Mikjel Thorsrud

24th Sep, 2012

Mikjel Thorsrud Cosmology Seminar, IAP

-≣->

"Cosmology of a scalar field coupled to matter and an isotropy-violating Maxwell field", M. Thorsrud, D.F. Mota, S. Hervik, (2012, arxiv:1205.6261).

・ロト ・回 ト ・ヨト ・ヨト

æ

$$S = \int d^4x \sqrt{-g} igg[rac{1}{2} R - rac{1}{2} (
abla \phi)^2 - V(\phi) + \mathcal{L}_M(h^2(\phi)g_{\mu
u}, \Psi_i) \ - rac{1}{4} f^2(\phi)F_{\mu
u}F^{\mu
u} igg],$$

where:

$$F_{\mu\nu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}.$$

・ 回 ト ・ ヨト

- < ≣ →

æ

Local energy and momentum conservation:

$$abla_{\mu} \left(T^{\mu(\phi)}_{\ \nu} + T^{\mu(A)}_{\ \nu} + T^{\mu(M)}_{\ \nu}
ight) = 0$$

Matter field equations:

$$\nabla_{\mu} T^{\mu(\phi)}_{\nu} = -Q_{A} 2\mathcal{L}_{A} \nabla_{\nu} \phi - Q_{M} T_{M} \nabla_{\nu} \phi,$$

$$\nabla_{\mu} T^{\mu(A)}_{\nu} = +Q_{A} 2\mathcal{L}_{A} \nabla_{\nu} \phi,$$

$$\nabla_{\mu} T^{\mu(M)}_{\nu} = +Q_{M} T_{M} \nabla_{\nu} \phi.$$

- 4 回 > - 4 回 >

< ≣⇒

Local energy and momentum conservation:

$$\nabla_{\mu} \big(T^{\mu(\phi)}_{\nu} + T^{\mu(A)}_{\nu} + T^{\mu(M)}_{\nu} \big) = 0$$

Matter field equations:

$$\begin{aligned} \nabla_{\mu} T^{\mu(\phi)}_{\nu} &= -Q_{A} 2 \mathcal{L}_{A} \nabla_{\nu} \phi - Q_{M} T_{M} \nabla_{\nu} \phi, \\ \nabla_{\mu} T^{\mu(A)}_{\nu} &= +Q_{A} 2 \mathcal{L}_{A} \nabla_{\nu} \phi, \\ \nabla_{\mu} T^{\mu(M)}_{\nu} &= +Q_{M} T_{M} \nabla_{\nu} \phi. \end{aligned}$$

≣ >

- The scalar-matter coupling is studied extensively in the literature, see e.g. Amendola 1999 (arxiv:9908023) and Copeland et.al. 2006 (arxiv:0603057).
- The scalar-Maxwell coupling is studied so far only in the context of early universe inflation, see e.g. Soda 2012 (arxiv:1201.6434).
- In effective four-dimensional actions, typically both couplings are present simultaneously.
- Historically first example: Kaluza & Klein almost a century ago.
- Very common in modern higher dimensional theories such as string theories.
- Want to understand the cosmological consequences of this scenario.

イロト イヨト イヨト イヨト

- The scalar-matter coupling is studied extensively in the literature, see e.g. Amendola 1999 (arxiv:9908023) and Copeland et.al. 2006 (arxiv:0603057).
- The scalar-Maxwell coupling is studied so far only in the context of early universe inflation, see e.g. Soda 2012 (arxiv:1201.6434).
- In effective four-dimensional actions, typically both couplings are present simultaneously.
- Historically first example: Kaluza & Klein almost a century ago.
- Very common in modern higher dimensional theories such as string theories.
- Want to understand the cosmological consequences of this scenario.

イロン イヨン イヨン イヨン

- The scalar-matter coupling is studied extensively in the literature, see e.g. Amendola 1999 (arxiv:9908023) and Copeland et.al. 2006 (arxiv:0603057).
- The scalar-Maxwell coupling is studied so far only in the context of early universe inflation, see e.g. Soda 2012 (arxiv:1201.6434).
- In effective four-dimensional actions, typically both couplings are present simultaneously.
- Historically first example: Kaluza & Klein almost a century ago.
- Very common in modern higher dimensional theories such as string theories.
- Want to understand the cosmological consequences of this scenario.

・ 回 と ・ ヨ と ・ ヨ と

- The scalar-matter coupling is studied extensively in the literature, see e.g. Amendola 1999 (arxiv:9908023) and Copeland et.al. 2006 (arxiv:0603057).
- The scalar-Maxwell coupling is studied so far only in the context of early universe inflation, see e.g. Soda 2012 (arxiv:1201.6434).
- In effective four-dimensional actions, typically both couplings are present simultaneously.
- Historically first example: Kaluza & Klein almost a century ago.
- Very common in modern higher dimensional theories such as string theories.
- Want to understand the cosmological consequences of this scenario.

・ 回 と ・ ヨ と ・ ヨ と

- The scalar-matter coupling is studied extensively in the literature, see e.g. Amendola 1999 (arxiv:9908023) and Copeland et.al. 2006 (arxiv:0603057).
- The scalar-Maxwell coupling is studied so far only in the context of early universe inflation, see e.g. Soda 2012 (arxiv:1201.6434).
- In effective four-dimensional actions, typically both couplings are present simultaneously.
- Historically first example: Kaluza & Klein almost a century ago.
- Very common in modern higher dimensional theories such as string theories.
- Want to understand the cosmological consequences of this scenario.

(4回) (1日) (日)

- The scalar-matter coupling is studied extensively in the literature, see e.g. Amendola 1999 (arxiv:9908023) and Copeland et.al. 2006 (arxiv:0603057).
- The scalar-Maxwell coupling is studied so far only in the context of early universe inflation, see e.g. Soda 2012 (arxiv:1201.6434).
- In effective four-dimensional actions, typically both couplings are present simultaneously.
- Historically first example: Kaluza & Klein almost a century ago.
- Very common in modern higher dimensional theories such as string theories.
- Want to understand the cosmological consequences of this scenario.

(4回) (1日) (日)

Doubly Coupled Quintessence:

$$\mathcal{L} = rac{1}{2}R - rac{1}{2}(
abla \phi)^2 - V(\phi) + \mathcal{L}_M(h^2(\phi)g_{\mu
u}, \Psi_i) - rac{1}{4}f^2(\phi)F_{\mu
u}F^{\mu
u},$$

We consider:

 $V(\phi) = V_0 e^{\lambda \phi(t)}, \quad h(\phi) = e^{Q_M \phi(t)}, \quad f(\phi) = e^{Q_A \phi(t)}$ Parameter space: (λ, Q_M, Q_A) Example: "Quintessence as a runaway dilaton", Gaspirini et.al. 2002 (arxiv:0108016).

and

$$A_{\mu} = (0, A_x(t), 0, 0),$$

 $ds^2 = -dt^2 + a_{\parallel}^2(t)dx^2 + a_{\perp}^2(t)(dy^2 + dz^2).$

白 ト く ヨ ト く ヨ ト

Doubly Coupled Quintessence:

$$\mathcal{L} = \frac{1}{2}R - \frac{1}{2}(\nabla\phi)^2 - V(\phi) + \mathcal{L}_M(h^2(\phi)g_{\mu\nu}, \Psi_i) - \frac{1}{4}f^2(\phi)F_{\mu\nu}F^{\mu\nu},$$

We consider:

 $V(\phi) = V_0 e^{\lambda \phi(t)}, \quad h(\phi) = e^{Q_M \phi(t)}, \quad f(\phi) = e^{Q_A \phi(t)}.$ Parameter space: (λ, Q_M, Q_A) Example: "Quintessence as a runaway dilaton", Gaspirini et.al. 2002 (arxiv:0108016).

and

$$\begin{aligned} A_{\mu} &= (0, A_{x}(t), 0, 0), \\ ds^{2} &= -dt^{2} + a_{\parallel}^{2}(t)dx^{2} + a_{\perp}^{2}(t)(dy^{2} + dz^{2}), \end{aligned}$$

白 と く ヨ と く ヨ と …

Doubly Coupled Quintessence:

$$\mathcal{L} = rac{1}{2}R - rac{1}{2}(
abla \phi)^2 - V(\phi) + \mathcal{L}_M(h^2(\phi)g_{\mu
u}, \Psi_i) - rac{1}{4}f^2(\phi)F_{\mu
u}F^{\mu
u},$$

We consider:

 $V(\phi) = V_0 e^{\lambda \phi(t)}, \quad h(\phi) = e^{Q_M \phi(t)}, \quad f(\phi) = e^{Q_A \phi(t)}.$ Parameter space: (λ, Q_M, Q_A) Example: "Quintessence as a runaway dilaton", Gaspirini et.al. 2002 (arxiv:0108016).

and

$$egin{aligned} &A_{\mu} = (0, A_{x}(t), 0, 0)\,, \ &ds^{2} = -dt^{2} + a_{\parallel}^{2}(t)dx^{2} + a_{\perp}^{2}(t)(dy^{2} + dz^{2}), \end{aligned}$$

回 と く ヨ と く ヨ と …

æ

- CMB provides evidence that the universe is remarkably isotropic.
- Still interesting to consider deviations from the idealized model.
- Supernovae data allows anisotropy in the expansion rate at the one-percent level today (Campanelli et al., 2009).
- Several reported anomalies hints toward violation of isotropy.

□ > < E > < E</p>

- CMB provides evidence that the universe is remarkably isotropic.
- Still interesting to consider deviations from the idealized model.
- Supernovae data allows anisotropy in the expansion rate at the one-percent level today (Campanelli et al., 2009).
- Several reported anomalies hints toward violation of isotropy.

通 とう ほうとう ほうど

- CMB provides evidence that the universe is remarkably isotropic.
- Still interesting to consider deviations from the idealized model.
- Supernovae data allows anisotropy in the expansion rate at the one-percent level today (Campanelli et al., 2009).
- Several reported anomalies hints toward violation of isotropy.

- CMB provides evidence that the universe is remarkably isotropic.
- Still interesting to consider deviations from the idealized model.
- Supernovae data allows anisotropy in the expansion rate at the one-percent level today (Campanelli et al., 2009).
- Several reported anomalies hints toward violation of isotropy.

• ACDM expectation value:

$$< \mathcal{Q}^2 > \simeq 1200 \mu K^2.$$

• WMAP:

$$Q^2 \simeq 200 \mu K^2.$$

- 4 回 2 - 4 □ 2 - 4 □

æ

Axis of Evil

"Axis of Evil": Oliveira-Costa et.al. 2004 (arxiv:0307282), Schwarz et.al. 2004 (arxiv:0403353)

From F.K.Hansen et.al. 2009 (arXiv:0812.3795):

- < ≣ →

Standard model anomalies

From L. Perivolaropoulos, 2011 (arXiv:1104.0539):

・ロン ・回 と ・ 回 と ・ 回 と

Э

- We are considering a very social scalar field interacting with both matter and a vector.
- Strength of matter coupling controlled by: Q_M .
- Strength of vector coupling controlled by: Q_A.
- Shape of potential of the scalar field controlled by: λ .
- Parameter space: (λ, Q_M, Q_A) .

◆□ > ◆□ > ◆臣 > ◆臣 > ○

- We are considering a very social scalar field interacting with both matter and a vector.
- Strength of matter coupling controlled by: Q_M .
- Strength of vector coupling controlled by: Q_A .
- Shape of potential of the scalar field controlled by: λ .

• Parameter space: (λ, Q_M, Q_A) .

日本・モート・モ

- We are considering a very social scalar field interacting with both matter and a vector.
- Strength of matter coupling controlled by: Q_M .
- Strength of vector coupling controlled by: Q_A .
- Shape of potential of the scalar field controlled by: λ .

• Parameter space: (λ, Q_M, Q_A) .

白 ト イヨト イヨト

- We are considering a very social scalar field interacting with both matter and a vector.
- Strength of matter coupling controlled by: Q_M .
- Strength of vector coupling controlled by: Q_A .
- Shape of potential of the scalar field controlled by: λ .
- Parameter space: (λ, Q_M, Q_A) .

白 ト イヨト イヨト

- We are considering a very social scalar field interacting with both matter and a vector.
- Strength of matter coupling controlled by: Q_M .
- Strength of vector coupling controlled by: Q_A .
- Shape of potential of the scalar field controlled by: λ .

• Parameter space: (λ, Q_M, Q_A) .

白 ト イヨト イヨト

- We are considering a very social scalar field interacting with both matter and a vector.
- Strength of matter coupling controlled by: Q_M .
- Strength of vector coupling controlled by: Q_A .
- Shape of potential of the scalar field controlled by: λ .
- Parameter space: (λ, Q_M, Q_A) .

• Goal: to identify interesting regions of parameter space.

- Method: dynamical system analysis.
- Instead of focusing on particular solutions, we are first more interested in properties of the set of all solutions.
- After a qualitative understanding is achieved, we are certainly interested in quantitative aspects as well!
- In particular we are interested in solutions close to ACDM.

- Goal: to identify interesting regions of parameter space.
- Method: dynamical system analysis.
- Instead of focusing on particular solutions, we are first more interested in properties of the set of all solutions.
- After a qualitative understanding is achieved, we are certainly interested in quantitative aspects as well!
- In particular we are interested in solutions close to ACDM.

- Goal: to identify interesting regions of parameter space.
- Method: dynamical system analysis.
- Instead of focusing on particular solutions, we are first more interested in properties of the set of all solutions.
- After a qualitative understanding is achieved, we are certainly interested in quantitative aspects as well!
- In particular we are interested in solutions close to ACDM.

- Goal: to identify interesting regions of parameter space.
- Method: dynamical system analysis.
- Instead of focusing on particular solutions, we are first more interested in properties of the set of all solutions.
- After a qualitative understanding is achieved, we are certainly interested in quantitative aspects as well!
- In particular we are interested in solutions close to ACDM.

- Goal: to identify interesting regions of parameter space.
- Method: dynamical system analysis.
- Instead of focusing on particular solutions, we are first more interested in properties of the set of all solutions.
- After a qualitative understanding is achieved, we are certainly interested in quantitative aspects as well!
- In particular we are interested in solutions close to ACDM.

Introduce dimensionless variables:

- Energy parameters: $\Omega_i \equiv \frac{\rho_i}{3H^2}$,
- We consider: Ω_A , Ω_{kin} , Ω_V , Ω_m , Ω_r
- Shear degree of freedom: $\Sigma \equiv \frac{H_{\perp} H}{H}$
- $\Sigma^2 + \Omega_A + \Omega_{kin} + \Omega_V + \Omega_m + \Omega_r = 1$

個 と く ヨ と く ヨ と
Introduce dimensionless variables:

- Energy parameters: $\Omega_i \equiv \frac{\rho_i}{3H^2}$,
- We consider: Ω_A , Ω_{kin} , Ω_V , Ω_m , Ω_r
- Shear degree of freedom: $\Sigma \equiv \frac{H_{\perp} H}{H}$
- $\Sigma^2 + \Omega_A + \Omega_{kin} + \Omega_V + \Omega_m + \Omega_r = 1$

個 と く ヨ と く ヨ と

Introduce dimensionless variables:

- Energy parameters: $\Omega_i \equiv \frac{\rho_i}{3H^2}$,
- We consider: Ω_A , Ω_{kin} , Ω_V , Ω_m , Ω_r
- Shear degree of freedom: $\Sigma \equiv \frac{H_{\perp} H}{H}$
- $\Sigma^2 + \Omega_A + \Omega_{kin} + \Omega_V + \Omega_m + \Omega_r = 1$

個 と く ヨ と く ヨ と

Introduce dimensionless variables:

- Energy parameters: $\Omega_i \equiv rac{
 ho_i}{3H^2}$,
- We consider: Ω_A , Ω_{kin} , Ω_V , Ω_m , Ω_r
- Shear degree of freedom: $\Sigma \equiv \frac{H_{\perp} H}{H}$
- $\Sigma^2 + \Omega_A + \Omega_{kin} + \Omega_V + \Omega_m + \Omega_r = 1$

Autonomous system

$$\begin{split} \frac{dX}{d\alpha} &= (X+\lambda) \left(3(\Sigma^2-1) + \frac{1}{2}X^2 \right) + 2X\Omega_A + 3(2Q_A+\lambda)\Omega_A \\ &\quad + 3\lambda(\Omega_m+\Omega_r) + \frac{3}{2}\Omega_m X + 2\Omega_r X - 3Q_M\Omega_m, \\ \frac{d\Sigma}{d\alpha} &= 2\Omega_A(\Sigma+1) + \Sigma \left[3(\Sigma^2-1) + \frac{1}{2}X^2 + \frac{3}{2}\Omega_m + 2\Omega_r \right], \\ \frac{d\Omega_A}{d\alpha} &= 2\Omega_A \left[3(\Sigma^2-1) + \frac{1}{2}X^2 - Q_A X + 1 - 2\Sigma + 2\Omega_A + \frac{3}{2}\Omega_m + 2\Omega_r \right], \\ \frac{d\Omega_m}{d\alpha} &= \Omega_m \left[-3 + 6\Sigma^2 + X^2 + Q_M X + 4\Omega_A + 3\Omega_m + 4\Omega_r) \right], \\ \frac{d\Omega_r}{d\alpha} &= \Omega_r \left[-4 + 6\Sigma^2 + X^2 + 4\Omega_A + 3\Omega_m + 4\Omega_r) \right]. \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

æ

Fixed points satisfy: $\frac{dX}{d\alpha} = \frac{d\Sigma}{d\alpha} = \frac{d\Omega_A}{d\alpha} = \frac{d\Omega_m}{d\alpha} = \frac{d\Omega_r}{d\alpha} = 0,$

-Fixed points characterize phase space and can be classified in repellers, saddles and attractors.

-Corresponds to self-similar solutions with $\dot{H} \propto H^2$.

個 と く ヨ と く ヨ と

Isotropic fix points

	(i1±)	RDE(i2)	(i3)	(i4)	ϕ MDE(i5)	(i6)	$\phi DE(i7)$
X	$\pm\sqrt{6}$	0	$-\frac{1}{Q_M}$	$-\frac{4}{\lambda}$	$-2Q_M$	$\frac{3}{Q_M - \lambda}$	$-\lambda$
Σ	0	0	0	0	0	0	0
Ω_A	0	0	0	0	0	0	0
Ω_m	0	0	$\frac{1}{3Q_M^2}$	0	$1 - \frac{2Q_M^2}{3}$	$\frac{-3-\lambda Q_M+\lambda^2}{(Q_M-\lambda)^2}$	0
Ω_r	0	1	$1 - \frac{1}{2Q_M^2}$	$1 - rac{4}{\lambda^2}$	0	0	0
Ω_{ϕ}	1	0	$\frac{1}{6Q_M^2}$	$\frac{4}{\lambda^2}$	$\frac{2Q_M^2}{3}$	$rac{Q_M(Q_M-\lambda)+3}{(Q_M-\lambda)^2}$	1
ω_{ϕ}	1	_	1	$\frac{1}{3}$	1	$rac{-Q_M(Q_M-\lambda)}{Q_M(Q_M-\lambda)+3}$	$-1 + \frac{\lambda^2}{3}$
$\omega_{ m eff}$	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2Q_M^2}{3}$	$\frac{-Q_M}{Q_M - \lambda}$	$-1 + \frac{\lambda^2}{3}$

 Table 1. The isotropic fix-points.

・ロト ・回ト ・ヨト ・ヨト

æ

Anisotropic fix points

	(a1+)	(a2)	(a3)	AdMDE(a4)		
X	free		1_	$\underline{3(Q_A+3Q_M)}$		
24		λ	Q_M	$4+(2Q_A+Q_M)(3Q_A+Q_M)$		
Σ	$\pm \sqrt{1 - \frac{X^2}{6}}$	$\frac{2Q_A}{\lambda}$	$\frac{Q_A}{2Q_M}$	$\frac{-1+2Q_M(2Q_A+Q_M)}{4+(2Q_A+Q_M)(3Q_A+Q_M)}$		
Ω_A	0	$\frac{Q_A}{\lambda}$	$\frac{Q_A}{4Q_M}$	$\frac{3}{2} \frac{[2 + (3Q_A - Q_M)(Q_A + Q_M)](-1 + 2Q_M(2Q_A + Q_M)]}{[4 + (2Q_A + Q_M)(3Q_A + Q_M)]^2}$		
Ω_m	0	0	$\frac{2+3Q_{A}^{2}}{6Q_{M}^{2}}$	$3rac{[2+(3Q_A-Q_M)(Q_A+Q_M)][3+2Q_A(2Q_A+Q_M)]}{[4+(2Q_A+Q_M)(3Q_A+Q_M)]^2}$		
Ω_r	0	$\frac{\lambda^2 - \lambda Q_A - 6Q_A^2 - 4}{\lambda^2}$	$\frac{4Q_M^2 - Q_M Q_A - 3Q_A^2 - 2}{4Q_M^2}$	0		
Ω_{ϕ}	$1 - \Sigma^2$	$2rac{2+Q_A^2}{\lambda^2}$	$\frac{1}{6Q_M^2}$	$\frac{3}{2} \frac{(Q_A + 3Q_M)^2}{[4 + (2Q_A + Q_M)(3Q_A + Q_M)]^2}$		
ω_{ϕ}	1	$-1 + \frac{8}{3(2+Q_{\perp}^2)}$	1	1		
$\omega_{ m eff}$	1	$\frac{1}{3}$	$\frac{1}{3}$	$rac{Q_M(Q_A+3Q_M)}{4+(2Q_A+Q_M)(3Q_A+Q_M)}$		
		(a5)		$A\phi DE(a6)$		
X		$\frac{3}{O(1-1)}$		$-\frac{12(2Q_A+\lambda)}{8+(2Q_A+\lambda)(6Q_A+\lambda)}$		
2		$\lambda = 6Q_A = 4Q_M$		$2(\lambda^2+2\lambda Q_A-4)$		
4		$4(Q_M - \lambda)$		$\overline{8+(2Q_A+\lambda)(6Q_A+\lambda)}$		
Ω	$A -3^{(1)}$	$\frac{(2Q_M - \lambda)(6Q_A + 4Q_M - \lambda)}{(6Q_M - \lambda)^2}$	λ)	$3\frac{[\lambda^2+2\lambda Q_A-4][8+(6Q_A-\lambda)(2Q_A+\lambda)]}{(8+(2Q_A+\lambda))(6Q_A+\lambda))^2}$		
Ω		$-(6Q_A+4Q_M-3\lambda)(2Q_A)$	$+\lambda)$	$(0+(2\alpha_A+\lambda))(0\alpha_A+\lambda))$		
0		$8(Q_M - \lambda)^2$		0		
52	r		100)			
Ω_{i}	$\phi = \frac{3}{8} \frac{8 + 6Q_{\bar{A}}}{2}$	$\frac{+6Q_AQ_M+4Q_M^2-\lambda(Q_A)}{(Q_M-\lambda)^2}$	$+3Q_M$ 6^{16+560}	$6^{\frac{16+56Q_{A}^{2}+24Q_{A}^{2}+32Q_{A}^{2}\lambda+20Q_{A}^{2}\lambda+2\lambda^{2}+2Q_{A}^{2}\lambda^{2}-Q_{A}^{2}\lambda^{2}}{(8+(2Q_{A}+\lambda)(6Q_{A}+\lambda))^{2}}}$		
ω_{q}	$\phi = -1 + \frac{1}{8+6\zeta}$	$\frac{8}{Q_A^2 + 6Q_AQ_M + 4Q_M^2 - \lambda(6)}$	$\frac{1}{Q_A+3Q_M}$ $-1+\frac{1}{16+}$	$-1 + \frac{8(2\dot{Q}_{A}+\lambda)^{2}}{16+56Q_{A}^{2}+24Q_{A}^{4}+32Q_{A}\lambda+20Q_{A}^{3}\lambda+2\lambda^{2}+2Q_{A}^{2}\lambda^{2}-Q_{A}\lambda^{3}}$		
ω_{ϵ}	off	$-\frac{Q_M}{Q_M-\lambda}$		$-rac{8+12Q_A^2-3\lambda^2}{8+(2Q_A+\lambda)(6Q_A+\lambda)}$		

 Table 2. The anisotropic fix-points.

・ロト ・回 ト ・ヨト ・ヨト

æ

- Fix-points corresponds to exact power-law solutions.
- Phase space is characterized by these solutions.
- Goal: -to understand the cosmology of the model, not mathematical completeness.
- First step: analyze the fix-point solutions individually.
- Second step: analyze trajectories that connects these solutions.
- Third step: identify interesting parameter regions.
- Forth step: analyze special cases of trajectories which are close to ACDM.

Cosmology

・ロ・・ (日・・ (日・・ (日・)

æ

(ロ) (四) (E) (E) (E)

Strong Vector Coupling Regime:

$|Q_A| \gg 1$, $|Q_A| \gg |Q_M|$, $|Q_A| \gg \lambda$.

æ

Definition: $p = \omega_{eff}\rho$. Cosmologically Viable Trajectory:

$$(\omega_{\text{eff}} \simeq 1/3) \rightarrow (\omega_{\text{eff}} \simeq 0) \rightarrow (\omega_{\text{eff}} < -1/3).$$

In our model this sequence can be achieved in various ways:

$$\left(\text{RDE(i2)} \right) \quad \rightarrow \quad \left(\begin{array}{c} \text{A}\phi \text{MDE(a4)} \\ \text{or} \\ \phi \text{MDE(i5)} \end{array} \right) \quad \rightarrow \quad \left(\begin{array}{c} \text{A}\phi \text{DE(a6)} \\ \text{or} \\ \phi \text{DE(i7)} \end{array} \right).$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Let us look at examples of each of the four trajectories.
- In each case we use exactly the same initial conditions for the dynamical variables (Σ, Ω_A, Ω_{kin}, Ω_m, Ω_r).
- The only difference is the parameters of the model (λ, Q_M, Q_A)

伺 ト イヨト イヨト

Example 1: isotropic both in the matter and dark energy dominated epochs.

<**∂** > < ∃

글 🕨 🛛 글

Example 2: isotropic in the matter dominated era and anisotropic in the dark energy dominated era.

3

A ■

Example 3: anisotropic in the matter dominated era and isotropic in the dark energy dominated era.

э

A ■

Example 4: anisotropic in both the matter and dark energy dominated epochs.

- 170

Э

Example 4: anisotropic in both the matter and dark energy dominated epochs.

- We want to constrain the parameters of the model observationally.
- Since the universe expands anisotropically, the redshift of photons depends on direction of propagation. Gives signature in CMB.

向下 イヨト イヨト

An initial comoving sphere will evolve into a oblate spheroid:

イロン イヨン イヨン イヨン

æ

CMB quadrupole.

・ロン ・回 と ・ ヨン ・ ヨン

Observational Constraints

- This gives rise to a shear quadrupole, Q_a .
- We denote the inflationary quadrupole Q_i .
- Q_a is homogenous, while Q_i is subject to cosmic variance!
- The total (observed) quadrupole depends on Q_a , Q_i and their mutual orientation!
- Constraint: $(\mathcal{Q}_a)^2 \lesssim \langle \mathcal{Q}_i^2 \rangle \simeq 1200 \mu K^2$.
- Translated into the parameters of our model:

 $egin{array}{l} |Q_M/Q_A| \lesssim 10^{-5} \ |\lambda/Q_A| \ \lesssim 10^{-4} \end{array}$

 The low observed quadrupole is not improbable if Q_a ~ Q_i (Campanelli et.al. 2011, arxiv:1103.2658).

→ 御 → → 注 → → 注 →

Observational Constraints

- This gives rise to a shear quadrupole, Q_a .
- We denote the inflationary quadrupole Q_i .
- Q_a is homogenous, while Q_i is subject to cosmic variance!
- The total (observed) quadrupole depends on Q_a , Q_i and their mutual orientation!
- Constraint: $(\mathcal{Q}_a)^2 \lesssim \langle \mathcal{Q}_i^2 \rangle \simeq 1200 \mu K^2$.
- Translated into the parameters of our model:

 $egin{array}{l} |Q_M/Q_A| \lesssim 10^{-5} \ |\lambda/Q_A| \ \lesssim 10^{-4} \end{array}$

 The low observed quadrupole is not improbable if Q_a ~ Q_i (Campanelli et.al. 2011, arxiv:1103.2658).

- 4 回 2 - 4 回 2 - 4 回 2

Observational Constraints

- This gives rise to a shear quadrupole, Q_a .
- We denote the inflationary quadrupole Q_i .
- Q_a is homogenous, while Q_i is subject to cosmic variance!
- The total (observed) quadrupole depends on Q_a , Q_i and their mutual orientation!
- Constraint: $(\mathcal{Q}_a)^2 \lesssim \langle \mathcal{Q}_i^2 \rangle \simeq 1200 \mu K^2$.
- Translated into the parameters of our model:

 $egin{aligned} |Q_M/Q_A| \lesssim 10^{-5} \ |\lambda/Q_A| &\lesssim 10^{-4} \end{aligned}$

 The low observed quadrupole is not improbable if Q_a ~ Q_i (Campanelli et.al. 2011, arxiv:1103.2658).

- 4 回 2 - 4 回 2 - 4 回 2

- This gives rise to a shear quadrupole, \mathcal{Q}_a .
- We denote the inflationary quadrupole Q_i .
- Q_a is homogenous, while Q_i is subject to cosmic variance!
- The total (observed) quadrupole depends on Q_a , Q_i and their mutual orientation!
- Constraint: $(\mathcal{Q}_a)^2 \lesssim \langle \mathcal{Q}_i^2 \rangle \simeq 1200 \mu K^2$.
- Translated into the parameters of our model:

 $egin{aligned} |Q_M/Q_A| \lesssim 10^{-5} \ |\lambda/Q_A| &\lesssim 10^{-4} \end{aligned}$

 The low observed quadrupole is not improbable if Q_a ~ Q_i (Campanelli et.al. 2011, arxiv:1103.2658).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

- This gives rise to a shear quadrupole, Q_a .
- We denote the inflationary quadrupole Q_i .
- Q_a is homogenous, while Q_i is subject to cosmic variance!
- The total (observed) quadrupole depends on Q_a , Q_i and their mutual orientation!
- Constraint: $(\mathcal{Q}_a)^2 \lesssim \langle \mathcal{Q}_i^2 \rangle \simeq 1200 \mu K^2$.
- Translated into the parameters of our model:

 $egin{aligned} |Q_M/Q_A| \lesssim 10^{-5} \ |\lambda/Q_A| &\lesssim 10^{-4} \end{aligned}$

 The low observed quadrupole is not improbable if Q_a ~ Q_i (Campanelli et.al. 2011, arxiv:1103.2658).

▲御★ ▲ 国★ ▲ 国★

- This gives rise to a shear quadrupole, Q_a .
- We denote the inflationary quadrupole Q_i .
- Q_a is homogenous, while Q_i is subject to cosmic variance!
- The total (observed) quadrupole depends on Q_a , Q_i and their mutual orientation!
- Constraint: $(\mathcal{Q}_a)^2 \lesssim \langle \mathcal{Q}_i^2 \rangle \simeq 1200 \mu K^2$.
- Translated into the parameters of our model:

 $egin{aligned} |Q_M/Q_A| \lesssim 10^{-5} \ |\lambda/Q_A| &\lesssim 10^{-4} \end{aligned}$

 The low observed quadrupole is not improbable if Q_a ~ Q_i (Campanelli et.al. 2011, arxiv:1103.2658).

▲御▶ ★ 理≯ ★ 理≯

- This gives rise to a shear quadrupole, Q_a .
- We denote the inflationary quadrupole Q_i .
- Q_a is homogenous, while Q_i is subject to cosmic variance!
- The total (observed) quadrupole depends on Q_a , Q_i and their mutual orientation!
- Constraint: $(\mathcal{Q}_a)^2 \lesssim \langle \mathcal{Q}_i^2 \rangle \simeq 1200 \mu K^2$.
- Translated into the parameters of our model:

$$egin{aligned} |Q_M/Q_A| \lesssim 10^{-5} \ |\lambda/Q_A| &\lesssim 10^{-4} \end{aligned}$$

 The low observed quadrupole is not improbable if Q_a ~ Q_i (Campanelli et.al. 2011, arxiv:1103.2658).

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- The smallness of $|Q_M/Q_A|$ and $|\lambda/Q_A|$ have several consequences.
- Firstly, it means that the universe expands almost isotropically.
- Secondly it implies that the background expansion history is very close to ACDM.
- Example:

-mean scale factor during A ϕ MDE:

a
$$\propto t^{rac{2}{3}(1-rac{1}{6}rac{Q_M}{Q_A})}$$

-scale factor during the matter dominated era in ACDM:

$$a\propto t^{\frac{2}{3}}$$

- Well defined ACDM limit: $|Q_M/Q_A| \rightarrow 0$ and $|\lambda/Q_A| \rightarrow 0$.
- Thus the CMB quadrupole is the only possible signature on the background level.
- Need to consider perturbations for a better understanding of the phenomenology!

- The smallness of $|Q_M/Q_A|$ and $|\lambda/Q_A|$ have several consequences.
- Firstly, it means that the universe expands almost isotropically.
- Secondly it implies that the background expansion history is very close to ACDM.
- Example:

-mean scale factor during A ϕ MDE:

a
$$\propto t^{rac{2}{3}(1-rac{1}{6}rac{Q_M}{Q_A})}$$

-scale factor during the matter dominated era in ACDM:

$$a\propto t^{\frac{2}{3}}$$

- Well defined Λ CDM limit: $|Q_M/Q_A| \rightarrow 0$ and $|\lambda/Q_A| \rightarrow 0$.
- Thus the CMB quadrupole is the only possible signature on the background level.
- Need to consider perturbations for a better understanding of the phenomenology!

- The smallness of $|Q_M/Q_A|$ and $|\lambda/Q_A|$ have several consequences.
- Firstly, it means that the universe expands almost isotropically.
- Secondly it implies that the background expansion history is very close to ACDM.
- Example:

-mean scale factor during A ϕ MDE:

$$a\propto t^{rac{2}{3}(1-rac{1}{6}rac{Q_M}{Q_A})}$$

-scale factor during the matter dominated era in ACDM:

$$a\propto t^{\frac{2}{3}}$$

- Well defined Λ CDM limit: $|Q_M/Q_A| \rightarrow 0$ and $|\lambda/Q_A| \rightarrow 0$.
- Thus the CMB quadrupole is the only possible signature on the background level.
- Need to consider perturbations for a better understanding of the phenomenology!

- The smallness of $|Q_M/Q_A|$ and $|\lambda/Q_A|$ have several consequences.
- Firstly, it means that the universe expands almost isotropically.
- Secondly it implies that the background expansion history is very close to ACDM.
- Example:

-mean scale factor during A ϕ MDE:

$$a\propto t^{rac{2}{3}(1-rac{1}{6}rac{Q_M}{Q_A})}$$

-scale factor during the matter dominated era in ACDM: $a \propto t^{\frac{2}{3}}$

- Well defined ACDM limit: $|Q_M/Q_A| \rightarrow 0$ and $|\lambda/Q_A| \rightarrow 0$.
- Thus the CMB quadrupole is the only possible signature on the background level.
- Need to consider perturbations for a better understanding of the phenomenology!

- The smallness of $|Q_M/Q_A|$ and $|\lambda/Q_A|$ have several consequences.
- Firstly, it means that the universe expands almost isotropically.
- Secondly it implies that the background expansion history is very close to ACDM.
- Example:

-mean scale factor during $A\phi MDE$:

$$a\propto t^{rac{2}{3}(1-rac{1}{6}rac{Q_M}{Q_A})}$$

-scale factor during the matter dominated era in ΛCDM :

$$a \propto t^{rac{2}{3}}$$

- Well defined ACDM limit: $|Q_M/Q_A| \rightarrow 0$ and $|\lambda/Q_A| \rightarrow 0$.
- Thus the CMB quadrupole is the only possible signature on the background level.
- Need to consider perturbations for a better understanding of the phenomenology!

- The smallness of $|Q_M/Q_A|$ and $|\lambda/Q_A|$ have several consequences.
- Firstly, it means that the universe expands almost isotropically.
- Secondly it implies that the background expansion history is very close to ACDM.
- Example:

-mean scale factor during A ϕ MDE:

$$a\propto t^{rac{2}{3}(1-rac{1}{6}rac{Q_M}{Q_A})}$$

-scale factor during the matter dominated era in ΛCDM :

$$a\propto t^{rac{2}{3}}$$

- Well defined ACDM limit: $|Q_M/Q_A| \rightarrow 0$ and $|\lambda/Q_A| \rightarrow 0$.
- Thus the CMB quadrupole is the only possible signature on the background level.
- Need to consider perturbations for a better understanding of the phenomenology!

- The smallness of $|Q_M/Q_A|$ and $|\lambda/Q_A|$ have several consequences.
- Firstly, it means that the universe expands almost isotropically.
- Secondly it implies that the background expansion history is very close to ACDM.
- Example:

-mean scale factor during A ϕ MDE:

$$a\propto t^{rac{2}{3}(1-rac{1}{6}rac{Q_M}{Q_A})}$$

-scale factor during the matter dominated era in ΛCDM :

$$a\propto t^{rac{2}{3}}$$

- Well defined ACDM limit: $|Q_M/Q_A| \rightarrow 0$ and $|\lambda/Q_A| \rightarrow 0$.
- Thus the CMB quadrupole is the only possible signature on the background level.
- Need to consider perturbations for a better understanding of the phenomenology!

- The trajectories we have focused to now are qualitatively new, but quantitatively very close to ΛCDM.
- But there is also a more exotic possibility.
- In ACDM the future attractor is the deSitter solution.
- Could the present universe be a global attractor?
Present universe as a global attractor

æ

- We have investigated the cosmological consequences of a scalar field interacting both with matter and an isotropy violating Maxwell field.
- Found genuinely new behavior due to the double coupling.
- Identified a parameter region giving interesting and viable cosmology.
- Needs to understand the perturbations.