fields

fiem)(U) = qgyNBo[—v¥e; + UFE@] = mioyN[—v’e; + UFE‘&]

Due to the presence of external fields

one may find equilibrium conditions for

balance of the gravitational and

non-gravitational actions.

—>Compare with PR effect

—>Equivalence principle, uncertainty of
the measurements

ma(U') = fiem)(U)

I

0,5 1

-0,5 1

_l_

) Charged particle in an external magnetic field. The equilibrium azimuthal velocity
v® is plotted as a function of rg/M for fixed values of Mgy = [0 (black), —0.1 (red),
—0.5 (blue), —1 (green), —5 (brown)]. The corresponding equilibrium orbits are stable outside
the shaded region. For every fixed value of the equilibrium radius ro /M, there exist in general two
values of the azimuthal velocity corresponding to co-rotating and counter-rotating orbits.



(a) (b)

Charged particle in an external magnetic field. (@) The orbit corresponding to
Mgy = —0.01 for the choice of initial conditions r(0) = 5M, ¢(0) = 0, v"{0) = 0 and
v®(0) = 0.6. The equilibrium values of the azimuthal velocity are v®(0) =2 [—0.598, 0.557].

(b) The corresponding behaviors of the signed magnitude « and the first torsion r; as functions of
the proper time t.




(b)

Charged particle in an external magnetic field. (@) The orbit corresponding to Mg = —1
for the following choices of initial conditions: r(0) = SM. &(0) = 0O, v {0) = 0 and
v®(0) = [—0.8 (green), —0.5 (blue), 0.066 (black). 0.3 {red)]. For the selected values of r{0)/M
and Mgy, the equilibrium values of the azimuthal velocity are v (0) =2 [—0.991, 0.066]. (b) The
behaviors of the signed magnitude « and the first torsion 7, as functions of the proper time t for

the same choice of parameters and initial conditions as in (a). The critical values corresponding to
equilibrium are x = —0.051 and ©; =~ —0.007.




Particles with a magnetic dipole moment

. 2uMyBy, .
JipU) = u{ V' n+ e;)
r2

Superposed magnetic field and motion of a spinning particle also endowed with a
- _magnetic dipole

| 5}*er My
fdai”— "—_lfln:ll]:n'[IiIr )+ .fmpmﬂ:'r ) = (,_..uﬂ.], - ; 2 H' n + e7)




5. Analogies between different Kinds of situations

Consider the equilibrium circular orbit associated with different kinds of particles as discussed
in section 4.

(1) Particles with charge g in an external magnetic field:

y (1?2 — vp) = rogov®, Lo = gBo/m. (5.1)

(11) Particles with a magnetic dipole in an external magnetic field:

- 4 M
y(v*? —vg) = —f—, B = 2uBy/m. (5.2)
roN

(i11) Particles with spin in the background geometry:

. IME -
@M—ﬂ%ﬁ=zﬁﬂﬁ, §=s/(mM). (5.3)

"o

(iv) Neutral particles in a given radiation field:
2

N AN , A a2
y — — | = sgn[sin ‘B']]H‘ A =odiE"/m. (5.4)
Vi

In all these cases (as well as in cases which are combinations of these), which originate
in different contexts, deviations from circular geodesic motion are given by

v = dvp + Av, (5.5)




. M 32 A
Avy, =+—, . = — Vi S,

1 /2 A
- ) sgn[sin ﬁg]ﬁ.

(1) One cannot distinguish between a particle with a magnetm dipole ;& moving on a mean

radius rp and a one with electric charge |g| = 2uM 12 ry 3 , for any mass m and a magnetic
(test) field Bo.

(11) One cannot distinguish between a neutral particle moving on a mean radius ry with
spin 5 and a particle having a magnetic dipole gt in a magnetic field By with |[uBy| =
(3/2)v, v, (5/rp), for any mass m.

(111) One cannot distinguish between a spinning particle with 51]][] 5 on a mean radius rp and a
charged particle in a magnetic field By with |gBy| = 3M ' “*r'; 32 ¥, v, 5. The latter case is
complementary to the previous ones. It 1s then clear that a measurement of the correction
to any given geodesic property is not sufficient by itself alone to identify the structure
of the particle under consideration. Only combined measurements of different kinds can

overcome this ambiguity.

(iv) One cannot distinguish between a spinning particle with spin s also endowed with a
magnetic dipole moment (e.g. a pulsar) and neutral non-spinning and not magnetized
geodesic particle.
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Effects of friction forces on the motion of objects
in smoothly matched interior/exterior spacetimes

Donato Bini'*>"**, Daniele Gregnrisj‘ﬁ‘?1 Kjell l:h:lzﬁqllizitj’|5

and Sauro Succi 1.3

= PR friction force
— Friction forces in the presence of matter or null fields extended to matter
fields

Tp.u = (p + P}"H Uy + P8uv
fisrie)(U)* = —aP(U)* s TP U,

Friction forces in a matter field

0% = v (U, w)[||v(U, w)||u® + 5(U, u)*]
fitriey(U)* = —o(p+ ply (U, H}EHU{U. u)|| e




_‘_‘A Stokes Law and Poisewmlle’s Law
Consequences of Viscosity i i

stokes’ law gives wiscous -
retarding force to motion of a o
F ¥

 sphere through a fluid:

f{StDI‘.cs} = E'WRUP

F=6aRvy
T : P+AP P
Poizenille’s Law gives volume |c; L :>|
flow rate of aflud through a =
T'l pipe (Q1n msec). A OQ-=flow

Q=T R*AP/(8TL)

V
fifric) = ocy’ (F‘ + Fﬂj) P oyi(p+p)V

—_'

We immediately recognize in equation (2.15) the
same structure as in equation (2.14), with the “expected’ relativistic corrections: (1) the y factor
(which reduces to 1 at small speed) and (ii) the group (p + p/c>)V replacing the classical one
(pV), since in the relativistic regime the pressure becomes comparable with the mass—energy
density (as familiar from the equation of relativistic hydrostatic equilibrium, discussed in
many textbooks). As a consequence, the identification 6w Ry« oc follows.




Schwarzschild interior and
exterior solution matched

........

‘_,-":Exterior
.~ dotted

massive particle coming from r, = 8M and ¢y = 0. with initial velocity v, = 0.4 and different
values of initial inclination cp. The particle follows a geodesic motion in the exterior region
and a non-geodesic, or scattered motion, in the interior region. In particular, the exterior motion
1s represented with a dotted line, while the interior with a dashed or a continuous line, for the
scattered or geodetic, respectively. The boundary of the gas cloud is drawn as a circle. The orbits
are presented for different initial inclinations, corresponding to ey = 3 and oy = 4. It is observed
that the test particle subject to these initial conditions can exit from the region where the gas 1s
present, only in the geodesic case. Otherwise, it reaches the center of the configuration in r = 0,
and “sits’ there forever.




The particular case of the Buchdahl metric is obtained in the limit b = 0, i.e

Unbounded Buchdahl metric: orbits. The plot shows the comparison between geodesic
(dotted) and scattered motion in the unbounded Buchdahl space, for the initial conditions vy = 0.2,
ro = 3M, ¢y = 0 and oy = 0. In particular, the particle undergoing scattered motion reaches the
center of the configuration, while the one moving along a geodesic exhibits a periodic motion
between two specific values of the radial coordinate (solid circles). Here & /M = 107,
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Unbounded Buchdahl metric: radial coordinate. The plot shows the radial coordinate as
a function of the proper time, for the case of the unbounded Buchdahl space, for both geodesic
(dotted) and scattered motion. This conveys a dynamic picture of the situation shown in the previous
figure. Here & /M = 10°.
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The general relativistic Poynting-Robertson effect. The case of a radiating ring

FIG. 1: [Exact T"", co-rotating emitter] The behavior r as a function of 7 is shown for the choice of parameters a/M = 0.5,
A/M = 2.62, ro /M = 6 and initial conditions r(0)/M = 12, a(0) = 0 = ¢(0), v(0) = 0.25. The specific intensity turns out to
be I. =~ 1.35 x 107 *Am/o. The critical orbit at ro/M = 10 with I/g’ ~ 0.28 is reached after few revolutions.

Work in progress



RiklIBgraphy: (essential)

Poynting J H 1903 Phil. Trans. R. Soc. 203 525

Robertson H P 1937 Mon. Not. R. Astron. Soc. 97 423

Wyatt S P and Whipple F L 1950 Astrophys. J. 111 134 (misprint in equation (2); —afl /r — —afl /r?)

Kimura H, Okamoto H and Mukai T 2002 [carus 157 349

Srikanth R 1999 [carus 140 23]

Eddington A § 1926 The Internal Constitution of Stars (Cambridge: Cambridge University Press)

Guess A W 1962 Astrophvs. J. 135 835

Abramowicz M A, Ellis G FR and Lanza A 1990 Astrophys. J. 361 470

Lamb F K and Miller M C 1995 Astrophys. J. 439 828

Miller M C and Lamb F K 1996 Astrophys. J. 470 1033

Miller M C and Lamb F K 1993 Astrophys. J. 413 L43

Stephani H, Kramer D, MacCallum M A H, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein's Field
Eguations 2nd edn (Cambridge: Cambridge University Press)

Bini D, Carini P and Jantzen R T 1997 Int. J. Mod. Phys. D 6 |

Bini D, Carini P and Jantzen R T 1997 [nt. J. Mod. Phys. D 6 143

Bini D, de Felice F and Jantzen R T 1999 Class. Quantum Grav. 16 2103

Jantzen R T, Carini P and Bini D 1992 Ann. Phys., NY 215 1

Merloni A, Vietri M, Stella L and Bimi D 1999 Mon. Not. R. Astron. Soc. 304 155

Ohanian Hans C and Ruffini R 1994 Gravitation and Spacetime 2nd edn (New York: W W Norton)






	On the Poynting-Robertson effect in General Relativity��Donato Bini�Istituto per le Applicazioni del Calcolo “M. Picone,” IAC-CNR, Rome (It)����
	Slide Number 2
	Plan of the talk
	�Radiation from the Sun (S) and thermal radiation from a particle (grain of dust) seen �(a) from an observer moving with the particle;  �(b) from an observer at rest with respect to the Sun.
	�From the perspective of the grain of dust circling the Sun (panel (a) of the figure):��the Sun's radiation appears to be coming from a slightly forward direction (aberration of light). ��Therefore:�� the absorption of this radiation leads to a force with a component against the direction of movement.
	�From the perspective of the Solar System as a whole (panel (b) of the figure):�� the dust grain absorbs sunlight entirely in a radial direction, thus the grain's angular momentum remains unchanged. ��However, in absorbing photons, the dust acquires mass via mass-energy equivalence. ��In order to conserve angular momentum (which is proportional to mass), the dust grain must drop into a lower orbit.
	The re-emission of photons, which is isotropic in the frame of the grain (a), does not affect the dust particle's orbital motion. ��However, in the frame of the Solar System (b), the emission is beamed anisotropically, and hence the photons carry away angular momentum from the dust grain (i.e. again there exist a force which is opposite to the motion). ���The Poynting–Robertson drag can be understood as an effective force opposite the direction of the dust grain's orbital motion, leading to a drop in the grain's angular momentum.
	Explicit examples in stationary axisymmetric  spacetimes
	The background geometry
	Super-posed photon test field
	Test-particle 
	Motion equations
	Schwarzschild spacetime
	Schwarzschild spacetime
	Schwarzschild spacetime
	Schwarzschild spacetime
	Kerr spacetime
	Kerr spacetime
	Kerr spacetime
	Kerr spacetime
	Slide Number 21
	Schwarzschild spacetime �(L≠0)
	Kerr spacetime (L≠0)
	Kerr spacetime
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Numbers
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Bibliography (essential)
	Slide Number 54

