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The Problem

The large scale properties of our Universe are usually described in the
context of a homogeneous and isotropic FLRW space-time.

However:

The real Universe is not exactly homogeneous and isotropic

neither in its present state (classic inhomogeneities)

nor in its primordial state (quantum fluctuations)

Inhomogeneities could affect in a non-trivial way the cosmological evolution.

One needs a well defined averaging procedure for smoothing-out the
perturbed (non-homogeneous) geometric parameters.
How to determine the averaging procedure and the true dynamical evolution
of the averaged cosmological geometry?

Not obvious!



Light-cone averaging: motivation

A phenomenological reconstruction of the spacetime metric and of its
dynamic evolution on a cosmological scale is necessarily based on past
light-cone observations, since most of the relevant signals travel with the
speed of light.

The averaging procedure should be so referred to a null hypersurface
coinciding with the past light-cone of our observer.

Let us start with a four-dimensional integral on a region bounded by two
hypersurfaces, one spacelike and the other one null

I(S;−; A0,V0) =

∫
d4x

√
−g Θ(V0 − V )Θ(A− A0)S(x),

where V (x) is a scalar satisfying ∂µV∂µV = 0 (with V (x) = V0 the past
light-cone of the observer) and A(x) a timelike scalar.

Starting with this hypervolume integral we can construct covariant and gauge
invariant hypersurface and surface integrals considering the variation of the
volume average along the flow lines nµ normal to Σ(A).



Light-cone averaging: prescription
(a) Considering the variation of the hypervolume integral by shifting the
light-cone V = V0 along the flow lines defined by nµ, we obtain

I(S; V0; A0) =

∫
d4x

√
−g δ(V0 − V )Θ(A− A0)

|∂µV∂µA|√
−∂νA∂νA

S(x)

which gives the integral on the past light-cone itself starting from a given
hypersurface in the past.
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The averages of a scalar S is then defined by: 〈S〉A0
V0

=
I(S; V0; A0)

I(1; V0; A0)



Light-cone averaging: prescription
(b) Considering the variation of the hypervolume integral by shifting the
hypersurface A = A0 along nµ we obtain

I(S; A0; V0) =

∫
d4x

√
−g Θ(V0 − V )δ(A− A0)

√
−∂µA∂µA S(x)

which gives the integral on the section of the hypersurface A(x) = A0 which is
causally connected with us.
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The averages of a scalar S is then defined by: 〈S〉V0
A0

=
I(S; A0; V0)

I(1; A0; V0)



Light-cone averaging: prescription
(c) Considering the variation of the hypervolume integral both by shifting the
light-cone V = V0 and the hypersurface A = A0 along the flow lines defined
by nµ we obtain

I(S; V0,A0;−) =

∫
d4x

√
−g δ(V0 − V )δ(A− A0)|∂µV∂µA|S(x)

which gives the integral on the 2-sphere embedded in the past light-cone.
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The averages of a scalar S is then defined by: 〈S〉V0,A0 =
I(S; V0,A0;−)

I(1; V0,A0;−)



Buchert-Ehlers commutation rules on the light-cone

Starting from the definitions given we can obtain the corresponding gauge
invariant generalizations of the Buchert-Ehlers commutation rule (Buchert,
Ehlers (1997)), for example for the average 〈S〉V0,A0 one obtains

∂

∂A0
〈S〉V0,A0 =

〈
k · ∂S
k · ∂A

〉
V0,A0

+

〈
∇ · k
k · ∂A

S
〉

V0,A0

−
〈
∇ · k
k · ∂A

〉
V0,A0

〈S〉V0,A0 ,

∂

∂V0
〈S〉V0,A0 =

〈
∂A · ∂S
k · ∂A

〉
V0,A0

−
〈

k · ∂S
(∂A)2

(k · ∂A)2

〉
V0,A0

+

〈[
�A−∇µ

(
kµ

(∂A)2

k · ∂A

)]
S

k · ∂A

〉
V0,A0

−
〈[

�A−∇µ
(

kµ
(∂A)2

k · ∂A

)]
1

k · ∂A

〉
V0,A0

〈S〉V0,A0 ,

with kµ ≡ ∂µV , kµ∂µS = k · ∂S, kµ∂µA = k · ∂A, ∂µA∂µS = ∂A · ∂S,
∂µA∂µA = (∂A)2 , ∇µkµ = ∇ · k and � = ∇µ∇µ.



Physical Applications

Information about the large scale structure of our Universe
reaches us travelling along the null geodesics of a possibly
inhomogeneous spacetime.

Possible applications of the previous formalism are the
averaging of the following quantities

The redshift 1 + z =
(kµnµ)s
(kνnν)0

.

The luminosity distance dL.

The so-called redshift drift.

which take a simpler form in a special ”adapted” coordinate
system that we call ”geodesic light-cone coordinates (GLC)”.
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Geodesic light-cone coordinates
Such adapted coordinate system xµ = (w , τ, θ̃a), a = 1, 2 is defined by the
metric:

ds2 = Υ2dw2 − 2Υdwdτ + γab(d θ̃a −Uadw)(d θ̃b −Ubdw) ; a, b = 1, 2 .

This metric depends on six arbitrary functions (Υ, the two-dimensional vector
Ua and the symmetric tensor γab) and corresponds to a complete gauge
fixing.
As it is easy to check w is a null coordinate while ∂µτ defines a geodesic flow.

Let us underline that such coordinates can be seen as a particular
specification of the “observational coordinates” (Maartens (1980) and Ellis,
Nel, Maartens, Stoeger, Whitman (1985)).

To understand the geometric meaning of GLC coordinates let us consider the
limiting case of a spatially flat FLRW Universe

w = r + η, τ = t , Υ = a(t), Ua = 0,

γabdθadθb = a2(t)r 2(dθ2 + sin2 θdφ2),

where η is the conformal time of the homogeneous metric: dη = dt/a.



Redshift to luminosity-distance relation

In the GLC gauge and in the case where the reference hypersurface Σ(A)
defines a geodesic observer (V = w and A = τ ) the averaging on the
2-sphere embedded in the past light-cone takes the following semplified form

〈S〉w0,τs =

∫
Σ

d4x
√
−g δ(w − w0)δ(τ − τs)S(τ,w , θ̃a) |∂µτ∂µw |∫

Σ
d4x
√
−g δ(w − w0)δ(τ − τs) |∂µτ∂µw |

=

∫
d2θ̃
√
γ(w0, τs, θ̃a) S(w0, τs, θ̃

a)∫
d2θ̃
√
γ(w0, τs, θ̃a)

, (1)

The redshift becomes

1 + z =
(kµuµ)s

(kµuµ)o
=

(∂µw∂µτ)s

(∂µw∂µτ)o
=

Υ(w0, τ0, θ̃
a)

Υ(w0, τs, θ̃a)

where the subscripts “o” and “s” denote, respectively, a quantity evaluated at
the observer and source space-time position.



Redshift to luminosity-distance relation

The luminosity-distance is given by

dL = (1 + z)2dA

where dA is the angular distance of the source as seen from the observer.

In a generic metric dA can be defined by the following equation (Ellis, Nel,
Maartens, Stoger, Whitman (1985), Vanderveld, Flanagan, Wasserman
(2007))

d
dλ

(ln dA) =
Θ

2
=

1
2
∇µkµ

with λ affine parameter along the ray trajectory.

In GLC gauge we have kµ = (0,−1/Υ, 0, 0), and the 2-sphere embedded in
the light-cone is orthogonal to the photon momentum. The angular distance
can therefore be determinate to be

dA(λ) = γ1/4(λ)
(

sin θ̃1
)−1/2



Redshift to luminosity-distance relation

The redshift to luminosity-distance relation is then obtained averaging dL on
the two-sphere of constant redshift zs embedded in the light-cone

〈dL〉w0,zs = (1 + zs)2
∫

d2θ̃ γ1/2(w0, τ(zs,w0, θ̃
a), θ̃b)dA(w0, τ(zs,w0, θ̃

a), θ̃b)∫
d2θ̃ γ1/2(w0, τ(zs,w0, θ̃a), θ̃b)

.

where τ(zs,w0, θ̃
a) is the solution of:

Υ(w0, τ, θ̃
a)

Υo
=

1
1 + z

,

Therefore the physically meaningful (covariant and gauge invariant) average
reduces to averaging over an appropriate two-dimensional surface a scalar
object which is non local, as the integrand itself will contain integrals along
lightlike geodesic curves lying on the given null hypersurface.
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Luminosity distance in a perturbed FLRW geometry

Let us consider a perturbed conformally flat FLRW background to describe
the inhomogeneities of our Universe at large scale.

In the well-known Newtonian gauge (NG) we have

gµνNG = a−2(η) diag
(
−1 + 2Ψ, 1 + 2Ψ, (1 + 2Ψ)γab

0

)
where γab

0 = diag
(

r−2, r−2 sin−2 θ
)

.

To use the previous results we have to re-express this metric in GLC form.
We use

gρσGLC(x) =
∂xρ

∂yµ
∂xσ

∂yν
gµνNG(y)

and impose the following boundary conditions

Non-singular trasformation around the observer position at r = 0.

The two-dimensional spatial sections r = const are locally parametrized
at the observer positions by standard spherical coordinates, i.e.
θ̃a(0) = θa = (θ, φ).



Luminosity distance in a perturbed FLRW geometry

Using then the useful (zeroth-order) light-cone variables η± = η ± r , we
obtain

τ =

∫ η

ηin

dη′a(η′)
[
1 + Ψ(η′, r , θa)

]
, (2)

w = η+ +

∫ η−

η+

dx Ψ̂(η+, x , θa) ,

θ̃a = θa +
1
2

∫ η−

η+

dx γ̂ab
0 (η+, x , θa)

∫ x

η+

dy ∂bΨ̂(η+, y , θa) ,

where Ψ̂ and γ̂ab
0 are the Bardeen potential and the matrix γab

0 given as
functions of η+, η−, and where ηin represents an early enough time when the
perturbation (or better the integrand) was negligible.



Luminosity distance in a perturbed FLRW geometry

The non-trivial entries of the GLC metric are then given by

Υ = a(η)

[
1 + Ψ̂(η+, η+, θ

a)−
∫ η−

η+

dx ∂+Ψ̂(η+, x , θa)

]
+

∫ η

ηin

dη′a(η′)∂r Ψ(η′, r , θa)

Ua =
1
2
γ̂ab

0

∫ η−

η+

dx ∂bΨ̂(η+, x , θa)− 1
a(η)

γab
0

∫ η

ηin

dη′a(η′) ∂bΨ(η′, r , θa)

+
1
2

∫ η−

η+

dx ∂+

[
γ̂ab

0 (η+, x , θa)

∫ x

η+

dy ∂bΨ̂(η+, y , θa)

]

−1
2

lim
x→η+

[
γ̂ab

0 (η+, x , θa)

∫ x

η+

dy ∂bΨ̂(η+, y , θa)

]

γab =
1

a(η)2

{[
1 + 2Ψ(η, r , θa)

]
γab

0

+
1
2

[
γ̂ac

0

∫ η−

η+

dx ∂c

(
γ̂bd

0 (η+, x , θa)

∫ x

η+

dy ∂d Ψ̂(η+, y , θa)

)
+ a↔ b

]}
.



Luminosity distance in a perturbed FLRW geometry
The above transformations can be immediately applied to obtain an explicit
expression for the redshift parameter zs

1 + zs =
a(η0)

a(ηs)

[
1 + J(zs, θ

a)
]
,

where J = I+ − Ir , and where:

I+ =

∫ ηs
−

ηs
+

dx ∂+Ψ̂(ηs
+, x , θ

a) = Ψs −Ψo − 2
∫ η0

ηs

dη′ ∂r Ψ(η′, η0 − η′, θa),

Ir =

∫ ηs

ηin

dη′
a(η′)

a(ηs)
∂r Ψ(η′, η0 − ηs, θ

a)−
∫ η0

ηin

dη′
a(η′)

a(η0)
∂r Ψ(η′, 0, θa) .

with ηs
± = ηs ± rs, Ψs = Ψ(ηs, η0 − ηs, θ

a), Ψo = Ψ(η0, 0, θa).

While the angular distance is given by

dA(λs) = asrs [1−Ψs − J2(zs, θ)] ,

where

J2 =
1

η0 − ηs

∫ η0

ηs

dη
η − ηs

η0 − η

[
∂2
θ + cot θ ∂θ + sin−2 θ∂2

φ

]
Ψ(η′, η0− η′, θa)



Luminosity distance in a perturbed FLRW geometry

For the full explicit expression of the luminosity distance dL at constant
redshift what we need is the first-order expansion on the factor asrs ≡ a(ηs)rs

with respect to the constant parameter zs which localizes the given light
source on the past light-cone w = w0 of our observer.

Starting from the zero-order solution η(0)
s of

a(η
(0)
s )

a0
=

1
1 + zs

we obtain

[asrs](zs, θ
a) = a(η

(0)
s )∆η

[
1 + 2Ψav +

(
1− 1
Hs∆η

)
J(zs, θ

a)

]
where ∆η = η0 − η(0)

s and

Ψav =
1

∆η

∫ η0

ηs

dη′Ψ(η′, η0 − η′, θa)



Luminosity distance in a perturbed FLRW geometry

The (first-order, non-homogeneous, non-averaged) expression of dL to first
order in our perturbed background is so given by

dL(zs, θ
a)

(1 + zs)a0∆η
≡ dL(zs, θ

a)

dFLRW
L (zs)

= 1−Ψ(ηs, η0−ηs, θ
a)+2Ψav+

(
1− 1
Hs∆η

)
J−J2 .

This is a general expression valid in any FLRW background.

Considering a CDM-dominated Universe we find full agreement with the
result for the luminosity distance at constant redshift computed in Bonvin,
Durrer, Gasparini (2006), modulo a term which can be written as ~v0 · n̂.

Such a term gives a subleading contribution to the backreaction and can be
neglected with no impact on our final results.



Outline

Light-cone averaging: formalism and motivation

Geodesic light-cone coordinates

Luminosity distance in a perturbed FLRW geometry

Backreaction on the luminosity-redshift relation via
light-cone averaging

Conclusions



Space-time and ensemble average
Considering a stochastic background of primordial perturbation and an
esensemble average of the light-cone one, nontrivial effects can only be
obtained from quadratic and higher-order perturbative corrections (Ψ = 0,
Ψ2 6= 0).

Let us take a typical average of a scalar S over the compact surface Σ
(topologically equivalent to a two-sphere) embedded on the past light-cone
w = w0 at constant zs

〈S〉Σ =

∫
Σ

d2µS∫
Σ

d2µ

Expanding dµ and S in a perturbative series

d2µ = (d2µ)(0)(1 + µ(1) + µ(2)), S = S(0)(1 + σ(1) + σ(2))

we obtain that
〈S/S(0)〉 = 1 + 〈σ2〉+ IBR2 + . . .

where
IBR2 = 〈µ1σ1〉 − 〈µ1〉〈σ1〉

is called induced backreaction term and depends only on first order
perturbation.



Cosmic variance
The variance descibes the distribution of the values of S/S(0) around its
mean value 〈S/S(0)〉.

This dispersion is due to both the fluctuation on the averaging surface and to
those due to ensemble fluctuations. Let us thus define:

Var[S/S(0)] ≡ 〈
(

S/S(0) − 〈S/S(0)〉
)2
〉 = 〈(S/S(0))2〉 −

(
〈S/S(0)〉

)2

which gives
Var[S/S(0)] = 〈σ2

1〉
On the other hand, considering the dispersion of the angular average
〈S/S(0)〉 due to the stochastic fluctuations, one obtains

Var′[S/S(0)] ≡
(
〈S/S(0)〉 − 〈S/S(0)〉

)2
= (〈S/S(0)〉)2 −

(
〈S/S(0)〉

)2

which gives
Var′[S/S(0)] = 〈σ1〉2

As we will see, such a quantity is much smaller than the previous one.
The main reason for the dispersion lies in the angular scatter of the data
rather than in their stochastic distribution due to the ensemble.



Luminosity distance-redshift relation

Let us consider S = dL(zs, θ
a) and calculate the impact of the

inhomogeneities on the luminosity distance-redshift relation.
If we define

A1 = −Ψs , A2 = 2Ψav , A3 =

(
1− 1
Hs∆η

)
I+

A4 = −
(

1− 1
Hs∆η

)
Ir , A5 = −J2

it is straightforward to see that

σ1 = A1 + A2 + A3 + A4 + A5

and
µ1 = 2(A1 + A2 + A3 + A4)

We can now obtain the second-order induced backreaction IBR2, and the
variance of dL/dFLRW

L .



Induced backreaction and dispersion
To implement the ensemble average of our stochastic background of scalar
perturbations we expand Ψ as

Ψ(η,~x) =
1

(2π)3/2

∫
d3k ei~k·~x Ψk (η)E(~k) ,

where E is a unit random variable satisfying E∗(~k) = E(−~k) as well as the
ensemble-average condition:

E(~k1)E(~k2) = δ(~k1 + ~k2).

According to this we obtain

〈ΨsΨs〉 =

∫ ∞
0

dk
k

PΨ(k , ηs),

〈Ψs〉〈Ψs〉 =

∫ ∞
0

dk
k

PΨ(k , ηs)

(
sin(k∆η)

k∆η

)2

where

PΨ(k , η) ≡ k3

2π2 |Ψk (η)|2



Induced backreaction and dispersion
We have many similar contributions appearing both in the induced
backreaction and in the variance.
Such contributions are generated from the Ai terms and can be
parameterized, considering a time-independent Ψk (see next slide!), as

〈AiAj〉 =

∫ ∞
0

dk
k

PΨ(k)Cij (k , η0, ηs),

〈Ai〉〈Aj〉 =

∫ ∞
0

dk
k

PΨ(k)Ci (k , η0, ηs) Cj (k , η0, ηs)

and we have that the induced backreaction is given by

IBR2 =

∫ ∞
0

dk
k

PΨ(k)
4∑

i=1

5∑
j=1

2
[
Cij (k , η0, ηs)− Ci (k , η0, ηs) Cj (k , η0, ηs)

]
while the dispersion by(

Var
[

dL

dFLRW
L

])1/2

=

√
〈σ2

1〉 =

∫ ∞
0

dk
k

PΨ(k)
5∑

i=1

5∑
j=1

Cij (k , η0, ηs)

1/2



Power Spectrum PΨ(k , η)

Limiting ourselves to sub-horizon perturbations, and considering the standard
CDM model, we can approximate Ψk with a time-independent value and
simply obtain this by applying an appropriate, time-independent transfer
function to the primordial (inflationary) spectral distribution

PΨ(k) =

(
3
5

)2

∆2
RT 2(k), ∆2

R = A
(

k
k0

)ns−1

,

where T (k) is a constant transfer function and ∆2
R is the primordial power

spectrum of curvature perturbations.
From WMAP data we have the following approximate values

A = 2.45× 10−9, ns = 0.96, k0/a0 = 0.002 Mpc−1

while, from Eisenstein, Hu (1998), we have

T0(q) =
L0

L0 + q2C0(q)
, L0(q) = ln(2e + 1.8q), C0(q) = 14.2 +

731
1 + 62.5q

where q = k
13.41keq

and keq is the scale corresponding to matter-radiation
equality.
In the following we consider a CDM model with a0 = 1, Ωm = 1, and we use
h ≡ H0/(100 km s−1Mpc−1) = 0.7. We then have keq ' 0.036 Mpc−1.



Induced backreaction and dispersion: leading terms

In a CDM model we can analytically compute the coefficients Cij , Ci .

Let us then do some consideration

The combination Cij − CiCj will go at least as O(k2∆η2) in the IR limit,
i.e. for k∆η � 1. We have subleading infrared contribution and we can
safely fix our infrared cut-off to be k = H0.

The main contribution to IBR2 and to the dispersion will come from the
range 1/∆η � k ≤ 2.5 Mpc−1. Where the transfer function is not yet
decreasing as log k/k2.

In particular, we have only two leading contributions, given by the integrals
which involve the coefficients C44 and C55. For such terms we have the
following behaviour for k∆η � 1:

C44 '
(

1− 1
Hs∆η

)2

(η2
0 + η2

s )
k2

27

C55 ' k3∆η3

15
SinInt(k∆η)



Induced backreaction and dispersion: leading terms

〈A4A4〉 ⇒ gives a large contribution for zs � 1.

〈A5A5〉 ⇒ gives a large contribution for zs � 1.

The contributions depend in principle on the UV cut-off kUV eventually used to
evaluate the integrals.

On the other hand, when kUV is taken inside the regime where the spectrum
goes like (log k)2/k4, the dependence on the cut-off will be not too strong.

In particular, IBR2 depends very weakly on the particular value of kUV , while
the dispersion has a somewhat stronger dependence on kUV .

Both oh them are however finite when kUV → +∞.

The numerical integrations of 〈A4A4〉 and 〈A5A5〉 are presented in the
following two figures, where we illustrate the magnitude of the backreaction
effect as a function of the redshift and of its (weak) dependence on the cut-off
(ranging from kUV = 0.1 Mpc−1 to kUV = +∞).



〈A4A4〉 term
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The result of the numerical integration for 〈A4A4〉 is plotted as a function of zs

for three different values of the UV cut-off: k = 0.1 Mpc−1 (thick blue line),
k = 1 Mpc−1 (thin purple line), k = +∞ (dashed red line).



〈A5A5〉 term
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The result of the numerical integration for 〈A5A5〉 is plotted as a function of zs

for three different values of the UV cut-off: k = 0.1 Mpc−1 (thick blue line),
k = 1 Mpc−1 (thin purple line), k = +∞ (dashed red line).



Backreaction on the luminosity-redshift relation
Let us now sum up all contributions and compare the results of

〈dL〉 ± dCDM
L

√
〈σ2

1〉 with the homogeneous luminosity-distance of a pure CDM
model and of a successful ΛCDM model.

We will include into 〈dL〉 only the IBR2 contribution, 〈dL〉 = dCDM
L (1 + IBR2).

A full computation should include additional contributions arising from
second-order perturbations of dL. Nonetheless, our computation may
estimate a reliable “lower limit” of the possible corrections to the
luminosity-redshift relation in the context of our inhomogeneous geometry.

The comparison between the homogeneous and inhomogeneous (averaged)
values of dL can be conveniently illustrated by plotting the difference between
the distance modulus of the considered model and that of a flat, linearly
expanding Milne-type geometry

∆(m −M) = 5 log10

[
〈dL〉

]
− 5 log10

[
(2 + zs)zs

2H0

]
The results are illustrated in the following two figures for the case of a cut-off
kUV = 0.1 Mpc−1 and kUV = 1 Mpc−1.



∆(m −M) with cut-off kUV = 0.1 Mpc−1
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The distance modulus is plotted for a pure CDM model (thin line), for a CDM
model including the contribution of IBR2 (dashed blue line) plus/minus the
dispersion (coloured region), and for a ΛCDM model with ΩΛ = 0.73 (thick
line) and ΩΛ = 0.1 (dashed-dot thick line).



∆(m −M) with cut-off kUV = 1 Mpc−1
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The distance modulus is plotted for a pure CDM model (thin line), for a CDM
model including the contribution of IBR2 (dashed blue line) plus/minus the
dispersion (coloured region), and for a ΛCDM model with ΩΛ = 0.73 (thick
line) and ΩΛ = 0.1 (dashed-dot thick line).



Backreaction on the luminosity-redshift relation

The choice of the cut-off may affect the final result when the values of kUV are
varying in the range (0.1− 1) Mpc−1.

In any case the inhomogeneous model adopted is fully under control only in
the linear perturbative regime. The spectrum cannot be extrapolated at
scales higher than about k ∼ 1 Mpc−1 without taking into account the
complicated effects of its non-linear dynamical evolution.

The corrections induced by IBR2 on the luminosity distance of a
homogeneous CDM model, even taking into account the expected dispersion
of values around 〈dL〉, cannot be used to successfully simulate realistic
dark-energy effects.

On the other hand, a consistent second-order computation of the
backreaction should include the contribution of 〈σ2〉.



Backreaction on the luminosity-redshift relation

It is then possible to show that 〈σ2〉 contains contributions ∼ 〈A5A5〉.

The behaviour of this term, in the asymptotic regime k∆η � 1, is very
different from the behaviour of terms like 〈A4A4〉 which give the leading
contribution to IBR2: the contribution of 〈A5A5〉, in particular, grows at large
redshifts.

This suggests that a full computation of 〈σ2〉 could strongly enhance the
overall backreaction effects at large zs, with respect to the effects due to IBR2

discussed previously.

A full second-order computation, possibly joined to a reliable estimate of
contributions from the non-linear regime, appears to be necessary before firm
conclusions on the correct interpretation of the data can be drawn.

To conclude, the different behaviour of the different backreaction
contributions, at small zs and large zs, represent an important signature to
distinguish the effects due to averaged inhomogeneities from the more
conventional dynamical effects of homogeneous dark energy sources.



Full second order by first order perturbation
The calculation of the full backreaction on the observed quantity requires a
full second-order calculation of the flux associated to the supernovae
luminosity (∼ d−2

L ).

On the other hand, suitable linear combinations of averages of different
powers of dL only depend of the first order quantity. As an example, one can
show that the following equality holds at second order for any value of the
real parameter α:

〈
(
dL/dFLRW

L

)α〉 − α〈dL/dFLRW
L 〉 = 1− α +

α(1− α)

2
〈σ2

1〉

This quantity can be plotted and compared with its (deterministic) value for
ΛCDM, for various values of α.

The two models disagree for generic α, leading to the conclusion that realistic
inhomogeneities added to CDM lead to a model that can be distinguished, in
principle, from ΛCDM.

On th other hand, we only have a single quantity measured by the
supernovae experiments (the flux), and one cannot exclude that the two
models happen to give the same result for that particular observable.



Conclusions

We have given a covariant and gauge invariant formalism to average on
null hypersurfaces and to analyze the effects of inhomogeneities on
astrophysical observables related to light-like (massless) signals.

We have applied such formalism to evaluate the impact of the
inhomogeneities on the luminosity-redshift relation.

We obtain two leading backreaction contributions.
〈A4A4〉, which is associated with “Doppler-type” contributions, and
〈A5A5〉, which is associated with lensing contributions.

Using a stochastic spectrum for the fluctuations we obtain a strong
backreaction effect (estimated from 〈A5A5〉) of the order of 10−3 for
zs ∼ 1. Two order of magnitude more of what usually obtained in the
literature.

Depending on the full contributions of the second order and, in case,
from the one of very small scales, the effects of inhomogeneities could
be relevant for future precise determinations of the amount and
equation of state of dark energy.
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