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Cosmology and GR limit of
Horava-Lifshitz gravity

Shinji Mukohyama
(Kavli IPMU, U of Tokyo)

ref. Horava-Lifshitz Cosmology: A Review, arXiv: 1007.5199
also arXiv: 1105.0246 with K.Izumi

arxiv: 1109.2609 with E.Gumrukcuoglu & A.Wang
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* Scalingdimof¢ . Renormalizability
t >bt ( )

X =2 b X

« Gravity Is highly non-
1+3-2+2s =0 linear and thus non-
renormalizable
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* Anisotropic scaling

t > bt ( ) « Forz=3,
X 2 b X

are
z+3-2z2+25 = 0 renormalizable!
s =-(3-2)/2

o Gravity becomes
renormalizable!?



Horava-Lifshitz Cosmology: A Review, arXiv: 1007.5199

The z=3 scaling solves the horizon problem and
leads to scale-invariant cosmological perturbations
without inflation (Mukohyama 2009).

New mechanism for generation of primordial
magnetic seed field (S.Maeda, Mukohyama,
Shiromizu 2009).

Higher curvature terms lead to
(Calcagni 2009, Brandenberger 2009).

Higher curvature terms (1/a°, 1/a*) might make the
(Kiritsis&Kofinas 2009).

Absence of local Hamiltonian constraint leads to
DM as integration “constant” (Mukohyama 2009).
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Horizon Problem
& Scale-Invariance

-Invarian

A ~ constant

Scale



¢ ®?>>H?2: oscillate H = (da/dt) / a
®? << H? : freeze a : scale factor

»? =k?/a? leads to d?a/dt? > O
Generation of super-horizon fluctuations requires
accelerated expansion, i.e. inflation.



¢ ®?>>H?2: oscillate H = (da/dt) / a
®? << H? : freeze a : scale factor

»? =k?/a? leads to d?a/dt? > O
Generation of super-horizon fluctuations requires
accelerated expansion, i.e. inflation.

e Scaling law
t >2bt ( )

x > b x )

Scale-invariance requires almost const. H, I.e.
Inflation.




New story with z=3

Mukohyama 2009

 oscillation = freeze-out iff d(H%/ w?)/dt > 0
®? =M-*k®/a® leads to d?(a3)/dt> > 0
OK for a~tP with p > 1/3



Mukohyama 2009

®? =M-*k®/a® leads to d?(a3)/dt> > 0
OK for a~tP with p > 1/3

e Scaling law
t 2 b3t ( )

X =2 b X
—)

Scale-invariant fluctuations!




Mukohyama 2009

®? =M-*k®/a® leads to d?(a3)/dt> > 0
OK for a~tP with p > 1/3

e Scaling law
t 2 b3t ( )

X =2 b X
—)

Scale-invariant fluctuations!
« Tensor perturbation P, ~ M?/Mg?
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New Quantum Gravity

New Mechanism of
Primordial FIuctuations

v Herzon P*[obf’lfem Sglved i
4 Scale- Invariance Guar@nfiee(}
4 STTghgcaledependeacg calculable
v Predicts large non-Gaussianity
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Horava (2009)

Basic quantities:
lapse , shift , 3d spatial metric

ADM metric (emergent in the IR)

ds? = -N\2dt?2 + ¢, (dx' + N'dt)(dx! + N/dt)
Foliation-preserving deffeomorphism
t-=> (), X -2 X'(t,x)

Anisotropic scaling with z=3 in UV
t-=>b%*t, X 2> bx

Ingredients In the action

\/7 d’x 9 D, R;

KIJ 2N tglj D N _D N ) (Cljk| O |n Bd)



 Kinetic terms (2"d time derivative)

| Nt /gd°x(K;K" - 2K?)

potential terms (61" spatial derivative)
detfd x| DR,D'R* DRDR
RRIR, RR/R! R® ]

c.f. DR, DR is written in terms of other terms



e z=2 potential terms (4" spatial derivative)
| Ndt/gd°x[  R'R R? ]

« z=1 potential term (2"9 spatial derivative)

det\/§d3x[ R ]

e 7=0 potential term (no derivative)

det\/§d3x[ 1 ]



, power-counting renormalizability
J 1L RG flow

. seemstorecover GRIffA =2 1

kinetic term
A

| Ndt/gd x(:< KY — /IK\2+(:§R—2A)

157/4CN

note:
Renormalizability has not been proved.
RG flow has not yet been investigated.



Infinitesimal tr. &t = f(t), ox' = {'(t,x)
5gij — 8igkgjk +aj§kgik +§kakgij T 1:gij
SN, =04 N, +¢ 0N, + &g, + N, + N,
SN =¢'0.N + N + N

Space-independent N cannot be transformed to
space-dependent N.

N Is gauge d.o.f. associated with the space-
Independent time reparametrization.

It IS natural to restrict
Consequently,



There are versions w/wo the projectability condition.
Horava’s original proposal was

Nalve non-projectable extension is inconsistent
[c.f. Henneaux, et.al. 2009].

Inclusion of a; = (In N); (and thus more terms) in
the action can cure the non-projectable extension
[Blas, Pujolas and Sibiryakov 2009].

U(1) extension [Horava-Melby-Thompson 2010]

In the rest of this talk | will consider the projectable
version, I.e. the theory with N=N(t), without U(1).



e Schwarzschild BH in PG coordinate

2
ds® = —dt2 + (dr +, /ZdetP) +r’dQ’  exact sol

_ _ forA=1
e Gaussian normal coordinate

2 2 approx sol
as __dtG+"° forr=1

| emaitre reference frame
Doran coordinate



e Schwarzschild BH in PG coordinate

2
ds® = —dt2 + (dr +, /ZdetP) +r’dQ’  exact sol

_ _ forA=1
 Gaussian normal coordinate

2 2 approx sol
as __dtG+"° forr=1

| emaitre reference frame
Doran coordinate

Is the AL = 1 limit continuous or discontinuous?



e (6+3)—-3-3=3
gj : 6 components
N': 3 components
X'=>x'1(t,x) : 3 gauge d.o.f.
5I/6N'=0 : 3 constraints

e 3=2+1
tensor graviton: 2 d.o.f.
scalar graviton: 1 d.o.f.



Linear instabllity of scalar graviton

Sign of (time) kinetic term (A-1)/(3A-1) > 0.
The dispersion relation in flat background

®? = C.%k? x [1+ O(k?/M?)] with ¢ 2 =-(A-1)/(31-1)<0

- IR Instabllity in linear level

(Wang&Maartens; Blas,et.al.; Koyama&Arroja 2009)

Slower than Jeans instability if

t;~(Gnp) Y2 <t ~L/|c| -
Tamed by Hubble friction or/and O(k?/M?) terms if

Hl <t or/and L < 1/M.

Thus, the linear instability

(@~-GypL?)
for L > Max[0.01mm,1/M]
(Shorter scales - similar to spacetime foam)

Phenomenological constraint on properties of RG flow.



Perturbative vs non-perturbative
regimes

N=1, N;=0;B+n;, ¢gij= a’e?r (eh)z.j

¢r=0(q), hij=0(q), B=0("), ni=0(")

Momentum constraint

_ O()
O(1-1)+0(q)
* Perturbative regime: q << (A-1)
breakdown in the A - 1 limit

 Non-perturbative regime: (A-1) << g<<1
responsible for recovery of GR

o



e Linearized analysis results in vDVZ
discontinuity of the massless limit.

 However, perturbative expansion breaks
down In this limit and cannot be trusted.

e Continuity Is not uniform w.r.t. distance. (e.g.
1/r expansion does not work.) However,
Vainshtein radius can be pushed to infinity in
the massless limit.



e Spherically symmetric, static ansatz
N =1, Ngdz'=pB(z)dz, gydr'de’ =dz®+ r(x)*dQ;
¥ R =%/, without z>1 terms

y A=1[BA=1(B) R (A-1FR (R)*| _
R+)\[ Y DY Y
B (A=DR (BN, A BOUAL[2A-1)p - 1)(R)? 0
5 ANR' \ B " RE BAX=1p2+(A—1) B
 Two branches
g 1++1+4AB
B 2A ’
4 - G=DR o A FAUAL[2)—1)8 —1)(R)*

IR RR' BA—1)82+(A—1)



 Numerical integration
with B(x=0)=1, r(x=0)=1, r'(x=0) given

for | B
A-1=10°  Ei
I’ (X = O) =2

» Misner-Sharp eeg l

m=3-0-2))]
almost constant

U




B’ 1++/1+4AB

3 24

A = ()\ — 1)R B = A B(A—l)//\ + [(2)\ _ 1)/@2 N 1](R’)2

ANR' RR/ BAX—1)B2+(X—1)
o (3A-1)B?% << (A-1)
perturbative regime, 1/r expansion
o (3A-1)B?%>> (A-1)
non-perturvative regime, recovery of GR
* (3A-1)B% ~ (A-1) with Bo~r /r >
analogue of Vainshtein radius

dynamical

® -~

lzumi & Mukohyama 2009
“Steller center is dynamical”

non-GR

(T-1)/ 1~



(& [M2g?
L = f(l_lj‘l'g(é/wl) 11 \{Y(gT’Di)

) '\ \Suble‘ading Independent of A
No time derivative

Local in time, no time derivative
Non-local in space, each term has the same # of
spatial derivatives in denominator and numerator

> -2
AL—=2>1 L~é/c

* Looks like a minimally coupled FREE field
with sound speed =0



arXiv: 1105.0246 [hep-th] with K.lzumi
arXiv: 1109.2609 [hep-th] with E.Gumruhcuglu & A.Wang
HL gravity + a scalar matter field
Flat FRW background
Nonlinear cosmological perturbation
Gradient expansion up to any order
Reqgular and continuous in the A =2 1 limit



Horava-Lifshitz gravity is power-counting renormalizable
and can be a candidate theory of quantum gravity.

The z=3 scaling and leads to scale-
Invariant cosmological perturbations for a~tP with p>1/3.

HL gravity in the A—->1 limit exhibits
GR (+DM) is recovered non-perturbatively at least in
some simple cases.
1. spherically-symmetric, static, vacuum configurations
2. superhorizon cosmological perturbations

In the A->1 limit, Schwarzshild BH is an exact solution and
large Kerr BH Is an approximate solution.

HL gravity at low-E can mimic GR+DM



Renormalizability beyond power-counting

RG flow: iIs A =1 an IR fixed point ? Does it satisfy

the stablility condition for the scalar graviton?
(|cs| < Max [|®|Y2,HL] for L>Max[M-1,0.01mm])

Can we get a common “limit of speed” ?

() M,_3<<M,y,, (i) supersymmetry, (iii) other ideas?
How generic is ‘Vainshtein effect’?

How generic is caustic avoidance, (perhaps with A
2> 0 & Mg, /M,_; 2 ©) ?

Micro & macro behavior of “DM”

Adiabatic initial condition for “DM” from the z=3
scaling

Spectral tilt from anomalous dimension




Foliation-preserving diffeomorphism

= 3D spatial diffeomorphism
_|_

3 local constraints + 1 global constraint

= 3 momentum @ each time @ each point
+

Constraints are preserved by dynamical
equations.

We can solve dynamical equations, provided
that constraints are satisfied at initial time.



o Approximates overall behavior of our patch
of the universe inside the Hubble horizon.

* No “local” Hamiltonian constraint
E.o.m. of matter

-> conservation eq.

« Dynamical eq i a’ L

can be integrated to give a @’ i=1

a
pi+35(pi+Pi) =0




T G | Ndt\/gd*x(K;K" - AK* + R —2A)
7T

* Looks like GR iff L = 1. So, we assume that
A =1Is an IR fixed point of RG flow.

/dS:c\/_ D - Agp) — 8nGpNT,,)n"n" =0

n,dxt = —Ndt, n"0, = O, — N'0;)

1

v

« Momentum constraint & dynamical eq
(G + Aglh — 8rGNTy, )" = 0

G + Ag(4) 87TGNTZ‘J' =0



4 4 HL
Def. TH- G + Ag(y) = 8nGy (Tpu + ThF)
General solution to the momentum
constraint and dynamical eq.

TﬁL = p'tn,n, n*V ,n, = 0
Global Hamiltonian constraint

/dgac\/ﬁpHL =0

Bianchi identity = (non-)conservation eq

0, pt + Kptt = n“V*T,,
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