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Understanding the GW Recoil

If the gravitational field of an qqobject changes, these changes
propagate through space in the form of ripples of space-time
to far away regions of space. These propagating disturbances
of space-time are called gravitational waves (GWs).

Binary systems composed of compact objects such as neutron
stars and/or black holes are considered to be the most
important sources of GWs.

Gravitational waves from inspiralling compact binaries carry
both energy and momentum of the source.

In case of a symmetric binary, the net loss of linear
momentum from the system is zero as the contributions to the
linear momentum radiated from the two black holes cancel.

However, if the binary is asymmetric (e.g. is composed of
objects of unequal masses), such cancellation does not occur
and hence there is a net loss of linear momentum from the
system.
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As a consequence, the center of mass of the system
receives a linear momentum in the opposite direction.

Recoil-Cartoon

Stages of binary evolution Binary Evolution

The recoil accumulates until the black holes merge and settle
down to a quiescent state and cease to emit linear momentum.

At this juncture, the remnant of the binary merger, having
acquired a non-zero speed, moves in a random direction in the
orbital plane.
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Momentum Ejection and subsequent recoil of a
binary system

Figure: Figure from Wiseman 1992.
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Stages of compact binary evolution
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Astrophysics and the GW recoil

The phenomenon of gravitational wave recoil is of
substantial importance in astrophysics especially if one
wants to study the models which suggest the formation
and growth of super massive black holes at the center of
galaxies through successive mergers from other black
holes.
If recoil velocity acquired by the remnant exceeds its escape
velocity from the host, the host will be unable to retain the
remnant and models that grow black holes through mergers
from other black holes will not be favored.
An accurate estimate for the recoil velocities associated with
compact binary mergers can lead to address the issues such as

Presence of SMBHs at the centers of giant elliptical and spiral
galaxies.
Absence of massive black holes at centers of dwarf galaxies or
globular clusters.
Population of compact binary systems in globular clusters.
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Analytical estimates for GW recoil using
post-Newtonian approximations

Peres 1962: First formal theory for GW recoil.

Fitchett 1983: Leading order (Newtonian) effect for two point
particles in Keplerian orbits.

Wiseman 1992: Corrections next to the leading order added.

BQW 2005: A more accurate post-Newtonian analysis
accounting for contributions from both inspiral and plunge
phase for compact binary systems in circular orbits.

TBW 2010: Ringdown contribution was added, results with
2PN accuracy. NR & AR

Present work

Recoil effects at 2.5PN order using Multipolar
post-Minkowskian approach.
Nonspinning ICB with unequal mass components.
Contributions from inspiral and plunge phase.
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Comparison of Numerical and analytical estimates
for GW recoil

Figure: Figure from TBW 2010
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Part II
Computing the Recoil Effect
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Structure of the post-Newtonian formula for linear
momentum flux

Generalized multipole expansion for linear momentum loss in
the far-zone of the source in terms of symmetric trace-free
radiative multipole moment is given as

F i
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In the MPM formalism, radiative moments (UL,VL) are
connected to canonical moments (ML, SL) by the relation

Uij(U) = M
(2)
ij (U) +

2GM
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Canonical moments and source type moments
(IL, JL,WL,XL,YL,ZL) are connected by

Mij = Iij +
4G

c5

[
W (2)Iij −W (1)I

(1)
ij

]
+O

(
1

c7

)

Computation of the flux
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F i
P

)
inst

+
(
F i
P

)
hered

IL...ZL and I
(n)
L ...Z

(n)
L give

(
F i
P

)
inst

.

IL...ZL and I
(n)
L ...Z

(n)
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(
F i
P

)
hered

after the integrals over
time are performed.

Note that memory integral is a time antiderivative and thus
becomes instantaneous in the flux.
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Time derivatives of multipole moments

Computing time derivatives of various multipole
moments at some PN order requires the knowledge of
equations of motion at the same PN order.

At 2.5PN order, orbital motion of the binary can be modeled
as a quasi-circular orbit decaying under the leading radiation
reaction effect.

This effect is computed by equating the rate of change of the
orbital energy with the total energy flux radiated in the form
of gravitational waves. This yields,

ṙ = −64

5

√
Gm

r
ν γ5/2 +O(7)

ω̇ =
96

5

Gm

r3
ν γ5/2 +O(7)

where γ is a PN parameter and is given by γ = Gm/rc2.
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Let us fix the orbital plane of the binary to be the x − y
plane. Again if y1 and y2 be position vectors of
individual objects in the binary system, the relative
position x = y1 − y2, the relative velocity v = dx/dt, and
relative acceleration a = dv/dt will be given as

x = r n̂

v = ṙ n̂ + r ω λ̂

a = (r̈ − r ω2) n̂ + (r ω̇ + 2ṙ ω) λ̂

Here λ̂ along with the unit vector êz (perpendicular to
the orbital plane of the binary) and n̂ (along relative
position vector), forms a set of orthonormal triad such
as λ̂ = êz × n̂.
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Substituting for ṙ and ω̇ back in expressions for v and a
we get

v = r ω λ̂− 64

5

√
Gm

r
ν γ5/2 n̂ +O(6)

a = −ω2 x− 32

5

√
Gm

r3
ν γ5/2 v +O(6)

The last ingredient we would need is the connection between
the orbital frequency to binary’s radial separation. Such a
relation is known up to 3PN order in harmonic coordinates
however for our work we need it we need it to be just 2PN
accurate and is given as

ω2 =
Gm

r3

{
1 + γ

(
−3 + ν

)
+ γ2

(
6 +

41

4
ν + ν2

)
+O(6)

}
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Instantaneous Contribution

Instantaneous part of the LMF at the 2.5PN order reads

(
F i
P

)
inst

= −464

105

c4

G

√
1− 4 ν γ11/2 ν2

{[
1−

(
1861

174

+
91

261
ν

)
γ +

(
139355

2871
+

36269

1044
ν

+
17

3828
ν2
)
γ2
]
λ̂i +

1199

290
ν γ5/2 n̂i +O(6)

}

n̂i → {cos φ, sin φ, 0} and λ̂i → {− sin φ, cos φ, 0}.
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Alternatively one can use a new PN parameter, x,
instead of γ and is directly connected to orbital
frequency through the relation

x =

(
G mω

c3

)2/3

In terms of the parameter x ,
(
F i
P

)
inst

takes the form

(
F i
P

)
inst

= −464

105

c4

G

√
1− 4 ν x11/2 ν2

{[
1−

(
452

87

+
1139

522
ν

)
x +

(
−71345

22968
+

36761

2088
ν

+
147101

68904
ν2
)
x2
]
λ̂i +

1199

290
ν x5/2 n̂i +O(6)

}
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Ingredients for Hereditary computations

A hereditary term

(
F i
P

)1
hered

=
4G 2M

63 c10
I
(4)
ijk (U)

∫ ∞
0

dτ

[
ln

(
τ

2τ0

)
+

11

12

]
× I

(5)
jk (U − τ)

We can write, IL(U) = (· · · ) n̂(U) + (· · · ) λ̂(U) & IL(U ′) =
(· · · ) n̂(U ′) + (· · · ) λ̂(U ′), with U ′ = U − τ .

n̂(U) and λ̂(U)

n̂(U) = cosφ(U) êx + sinφ(U) êy

λ̂(U) = −sinφ(U) êx + cosφ(U) êy
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n̂(U ′) and λ̂(U ′) can be written in terms of n̂(U) and
λ̂(U) as

n̂(U ′) = cos
[
φ(U)− φ(U ′)

]
n̂(U)− sin

[
φ(U)− φ(U ′)

]
λ̂(U)

λ̂(U ′) = sin
[
φ(U)− φ(U ′)

]
n̂(U) + cos

[
φ(U)− φ(U ′)

]
λ̂(U)

Using the above and after a few steps of algebra we can write

for I
(4)
ijk (U) I

(5)
(jk)(U − τ)

I
(4)
ijk (U) I

(5)
jk (U ′) =

16

5

c17

G 4m2
x17/2

√
1− 4ν ν2

{
[−203 sin(2 δφ)

+x

(
2657

2
sin(2 δφ)− 1341

2
ν sin(2 δφ)

)]
n̂i (U)

+

[
202 cos(2 δφ) + x

(
−9263

7
cos(2 δφ)

+
4689

7
ν cos(2 δφ)

)]
λ̂i (U)

}
where we have defined δφ ≡ φ(U)− φ(U − τ).Chandra Kant Mishra Linear Momentum Loss & GW Recoil
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For δφ we can write

δφ = φ(U)− φ(U − τ)

= φ(U)−
[
φ(U)− τ

(
dφ

dτ

)
τ=U

+ · · ·
]

= ω τ

With δφ given in terms of τ we can use the following standard
integral in order to compute the hereditary contribution∫ ∞

0
log
( τ

2 b

)
e i nω τ dτ = − 1

nω

{π
2

+ i
[

ln(2 b nω) + C
]}
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Hereditary Contribution

Hereditary contributions to the linear momentum flux at
2.5PN order, in terms of the parameter x, takes the
following form(
F i
P

)
hered

= −464

105

c4

G

√
1− 4 ν x11/2 ν2

{[
309

58
π λ̂i

+2 log

(
ω

ω̂0

)
n̂i

]
x3/2 +

[(
−2663

116
π

−2185

87
π ν

)
λ̂i +

(
−106187

50460
+

32835

841
log 2

−77625

3364
log 3− 904

87
log

(
ω

ω̂0

)
+

[
−38917

25230

−109740

841
log 2 +

66645

841
log 3− 1400

261
log

(
ω

ω̂0

)
] ν) n̂i ] x

5/2 +O(6)

}
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Here ω̂0 appearing in the above provides a scale to the
logarithms and is given as

ω̂0 =
1

τ0
exp

(
5921

1740
+

48

29
log 2− 405

116
log 3− C

)

Introducing a new phase phase variable (Blanchet et al. 1996,
Arun et al. 2004)

ψ = φ− 2G M ω

c3
log

(
ω

ω̂0

)
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Total LMF

F i
P =

(
F i
P

)
inst

+
(
F i
P

)
hered

Final 2.5PN expression for LMF reads

F i
P = −464

105

c4

G

√
1− 4 ν x11/2 ν2

{[
1−

(
452

87
+

1139

522
ν

)
x

+
309

58
π x3/2 +

(
−71345

22968
+

36761

2088
ν +

147101

68904
ν2
)
x2

+

(
−2663

116
π − 2185

87
π ν

)
x5/2

]
λ̂i +

[
−106187

50460

+
32835

841
log 2− 77625

3364
log 3 +

(
32698

12615
− 109740

841
log 2

+
66645

841
log 3

)
ν

]
x5/2 n̂i +O(6)

}
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π ν

)
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50460

+
32835

841
log 2− 77625
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log 3 +

(
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12615
− 109740
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log 2

+
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log 3

)
ν

]
x5/2 n̂i +O(6)

}
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Recoil Velocity

Momentum Balance equation

dP i

dt
= −F i

P

The net loss of linear momentum

∆P i = −
∫ t

−∞
dt ′F i

P

Hence, net recoil velocity

V i = ∆P i/m
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V i
recoil =

464

105
c ν2
√

1− 4 ν x4
{[

1 +

(
−452

87
− 1139

522
ν

)
x

+
309

58
π x3/2 +

(
−71345

22968
+

36761

2088
ν +

147101

68901
ν2
)
x2

+

(
−2663

116
π − 2185

87
π ν

)
x5/2

]
n̂i +

[
106187

50460

−32835

841
log 2 +

77625

3364
log 3 +

(
−32698

12615
+

109740

841
log 2

−66645

841
log 3

)
ν

]
x5/2λ̂i +O(6)

}
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Contributions from plunge phase and numerical
estimates for Recoil velocity

Adopting the Effective One Body (EOB) picture, the
plunge cab be viewed as that of a test particle moving in
the fixed Schwarzshild geometry of mass m.
In addition, the effects of the radiation of energy and angular
momentum on the plunge orbit have been neglected. Over the
small number of orbits constituting the plunge, this seems
reasonable.
The contribution from the plunge phase is estimated using the
PN formulae assuming they are valid even beyond ISCO. Since
the PN representation is usually not reliable inside ISCO, this
should be a source of error and in general this computation is
only a crude estimate.

∆Vrecoil = VISCO + ∆Vplunge
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For VISCO

x → xISCO, n̂i → n̂iISCO, λ̂
i → λ̂iISCO

Let the ISCO be the one defined for a test particle moving
around a Schwarzschild black hole with mass equal to the
total mass of the binary and the phase ψ = 0 at the ISCO.
This gives x → 1/6, n̂i → {1, 0, 0} , λ̂i → {0, 1, 0}
Geodesic equations in Schwarzschild geometry

dt

dτ
=

Ẽ

1− 2G m
c2 rs

dψ

dτ
=

L̃

r2s(
drs
dτ

)2

= Ẽ 2 −
(

1− 2G m

c2 rs

)(
1 +

L̃2

r2s

)
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total mass of the binary and the phase ψ = 0 at the ISCO.
This gives x → 1/6, n̂i → {1, 0, 0} , λ̂i → {0, 1, 0}
Geodesic equations in Schwarzschild geometry

dt

dτ
=

Ẽ

1− 2G m
c2 rs

dψ

dτ
=

L̃

r2s(
drs
dτ

)2

= Ẽ 2 −
(

1− 2G m

c2 rs

)(
1 +

L̃2

r2s

)
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Phase of the plunge orbit

ψ =

∫ y

y0

{
L̄[

Ē 2 − (1− 2 y)(1 + L̄2 y2)
]1/2

}
dy

with y = (G m/rs c
2) and ψ is defined to vanish at y = y0

in order to match the phase at the ISCO.

Accumulated kick during the plunge

∆V i
plunge =

1

m

∫ tHorizon

t0

dt
dP i

dt

Singular nature of the integral variable t at the horizon leads
to the change of integration variable to a new variable
ω̄ = dψ/dτ . We can write

∆V i
plunge =

1

m

∫ (
d ω̄

d ω̄/dt

)
dP i

dt
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In its final form the integral will look like

∆V i
plunge =

G L̄

c3

∫ yHorizon

y0

(
1

x3/2
|dP i

dt |(cos ψ, sin ψ, 0)
)

[
Ē 2 − (1− 2 y)(1 + L̄2 y2)

]1/2 dy
where x is connected to y by the relation

x =

[
L̄

Ē
y2 (1− 2 y)

]2/3

With the choice

Ē 2 → 8

9

[
1− 9

4

1

c2

(
drs
dt

)2

ISCO

]−1
& L̄→

√
12

we have everything we would need to compute the above
integral.
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Ē
y2 (1− 2 y)

]2/3

With the choice
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Result
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Comparison of present estimates with other related
works and Conclusion

Maximum recoil velocity at the end of inspiral and
plunge phase is of the order of 4 km s−1 and 182 km s−1

respectively (compared to BQW estimates of 22 km s−1

and 243 km s−1 respectively) for binary with ν = 0.2.

The 2.5 PN terms not only contribute significantly but also
contribute negatively to the recoil velocity estimates.

In a numerical study (Baker et al. 2006) suggests that the
recoil velocity estimates at the end of inspiral phase should be
of the order of ∼ 14 km s−1 for a binary with ν = 0.24 (agrees
well with BQW estimates).

This is a relatively higher estimate as compared to our
estimate of 2.2 km s−1 at the ISCO for a system with the
same mass ratio.

Chandra Kant Mishra Linear Momentum Loss & GW Recoil



Comparison of present estimates with other related
works and Conclusion

Maximum recoil velocity at the end of inspiral and plunge
phase is of the order of 4 km s−1 and 182 km s−1 respectively
(compared to BQW estimates of 22 km s−1 and 243 km s−1

respectively) for binary with ν = 0.2.

The 2.5 PN terms not only contribute significantly but
also contribute negatively to the recoil velocity
estimates.

In a numerical study (Baker et al. 2006) suggests that the
recoil velocity estimates at the end of inspiral phase should be
of the order of ∼ 14 km s−1 for a binary with ν = 0.24 (agrees
well with BQW estimates).

This is a relatively higher estimate as compared to our
estimate of 2.2 km s−1 at the ISCO for a system with the
same mass ratio.

Chandra Kant Mishra Linear Momentum Loss & GW Recoil



Comparison of present estimates with other related
works and Conclusion

Maximum recoil velocity at the end of inspiral and plunge
phase is of the order of 4 km s−1 and 182 km s−1 respectively
(compared to BQW estimates of 22 km s−1 and 243 km s−1

respectively) for binary with ν = 0.2.

The 2.5 PN terms not only contribute significantly but also
contribute negatively to the recoil velocity estimates.

In a numerical study (Baker et al. 2006) suggests that
the recoil velocity estimates at the end of inspiral phase
should be of the order of ∼ 14 km s−1 for a binary with
ν = 0.24 (agrees well with BQW estimates).

This is a relatively higher estimate as compared to our
estimate of 2.2 km s−1 at the ISCO for a system with the
same mass ratio.

Chandra Kant Mishra Linear Momentum Loss & GW Recoil



Comparison of present estimates with other related
works and Conclusion

Maximum recoil velocity at the end of inspiral and plunge
phase is of the order of 4 km s−1 and 182 km s−1 respectively
(compared to BQW estimates of 22 km s−1 and 243 km s−1

respectively) for binary with ν = 0.2.

The 2.5 PN terms not only contribute significantly but also
contribute negatively to the recoil velocity estimates.

In a numerical study (Baker et al. 2006) suggests that the
recoil velocity estimates at the end of inspiral phase should be
of the order of ∼ 14 km s−1 for a binary with ν = 0.24 (agrees
well with BQW estimates).

This is a relatively higher estimate as compared to our
estimate of 2.2 km s−1 at the ISCO for a system with the
same mass ratio.

Chandra Kant Mishra Linear Momentum Loss & GW Recoil



In a situation of such mismatch, we should expect that
inclusion of higher order contributions at the 3PN order
will contribute to the recoil velocity positively (in
contrast to the negative contributions from 2.5PN
terms). BQW05 results

Including contributions from the final ringdown.

This will allow one to make more direct comparisons with
recoil velocity estimates involving all three phases of binary
evolution (such as those due to Numerical Relativity or
effective one body approach).

Paper Reference: Physical Review D, 85 044021
(2012)/arXiv:1111.2701.
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BQW05 results
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