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Introduction



(Theoretical) motivation of Massive gravity

 General relativity (GR)

The theory of an interacting massless helicity 2 particle

Massive gravity

A theory of an interacting massive spin 2 particle

What is it ?



(Observational) motivation 
of Massive gravity

The Universe is now accelerating !!

WMAP

 Dark Energy is introduced
or

 GR may be modified in the IR limit

If the graviton has a mass comparable to the present Hubble scale,
gravity is suppressed beyond that scale.


 

the present Universe looks accelerating.

One possibility Massive gravity



(Long) History of Massive Gravity 



Fierz and Pauli theory of Massive gravity

graviton mass termR

Mass term : 

(spin 0 mode : h)

No ghost(Fierz Pauli tuning)

 EOM : 

[10 – 4 – 1 = 5 (real space) d.o.f]



van Dam, Veltman, Zakharov (vDVZ) discontinuity I

Fourier space (Massive graviton propagator)



Fourier space (Massless graviton propagator)





van Dam, Veltman, Zakharov (vDVZ) discontinuity II

Massive gravity

Massless gravity (GR)

Point particle with a mass M at rest at origin : 

(m => 0)

GR is not recovered in the limit m  0 of massive gravity.

(G  3G/4  leads to 25% off of light bending.) 

Coupling of graviton with a conserved source: 



vDVZ discontinuity may be an artifact of linear theory.

Vainshtein effects
Non-linear massive gravity with the flat absolute metric

SFP 

FP graviton massNon-linear extension of kinetic term

Spherical symmetric solution :

Expand around 
the flat space solution

(mr << 1)

The non-linear effects becomes dominant for
(m->0)

flat



Boulware Deser (BD) ghost I

ADM decomposition :

As is well known, the lapse N and the shift Ni serve as Lagrange multipliers.

Hamiltonian constraint C=0,
Momentum constraints Ci =0 (both are first class constraints)

12 – 4 x 2 = 4 phase space d.o.f = 2 real space d.o.f



Boulware Deser (BD) ghost II

ADM decomposition :

For m ≠ 0, the lapse N and the shift Ni serve as auxiliary fields
rather than Lagrange multipliers because they are quadratic in the action.

12 – 0 = 12 phase space d.o.f = 6 real space d.o.f

1 extra d.o.f.   BD ghost (Hamiltonian unbounded)



Stuckelberg trick
Non-linear massive gravity with the flat absolute metric

The presence of the (fixed) absolute metric seems to break general covariance.

Stuckelberg fields

scalar(fixed) scalars tensor

Unitary gauge:( )
In order to recover general covariance,



Stuckelberg trick II
Expand the Stuckelberg field :

In order to extract the helicity 0 mode,

helicity2 helicity1 helicity0

d.o.f 2               2               2 π always appears in second derivatives.

BD ghost 



Nonlinear extention of mass term

In order to avoid BD ghost, the (self)-interaction terms of
the Stuckelberg scalar π should not appear, namely,
they should reduce to the total derivatives.

Brackets represent taking a trace.
(In order to take a trace, g-1Π is relevant.)



Nonlinear extention of mass term II

Recovering h & A, 

There are still couplings with tensors. 
unmix

Galileon terms remain.



Nonlinear (ghost-free) 
Massive Gravity 



Non-linear massive gravity

Potential for the graviton: 

Φa : Stuckelberg fields Unitary gauge:

de Rham & Gabadadze 2010
de Rham, Gabadadze, Tolley 2011



Note on non-linear massive gravity
de Rham & Gabadadze 2010
de Rham, Gabadadze, Tolley 2011

 Absence of (BD) ghost was proven by Hassan & Rosen.

 A cut-off scale as an effective field theory is raised as

 Vainstein radius becomes smaller.

M~M☼~1033g



Cosmology of Massive Gravity 



Absence of Flat Friedmann Universe
D’Amico et al. 2011

Homogeneous & isotropic solution:

 real metric: 

 imposes the same symmetry on Stuckelberg fields 



Absence of Flat Friedmann Universe II

dot{f} appears only linearly !!

The scale factor cannot evolve !!

There is no homogeneous and isotropic flat Universe.

Integration by part



What can we do ?

 Consider open Friedmann Universe instead of flat one.

 Abandon imposing the same symmetry on the Stuckelberg field.

Gumrukcuoglu, Lin and Mukohyama 2011.

Our work by use of Painleve-Gullstrand meric

Note that the same idea was done in D’Amico et al. 2011
& Gratia, Hu, and Wyman 2012 as well.



Painleve-Gullstrand meric



Spherically symmetric vacuum solution 
in (massless) GR

Schwarzschild metric:

This metric has a coordinate singularity at the horizon r = 2M.

In GR, this is not a real singularity and 
can be removed by coordinate transformation.



Danger of coordinate singularity in Massive Gravity
Gruzinov & Mirbabayi 2011
Berezhiani et al. 2012

New invariant in Massive Gravity:

This quantity is invariant under coordinate transformation, namely, 
a scalar quantity and should have the same position as

In the unitary gauge: 

Any inverse metric with divergence leads to singularity in this invariant.

(Though such a singularity does not affect the geodesic motion, 
it would cause a problem for perturbations around classical solutions
because inverse metric could change its sign across the singularity.)



Danger of coordinate singularity in Massive Gravity II
Gruzinov & Mirbabayi 2011
Berezhiani et al. 2012

The Schwarzschild like metric in Massive Gravity
(Schwarzschild, Schwarzschild-De Sitter, Reissner-Nordstrom…)
can be dangerous.

Needs the metric without coordinate singularity

Painleve-Gullstrand meric !!

 BH solutions in PG metric:

Berezhiani, Chkareuli, de Rham, Gabadadze, Tolley 2011

 Cosmological solutions in PG metric:

our work



Painleve-Gullstrand metric
Painleve 1922, Gullstrand 1922,
Kanai, Siino, Hosoya 2011

Merit of PG metric:

 includes an off-diagonal and spatially flat elements, which leads to
no coordinate singularity (except real singularity at the origin)

 can cover both inside and outside the horizon 
by a single coordinate patch.

 Time coordinate as measured by an observer who is
at rest at infinity and freely falls into the BH.

 The space described by the PG metric can be regarded as
a river whose speed of current is the Newtonian escape velocity
at each point.

 Generalized PG metric can also describe the FRLW universe.



Derivation of Painleve-Gullstrand metric
Painleve 1922, Gullstrand 1922,
Kanai, Siino, Hosoya 2011

Schwarzschild metric:

Four velocity of an observer : 

normalization condition :

(conserved) energy per rest mass :

: timelike Killing vector



Derivation of Painleve-Gullstrand metric II
tP : the proper time of the free-falling observer

The geodesic is orthogonal to the surface tp = const.

: radially free-falling velocity

At the horizon f(r)=0  r =2M, the metric is non-singular.

The geodesic tangent vector usμ

 

is equal to the gradient of tp.



Derivation of Painleve-Gullstrand metric III

: conserved energy
: gravitational potential

For a particle freely falling from infinity at rest (ε=1  E=0),
Standard form
given by PG.

This is a vacuum solution, so we want a solution including matter.
Kanai, Siino, Hosoya 2011



Spherical gravitational collapse – from infinity
Kanai, Siino, Hosoya 2011

Spherical gravitational collapse of matter with E = 0 :

Einstein Eq.

Only three are independent.   

Perfect fluid : 

is equal to the escape velocity.



Spherical gravitational collapse – from infinity II
Kanai, Siino, Hosoya 2011

Matter density (of the star) is uniform.

Though, in case of gravitational collapse, we need to match 
this inner solution with the outer solution given before,

we are now interested in only the inner solution because…

(t :  -∞ 0)



Relation between this solution and Friedmann Universe

(t :  -∞ 0)

FLRW

In fact, 

The generalized Painleve-Gullstrand metric includes
flat Friedmann Universe. (Expanding phase: v-  - v-)



Spherical gravitational collapse – from a finite radius
Kanai, Siino, Hosoya 2011

The boundary surface r=a(t) that freely falls from a radius a0 at rest :

Solving Einstein Eq. inside the boundary

In this case also, 

The generalized Painleve-Gullstrand metric includes
closed (open  E>0) Friedmann Universe as well.



Cosmological solution



Generalized Painleve-Gullstrand metric 
as a cosmological solution

Our strategy is to find generalized PG metric in Massive Gravity 
instead of the standard FLRW metric.

Stuckelberg fields in the unitary gauge:

One parameter family:

Effective C.C.

Any PG-type metric in GR (with a cosmological constant) 
is also a solution to Massive Gravity.



Friedmann Universe in Massive Garvity
The FLRW metric can be rewritten in a general PG form :

All types of Friedmann Universe

Perfect fluid :

EOM

Rescaling time coordinate t τ=κt with H:=d lna/dτgives
the standard cosmological equation with effective C.C.

Thus, our solution can accommodate spatially flat, open, and closed models.



More familiar form

Coordinate transformation:

with Stuckelberg fields, which do not respect the same symmetry,



Inhomogeneous spherical collapse of dust



Inhomogeneous spherical collapse of dust
Kanai, Siino, Hosoya 2011

Spherically symmetric spacetime in general PG form:

(N(t,r)>0 : lapse,   Nr(t,r) : radial component of shift,   E(t,r) > -1.) 

ρ &  P are no longer homegeneous and bare Λ may be included.

EOM
with

To TLB coordinates: (t, r,θ,φ)  
 

(T, R,θ,φ)

t=t(T)=T, with

Inhomogeneous spherical collapse of dust represented by LTB.



Generalized Painleve-Gullstrand metric 
as a cosmological solution

Our strategy is to find generalized PG metric in Massive Gravity 
instead of the standard FLRW metric.

Stuckelberg fields in the unitary gauge:

One parameter family:

Effective C.C.

Any PG-type metric in GR (with a cosmological constant) 
is also a solution to Massive Gravity.



Summary and comments
We have presented a spatially flat, open, and closed 

Friedmann Universe in Massive Gravity, though the   
Stuckelberg fields are inhomogeneous.

 Our analysis is based on the observation that any PG metric
with the Stuckelberg fields in the unitary gauge generates 
an effective cosmological constant for a choice of  one  
parameter family.

 Our choice of parameter is special in that fluctuation modes
become non-dynamical at quadratic order. However,   
recently, it is suggested that they may acquire kinetic term at  
cubic order, signaling the ghost instabilities, though they use  
a different fiducial metric. I am also not sure what   
happens if we take into account quantum corrections.



Relation to the work of Gratia, Hu, and Wyman

with Stuckelberg fields, which respects the same symmetry,

Try to find spatially isotropic solution:

(N.B.    b(t,r) = 1 & a(t,r) = a(t)   
 

Flat FRW metric)

Potential: 

arXiv:1205.4241



Relation to the work of Gratia, Hu, and Wyman II

EOMs  for  f  &  g :

The solution to the first EOM is given by P1(x0) = 0 & g(t,r)=x0 a r.

The second EOM reduces to

Our parameter choice with 
automatically satisfies this equation.  
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