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Motivation: source for eLISA

Extreme-mass-ratio inspiral (EMRI)
∼1–10M� neutron star or black hole orbits supermassive black hole
m emits gravitational radiation, loses energy, spirals into M
∼1–100 events detectable in eLISA’s lifetime
waveforms carry information about strong-field dynamics and
structure of spacetime near black hole
need to model motion of small body
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More motivation

Interface between models
establish benchmarks for
m � M limit of
post-Newtonian theory and
numerical relativity
fix high-order
post-Newtonian parameters
fix Effective One Body
parameters

Modeling IMRIs and similar-mass binaries
self-force has surprisingly large domain of validity [Le Tiec et al]
potentially accurate model of intermediate-mass-ratio and even
similar-mass binaries
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Point particle picture

Linearized theory
treat m as point particle, with
stress-energy Tµν ∼ mδ3(xρ − zρ)
write total metric as gµν + hµν
(e.g., gµν is metric of M ,
hµν is created by m)
approximate Einstein equation
Gµν [g + h] = 8πTµν with
linearized EFE δGµν [h] = 8πTµν

Tail
part of perturbation propagates
slower than light
light “cone” bends
∴ hµν depends on past history
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Extreme-mass-ratio inspirals
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Extreme-mass-ratio inspirals
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Self-force: geodesic motion in an effective metric

MiSaTaQuWa equation [Mino,Sasaki,Tanaka, & Quinn,Wald]
nonlocal tail acts as potential, exerts force Fµ ∼ m∇µtail
tail isn’t nice: non-differentiable, not a solution to a field equation

Generalized equivalence principle [Detweiler-Whiting]
local field near particle split into two: h(1)

µν = hS(1)
µν + hR(1)

µν

hS(1)
µν ∼ m

r + O(r0); local bound field of particle

hR(1)
µν ∼ tail + local terms; smooth solution to source-free EFE

motion is geodesic in effective metric gµν + hR(1)
µν
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Outline

1 Introduction

2 Motion of a small extended body

3 First-order equation of motion (MiSaTaQuWa)

4 Second-order equation of motion

5 Calculating the field
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A small extended body moving through spacetime

Fundamental question
how does a body’s gravitational field affect its own motion?

Regime: small body
examine spacetime
(M, gµν) containing
body of mass m and
external lengthscales R
seek representation of
body’s motion when its
mass and size are � R
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Non-perturbative approach [Harte 2011]

Non-perturbative decomposition
split metric into “self-field” generated by body and slowly varying
remainder

Equation of motion
body moves as test body in effective metric gµν + hR

µν :
motion is geodesic except for coupling of body’s multipole moments
I ∼

∫
body Tµν to curvature of effective metric
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However...

Material body
integrals over body’s interior preclude description of black hole

Field
describing motion in terms of metric isn’t sufficient: we need a
means of solving the EFE to obtain the metric (and a means of
isolating the effective metric)
minor drawback: Harte’s effective metric doesn’t satisfy vacuum
EFE ⇒ not a “nice” generalization of Detweiler-Whiting field
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Perturbation theory

treat body as source of perturbation of external background
spacetime (ME , gµν):

gµν = gµν + εh(1)
µν + ε2h(2)

µν + . . .

ε counts powers of m
assume body is compact, so as m → 0, linear size → 0 at same rate
seek representation of motion in (ME , gµν)
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Challenges in applying perturbation theory

Multiple time scales in binary
orbital period (∼ M )
time over which inspiral occurs (∼ M 2/m)

Multiple length scales
near small object: scale of object’s size (∼ m)
everywhere else: scale of external universe (∼ M )

Identifying object’s position, spin, higher moments
point particle not valid in nonlinear field theory such as GR
how do we capture bulk parameters without worrying about details
of object’s composition?
how do we best represent the small object’s bulk motion (e.g.,
identify its “center”)?
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Approach I [Gralla & Wald 2008]: power series

Expansion of EFE
expand metric in Taylor series:

gµν(x, ε) = gµν(x) + εh(1)
µν (x) + ε2h(2)

µν (x) + . . .

solve EFE order by order outside body:

δGµν [h(1)] = 0
δGµν [h(2)] = −δ2Gµν [h(1)]

...

motion determined by Bianchi identity
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Representation of motion in power series

zµ(τ, ε) = zµ(0)(τ) + εzµ(1)(τ) + ε2zµ(2)(τ) + . . .

Meaning
zµ(0) identified as
remnant of body at
ε = 0
self-force corrections
accounted for by
deviation vectors
zµ(n)(τ)

Problem
as body drifts away from γ0, corrections zµ(n)(τ) grow large
representation of motion only meaningful and accurate for short time
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Approach II [Pound 2010]: self-consistent expansion

Unexpanded worldline
rather than finding
deviation vectors
zµ(n), seek a worldline
zµ(τ, ε) that
faithfully tracks
body’s bulk motion

Self-consistent expansion
since hµν depends on γ, can’t expand hµν in regular power series
without also expanding γ
allow γ to depend on ε and assume expansion of form

gµν(x, ε) = gµν(x) + hµν(x; γ)
= gµν(x) + εh(1)

µν (x; γ) + ε2h(2)
µν (x; γ) + . . .
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Finding the field in a self-consistent expansion

Expansion of EFE
need a method of systematically solving for each h(n)

µν

⇒ use method analogous to post-Newtonian/Minkowskian theory in
harmonic gauge
separate gravitational from material degrees of freedom by imposing
Lorenz gauge (or other wave gauge) on the total perturbation:

∇µh̄µν = 0
δGµν becomes a wave operator and EFE outside body becomes
weakly nonlinear wave equation:

�h̄µν + 2Rµρνσh̄ρσ = 2δ2Gµν [h] + . . .

split into wave equation for each subsequent h(n)
µν [γ] and exactly

solve with arbitrary γ
gauge condition constrains γ (and other matter degrees of freedom)
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Matched asymptotic expansions

define buffer region by
m � r � R
because m � r , can treat
mass as small perturbation
of external background
because r � R, can extract
information about small
body
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Matched asymptotic expansions: the inner expansion

Zoom in on body
use scaled coords r̃ ∼ r/ε to keep size of body fixed, send other
distances to infinity as ε→ 0
unperturbed body defines background spacetime gIµν in inner
expansion
buffer region at asymptotic infinity r � m
⇒ can define multipole moments without integrals over body
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Position at first order: Gralla-Wald definition

Reminder: mass dipole moment
corresponds to displacement of center of mass from origin of coordinates

work in coordinates
centered on zµ0
calculate mass
dipole Mµ of inner
background gIµν

first-order correction
due to self-force:

mzµ1 ≡ Mµ
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Position at first order: self-consistent definition

Mass dipole about zµ

We want to find worldline zµ for which Mµ = 0

work in coordinates
centered on
unspecified zµ

calculate mass
dipole Mµ of inner
background gIµν

first-order
acceleration of zµ:
whatever ensures
Mµ ≡ 0

Adam Pound The motion of small bodies in curved spacetime



Intro Extended body First order Second order Field

Position in self-consistent expansion (continued)

Enforce a relationship between the expansions
...to define a worldline for all time, even for black hole

in buffer region in ME , write
metric in coordinates centered
on γ
make body at “center” of
coordinates, in that its mass
dipole vanishes in MI
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Solving the EFE in buffer region

Expansion for small r
in coordinates centered on γ, allow all negative powers of r in h(n)

µν

but inner expansion must not have negative powers of ε
⇒ most singular power of r in εnh(n)

µν is εn

rn = εn

εn r̃n = 1
r̃n

Therefore

h(n)
µν = 1

rn h(n,−n)
µν + r−n+1h(n,−n+1)

µν + r−n+2h(n,−n+2)
µν + . . .

Information from inner expansion
1/r̃n terms arise from asymptotic expansion of zeroth-order
background in inner expansion
⇒ h(n,−n)

µν is determined by multipole moments of isolated body
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Form of solution in buffer region

What appears in the solution?
put expansion into nth-order wave equation, solve order by order in r
expand each h(n,p)

µν in spherical harmonics
given a worldline γ, the solution at all orders is fully characterized by

1 body’s multipole moments (and corrections thereto): ∼ Y`m

r`+1

2 smooth solutions to vacuum wave equation: ∼ r`Y `m

everything else made of (linear or nonlinear) combinations of the
above

Self field and regular field
multipole moments define hS(n)

µν ; interpret as bound field of body
smooth homogeneous solutions define hR(n)

µν ; free radiation,
determined by global boundary conditions
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First and second order solutions

First order
h(1)
µν = hS(1)

µν + hR(1)
µν

hS(1)
µν ∼ 1/r + O(r0) defined by mass monopole m

hR(1)
µν is undetermined homogenous solution regular at r = 0

evolution equations (from gauge condition): ṁ = 0 and aµ(0) = 0
(assuming aµ = aµ(0) + εaµ(1) + . . .)

Second order
h(2)
µν = hS(2)

µν + hR(2)
µν

hS(2)
µν ∼ 1/r2 + O(1/r) defined by

1 monopole correction δm
2 mass dipole Mµ

3 spin dipole Sµ

evolution equations: Ṡµ = 0, ˙δm = . . ., and Ṁµ = . . .
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A master equation of motion

Evolution of mass dipole

M̈α − Rα
βγδuβuγM δ = −maα(1) + 1

2 Rα
βγδuβSγδ

− 1
2 m
(
gαδ + uαuδ

)(
2hR(1)
δβ;γ − hR(1)

βγ;δ

)
uβuγ

Includes
geodesic deviation
first-order term in acceleration of γ
Mathisson-Papapetrou spin force
self-force (force due to regular field)
this relationship between aα and
Mα is valid for any γ
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Equations of motion

Self-force in self-consistent expansion
γ defined by Mα(t) ≡ 0. Therefore

aα(1) = − 1
2
(
gαδ + uαuδ

)(
2hR(1)
δβ;γ − hR(1)

βγ;δ

)
uβuγ + 1

2m Rα
βγδuβSγδ

through order ε, small body moves on a geodesic of gµν + hR
µν

Self-force in Gralla-Wald expansion
γ is geodesic, so aµ(n) = 0. Therefore

D2Mα

dτ2 = Rα
βγδuβuγM δ − 1

2 m
(
gαδ + uαuδ

)(
2hR(1)
δβ;γ − hR(1)

βγ;δ

)
uβuγ

+ 1
2 Rα

βγδuβSγδ
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Why second order?

Modeling EMRIs
inspiral occurs very slowly, on radiation-reaction time trr ∼ 1/m
neglecting second-order self-force leads to error in acceleration
δaµ ∼ m2

⇒ error in position δzµ ∼ m2t2

⇒ after radiation-reaction time trr ∼ 1/m, error δzµ ∼ 1
∴ accurately describing orbital evolution requires second-order force

Modeling IMRIs and similar-mass binaries
second-order self-force should yield highly accurate model for IMRIs
will fix terms quadratic in mass in post-Newtonian and Effective One
Body theory
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Position at second order: mass-centered gauges

Problem
mass dipole moment defined for asymptotically flat spacetimes
beyond zeroth order, inner expansion is not asymptotically flat

Solution
find gauge in which field is manifestly mass-centered on zµ0 (or zµ)
define position in other gauges by referring to transformation to that
mass-centered gauge
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Position at second order: Gralla’s definition [2012]

Gauge in a Gralla-Wald-type expansion
On short timescales, position relative to zµ0 is pure gauge

start in gauge
mass-centered on zµ0
⇒ zµ1 = zµ2 = 0
under a small coordinate
transformation, the position
transforms just as
coordinates do
First order:

zµ1 = ξµ1 |z0

Second order:
zµ2 = ξµ2 |z0 + ξν1∂νξ

µ
1 |z0
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Position at second order: self-consistent [Pound ’12]

Gauge in a self-consistent expansion
Over a radiation-reaction time, position relative to zµ0 is not pure gauge

start in gauge
mass-centered on zµ

demand that
transformation to
practical (e.g., Lorenz)
gauge does not move zµ

i.e., insist
lim
r→0

∫
ξa

(n)dΩ = 0

ensures worldline in the
two gauges is the same
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Self-consistent equation of motion in Lorenz gauge

Neglecting object’s spin and quadrupole moment,

D2zµ

dτ2 = 1
2 (gµν + uµuν)

(
gνρ − hR

ν
ρ
) (

hR
σλ;ρ − 2hR

ρσ;λ
)

uσuλ + O(ε3)

here hR
µν = εhR(1)

µν + ε2hR(2)
µν

Generalized equivalence principle
zµ satisfies geodesic equation in gµν + hR

µν

recall: here gµν + hR
µν is a “physical” field in the sense of satisfying

vacuum EFE
extends results of Detweiler-Whiting to second order

Adam Pound The motion of small bodies in curved spacetime



Intro Extended body First order Second order Field

Outline

1 Introduction

2 Motion of a small extended body

3 First-order equation of motion (MiSaTaQuWa)

4 Second-order equation of motion

5 Calculating the field

Adam Pound The motion of small bodies in curved spacetime



Intro Extended body First order Second order Field

Effective interior metric

From self-field to singular field
hS
µν and hR

µν derived only in buffer region
simply extend them to all r > 0 (and r = 0, for hR

µν)
does not change field in buffer region or beyond
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Obtaining global solution

Puncture/effective source scheme
define hPµν as small-r expansion of hS

µν truncated at finite order in r
define hRµν = hµν − hPµν ' hR

µν

The point...
to calculate effective metric “inside” body and full metric
everywhere else, all you need is hS

µν found in buffer region
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More on puncturing

A note on singularities
derivations of self-force from matched expansions yield an expression
for the force in terms of a manifestly finite field outside the object
we don’t begin with an infinity and subtract an infinity
—we write a known finite field as the limit of the difference between
two known divergent fields
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Effective stress-energy tensor

What does the field look like outside the object?
recall multipole moment terms ∼ Y `m/r`+1 in hS

µν

using distribution theory, can show these terms (not entire field) are
effectively sourced by δ functions and derivatives of them on γ
⇒ in buffer region and further away, body looks like a skeleton of
multipole moments on γ

Point particle picture recovered
at first order, entire field identical to one that is sourced by
point-particle stress-energy Tµν

(1)[γ] =
∫
γ

muµuν δ
4(xρ−zρ(τ))√

−g dτ
all the early point-particle results hold true
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Conclusion

Determining the motion of a small body
matched asymptotic expansions and self-consistent expansion used
to overcome problems of multiple scales
a self-gravitating compact object moves as a test body in an
effective geometry gµν + hR

µν

self-field hS
µν calculated in buffer region outside body suffices to

determine both hR
µν and hµν

Current status
for spherical, nonspinning body, analytical portion of problem now
solved at second order [Pound 2012, Gralla 2012]
wealth of numerical results at first order [Barack, Detweiler, etc.]
numerical implementation of second-order scheme is underway
for more general body, we will require some model for evolution of
body’s multipole moments
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Singular field (spin terms only)

h̄ta
(2) = −2εaijSjni

r2 + 3εajdSdai n̂ij
r +

( 1
3 ScEb

dεacd − 49
15 ScEadεbcd

)
nb

+ 3aaabSdεbcdnc + 1
3 SbEcdεbc

i n̂a
di − SbEcdεab

i n̂cdi + 15
4 abacSdεad

i n̂bci

+ r
(

1
4 Sbεabcad,ttn̂cd + 1

3 Sbεab
cac,tt − 1

18 SbḂcd n̂a
bcd − 11

63 SaḂbcn̂bc

+ 34
63 SbḂb

cn̂a
c + 41

63 SbḂacn̂bc + 16
15 SbḂa

b − 1
2 abScEdiεcd

j n̂a
bij

+ 5
2 abScEdiεac

j n̂bdij + 3
7 aaSbEcdεbdi n̂c

i + 2
21 abScEdiεbci n̂a

d

+ 3
7 abScEb

dεcdi n̂ai + 13
42 abScEdiεaci n̂bd + 69

14 abScEadεcdi n̂b
i

+ 17
21 abScEdiεabcn̂di + 25

84 abScEb
dεaci n̂d

i − 7
3 abScEadεbci n̂d

i

+ 2
15 abScEb

dεacd + 191
45 abScEadεbcd + 1

6 Sbεbc
jEcdi n̂a

dij

+ 1
6 SbεabiEcd

i n̂cd + 61
42 SbEa

c
iεbdi n̂cd − 35

8 abacadS iεai
j n̂bcdj

+ 15
2 aaabacSdεcdi n̂b

i − 1
4 Sbεab

jEcdi n̂cdij

)
+ O(r2),

Return
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