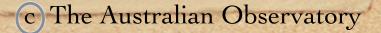
Bondi-Sachs Formulation of General Relativity (GR) and the Vertices of the Null Cones

> Thomas Mädler Observatoire de París/Meudon, Max Planck Institut for Astrophysics

Sept 10, 2012 - IAP seminar

Astrophysical Motivation



Astrophysical Motivation

c The Australian Observatory

Astrophysical Motivation

Supernova 1987A was a core-collapse supernova, which ...

is the explosion of a star undergoing a gravitational collapse

involves time varying multi-poles of the stellar mass-energy distributions

... generate gravitational waves

Gravitational Waves -Motivation of Bondi's Idea-

metric = Minkowski + perturbation

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

 y^{α}

choose coordinates

equation of motions

 $\left(\delta^{ij}\frac{\partial^2}{\partial y^i\partial y^j} - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)h_{\mu\nu} = 2\kappa T_{\mu\nu}$

Gravitational Waves -Motivation of Bondi's Idea-

metric = Minkowski + perturbation

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

 y^{α}

choose coordinates

equation of motions

$$\left(\delta^{ij}\frac{\partial^2}{\partial y^i\partial y^j} - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)h_{\mu\nu} = 2\kappa T_{\mu\nu}$$

PROBLEM of THIS DESCRIPTION linearised metric theory is not gauge invariant other coordinates also yield : metric = Minkowski + perturbation Eddington (1922): Gravitational waves travel at the speed of thought Gravitational Waves -Motivation of Bondi's Idea-

Pirani showed in 1957...

- gravitational radiation is characterised by the Riemann tensor
- I fundamental speed is the speed of light

Light-cone approach of GR The Bondí-Sachs Formulation stargazer gravitational waves star

Light-cone approach of GR

The Bondi-Sachs Formulation

stargazer

star

gravitational waves

> What are the properties of the Bondi-Sachs Formulation of GR and which role plays the vertex?

Out-look

Simplifying Assumptions The Bondi-Sachs Metric The Field equations Mass-loss and Gravitational Waves Regularity Conditions @ the Vertex Summary

Simplifying Assumptions

Simplifying Assumptions

Axial Symmetry

Simplifying Assumptions

Axial Symmetry

Vacuum Space-Tímes

+

The Origin of the Coordinate System in Axial Symmetry

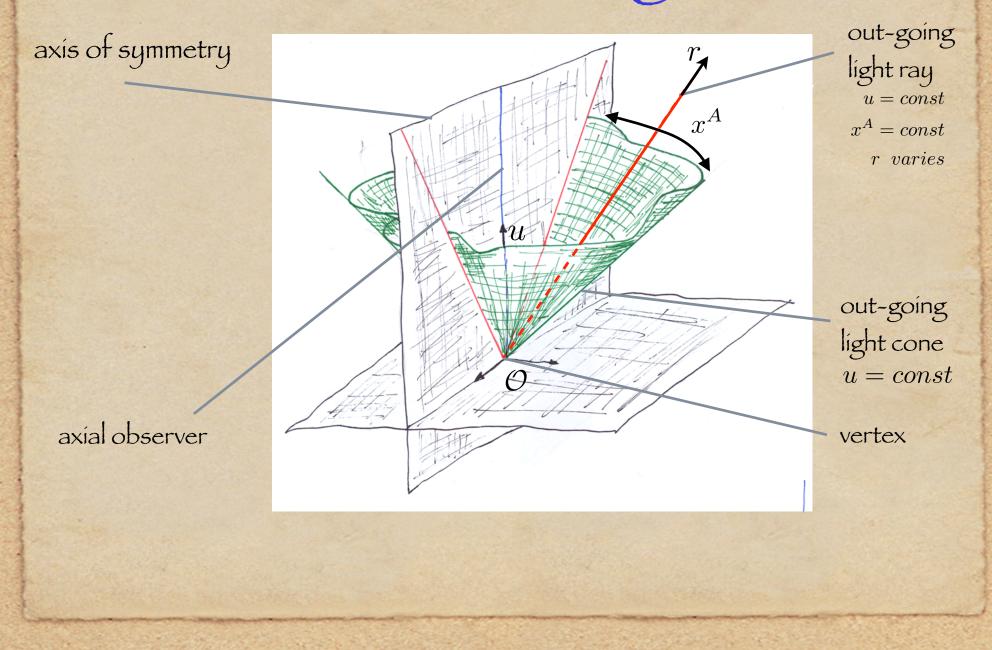
Axis of symmetry A in a four-dimensional space-time is a totally-geodesic, time-like 2-surface

Acontains time-like geodesic curves given by the symmetry

 \bigcirc choose in ${\cal A}$ a time-like geodesic (world-line of an observer) which traces the vertices of null cones

VERTEX = ORIGIN

Coordinates @ a Light-Cone



 $\begin{aligned} x^{0} &:= u & \text{ is null coordinate } g^{\alpha\beta} \nabla_{\alpha} u \nabla_{\beta} u = 0 \\ k^{\alpha} &:= g^{\alpha\beta} \nabla_{\beta} u \text{ null vector of the} \\ & \text{out-going null rays} \end{aligned}$ $\begin{aligned} x^{A} &:= (x^{2}, x^{3}) & \text{ are constant along} \\ & \text{null rays } k^{\alpha} \nabla_{\alpha} x^{A} = 0 \end{aligned}$ $\begin{aligned} x^{1} &:= r & \text{ is a luminosity distance} \\ & \frac{\det(g_{AB})}{r^{4}} = f(x^{A}) \end{aligned}$

 $\begin{aligned} x^{0} &:= u & \text{ is null coordinate } g^{\alpha\beta} \nabla_{\alpha} u \nabla_{\beta} u = 0 \\ k^{\alpha} &:= g^{\alpha\beta} \nabla_{\beta} u & \text{null vector of the} \\ & \text{out-going null rays} \end{aligned}$ $\begin{aligned} x^{A} &:= (x^{2}, x^{3}) & \text{ are constant along} \\ & \text{null rays } k^{\alpha} \nabla_{\alpha} x^{A} = 0 \end{aligned}$ $\begin{aligned} x^{1} &:= r & \text{ is a luminosity distance} \\ & \frac{\det(g_{AB})}{r^{4}} = f(x^{A}) \end{aligned}$

$$g^{00} = g_{11} = 0$$

 $\begin{aligned} x^{0} &:= u & \text{ is null coordinate } g^{\alpha\beta} \nabla_{\alpha} u \nabla_{\beta} u = 0 \\ & k^{\alpha} := g^{\alpha\beta} \nabla_{\beta} u \text{ null vector of the} \\ & \text{out-going null rays} \end{aligned}$ $\begin{aligned} x^{A} &:= (x^{2}, x^{3}) & \text{ are constant along} \\ & \text{null rays } k^{\alpha} \nabla_{\alpha} x^{A} = 0 \end{aligned}$ $\begin{aligned} x^{1} &:= r & \text{ is a luminosity distance} \\ & \frac{\det(g_{AB})}{r^{4}} = f(x^{A}) \end{aligned}$

$$g^{00} = g_{11} = 0$$

$$g^{0A} = g_{1A} = 0$$

 $\begin{aligned} x^{0} &:= u & \text{ is null coordinate } g^{\alpha\beta} \nabla_{\alpha} u \nabla_{\beta} u = 0 & \longrightarrow \\ k^{\alpha} &:= g^{\alpha\beta} \nabla_{\beta} u & \text{null vector of the} \\ & \text{out-going null rays} \\ x^{A} &:= (x^{2}, x^{3}) & \text{ are constant along} & \longrightarrow \\ & \text{null rays } k^{\alpha} \nabla_{\alpha} x^{A} = 0 \\ x^{1} &:= r & \text{ is a luminosity distance} & \longrightarrow \\ & \frac{\det(g_{AB})}{r^{4}} = f(x^{A}) \end{aligned}$

$$g^{00} = g_{11} = 0$$

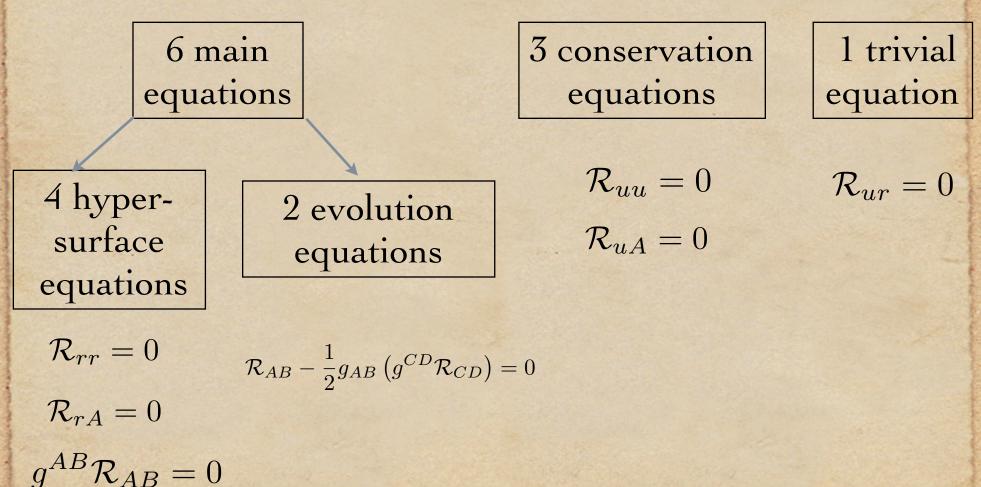
$$\rightarrow g^{0A} = g_{1A} = 0$$

$$g^{01} \neq -1$$
$$g_{AB} = r^2 h_{AB}$$

 $x^{0} := u$ is null coordinate $g^{\alpha\beta} \nabla_{\alpha} u \nabla_{\beta} u = 0$ $g^{00} = g_{11} = 0$ $k^{\alpha} := g^{\alpha\beta} \nabla_{\beta} u$ null vector of the out-going null rays $\bullet \quad g^{0A} = g_{1A} = 0$ $x^A := (x^2, x^3)$ are constant along null rays $k^{\alpha} \nabla_{\alpha} x^A = 0$ $\begin{array}{c} & g^{01} \neq -1 \\ \\ g_{AB} = r^2 h_{AB} \end{array}$ $x^1 := r$ is a luminosity distance $\frac{\det(g_{AB})}{r^4} = f(x^A)$

 $ds^{2} = -e^{2\Phi+4\beta}du^{2} - 2e^{2\beta}dudr + r^{2}h_{AB}(dx^{A} - U^{A}du)(dx^{B} - U^{B}du)$ $h_{AB}dx^{A}dx^{B} = e^{2\gamma}\cosh(2\delta)d\theta^{2} + 2\sin\theta\sinh(2\delta)d\theta d\phi + e^{-2\gamma}\sin^{2}\theta\cosh(2\delta)d\phi^{2}$ Bondi [1960], Sachs [1962], van der Burg [1966]

Einstein Equations



Tamburino et al. [1966]

Structure of the Field Equations

$$\nabla_{\alpha} \left(R^{\alpha}{}_{\beta} - \frac{1}{2} \delta^{\alpha}{}_{\beta} R^{\mu}{}_{\mu} \right) = 0$$
imply....

Bondi-Sachs Lemma: If the main equations hold on one null cone and the optical expansion rate of the null rays does not vanish, i.e. $\beta \neq \infty$, on this cone, then the trivial equation is fulfilled algebraically and the supplementary equations hold everywhere on this null cone provided they are fulfilled at one radius r=R>0.

Hierarchy of Main Equations

• Hyper-surface equations

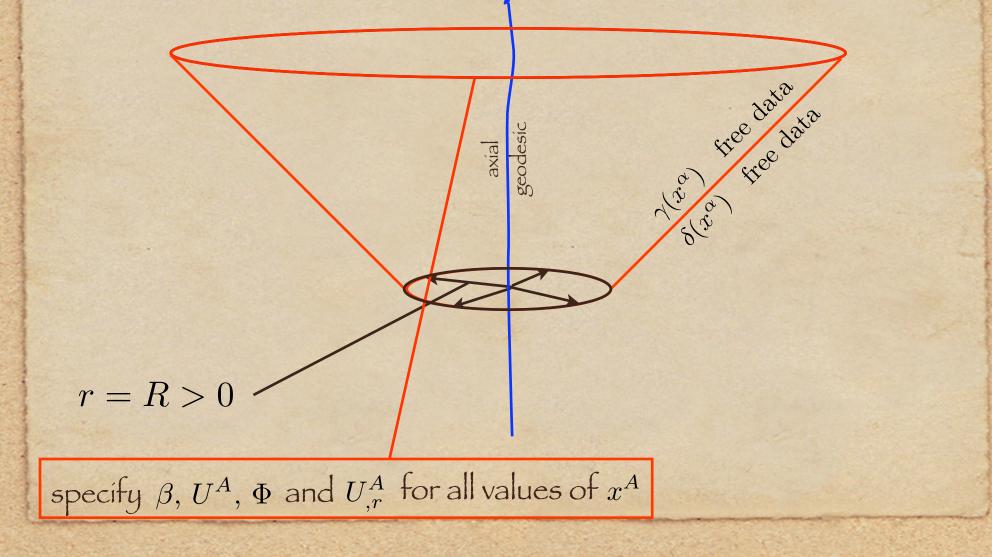
 $R_{rr} = 0: \ \beta_{,r} = J_{(0)}(\gamma, \delta)$ $R_{rA} = 0: \ U^{A}_{,rr} = J^{A}(\beta, \gamma, \delta)$ $g^{AB}R_{AB} = 0: \ \Phi_{,r} = J_{(1)}(U^{A}, \beta, \gamma, \delta)$

• evolution equations $\gamma_{,ur} = J_{(\gamma)}(\gamma, \, \delta, \, U^A, \, \beta, \, \Phi)$ $\delta_{,ur} = J_{(\delta)}(\gamma, \, \delta, \, U^A, \, \beta, \, \Phi)$

Initial values to Integrate the Einstein Equations (1)



Initial values to Integrate the Einstein Equations (2)



Condition for Out-Going Gravitational Waves

... is the Sommerfeld radiation condition:

 $\lim_{r \to \infty} r\gamma \bigg| = const \quad , \qquad \lim_{r \to \infty} r\delta \bigg| = const$ $x^{A} = const \qquad \qquad x^{A} = const$ $u = const \qquad \qquad u = const$

... ansatz for the asymptotic solution $\gamma(u, r, x^D) = \frac{c(u, x^D)}{r} + \mathcal{O}(r^{-3})$, $\delta(u, r, x^D) = \frac{d(u, x^D)}{r} + \mathcal{O}(r^{-3})$

Bondí et. al. [1962], van der Burg [1966]

Asymptotic Solution of the Main equations

... consequence of the integration of the main equations

 $\beta(x^{\alpha}) = \beta_{\infty}(u, x^{A}) + \mathcal{O}(r^{-2})$ $U^{A}(x^{\alpha}) = U^{A}_{\infty}(u, x^{A}) + \mathcal{O}(r^{-2})$ $e^{2\Phi(x^{\alpha})} = 1 - \frac{2M(u, x^{A})}{r} + \mathcal{O}(r^{-2})$

Bondí's choise of the functions of integration

 $\beta_{\infty}(u, x^{A}) = 0$ $U_{\infty}^{A}(u, x^{A}) = 0$

Asymptotic Solution of the Main equations

... consequence of the integration of the main equations

 $\beta(x^{\alpha}) = \beta_{\infty}(u, x^{A}) + \mathcal{O}(r^{-2})$ $U^{A}(x^{\alpha}) = U^{A}_{\infty}(u, x^{A}) + \mathcal{O}(r^{-2})$ $e^{2\Phi(x^{\alpha})} = 1 - \frac{2M(u, x^{A})}{r} + \mathcal{O}(r^{-2})$

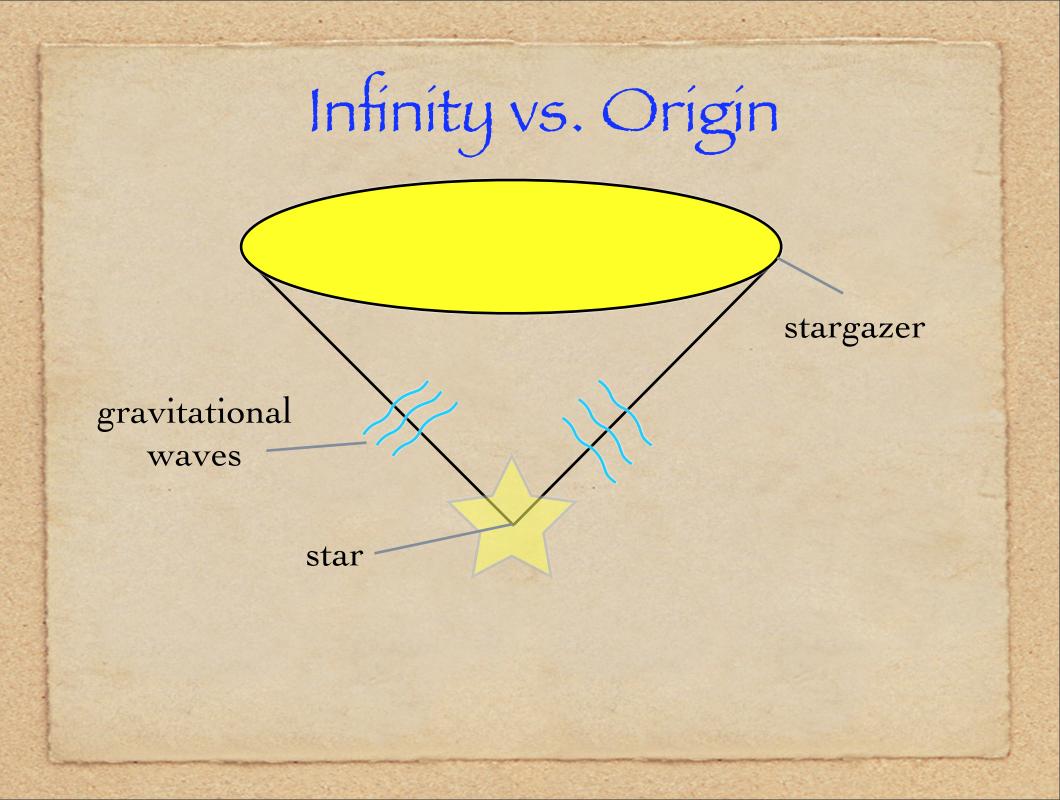
Bondi's choise of the functions of integration

 $\beta_{\infty}(u, x^{A}) = 0$ $U_{\infty}^{A}(u, x^{A}) = 0$

Bondí chooses an asymptotic Mínkowskian observer

The Bondí-Mass & Mass-Loss • the function of integration $M(u, x^A)$ is the Mass aspect of the isolated system • the Bondí Mass m(u) of an isolated system is $m(u) = \frac{1}{4\pi} \oint M(u,\theta) \sin^2 \theta d\theta d\phi$ the time variation of the Bondi mass as measured by the asymptotic observer is $\frac{d}{du}m(u) = -\frac{1}{4\pi} \oint \left[c_{,u}^2(u,\theta) + d_{,u}^2(u,\theta)\right] \sin^2\theta d\theta d\phi$

The Bondí-Mass & Mass-Loss • the function of integration $M(u, x^A)$ is the Mass aspect of the isolated system • the Bondí Mass m(u) of an isolated system is $m(u) = \frac{1}{4\pi} \oint M(u,\theta) \sin^2 \theta d\theta d\phi$ the time variation of the Bondi mass as measured by the asymptotic observer is $\frac{d}{du}m(u) = -\frac{1}{4\pi} \oint \left[c_{,u}^2(u,\theta) + d_{,u}^2(u,\theta)\right] \sin^2\theta d\theta d\phi$ -an isolated system can only lose mass --via gravitational radiation-



Infinity vs. Origin

stargazer Bondi's Observer at infinity

gravitational

waves

star -

Infinity vs. Origin

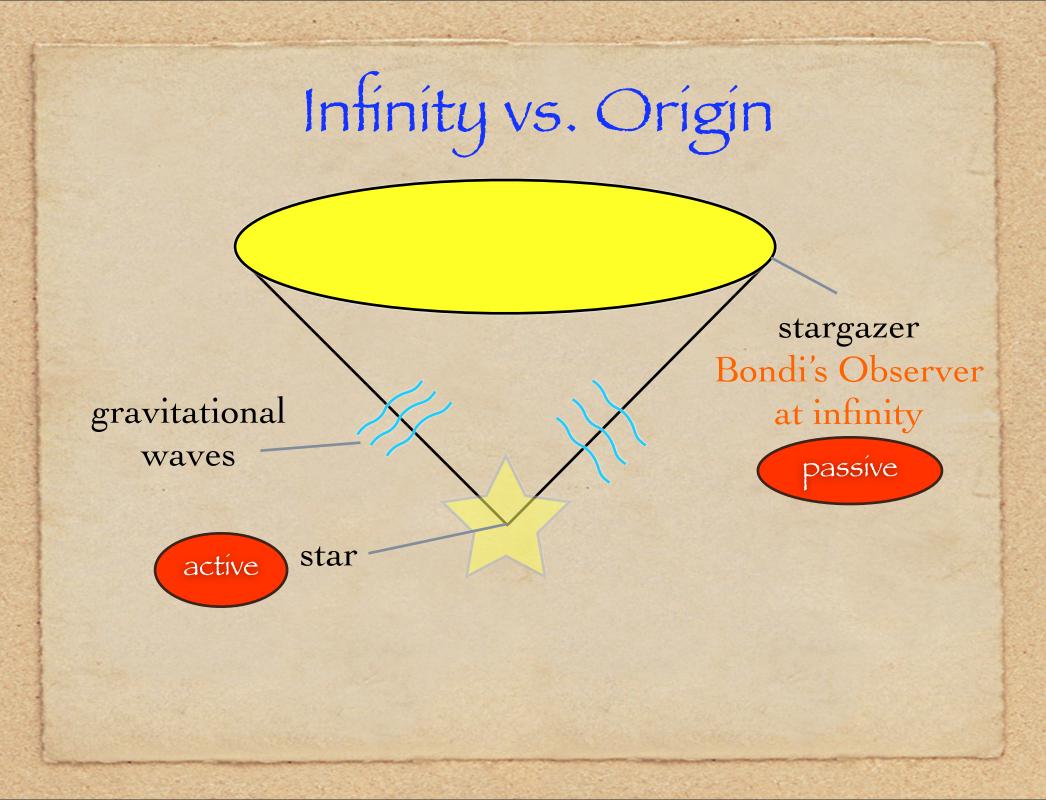
stargazer Bondi's Observer at infinity

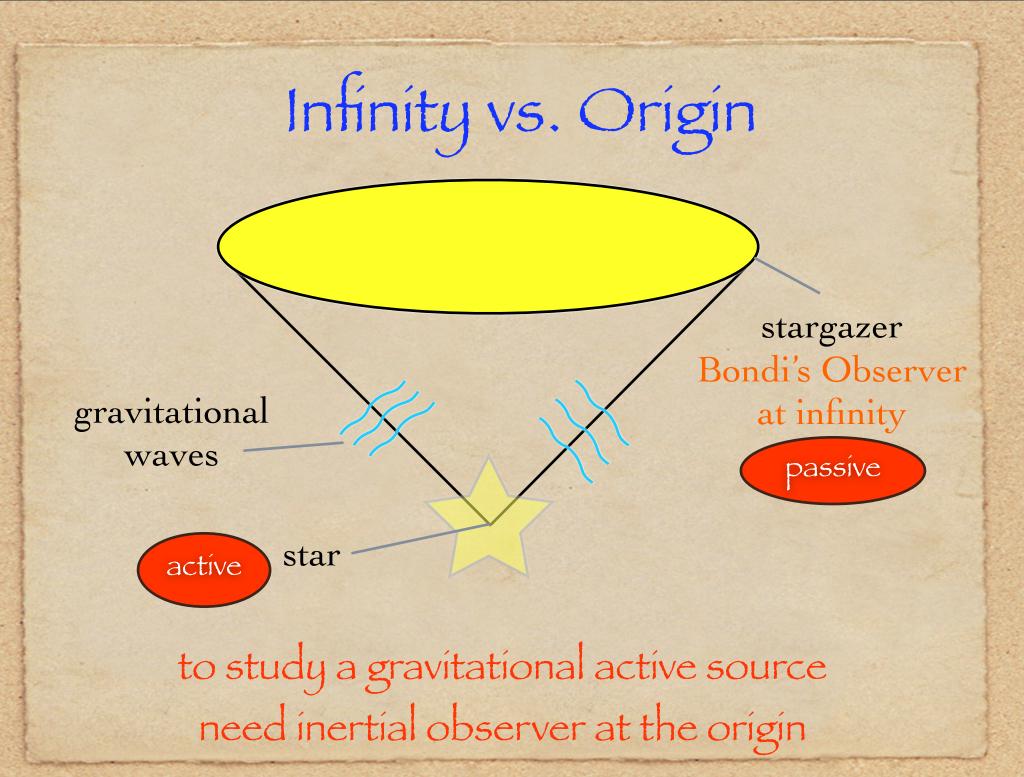
passíve

gravitational

waves

star -



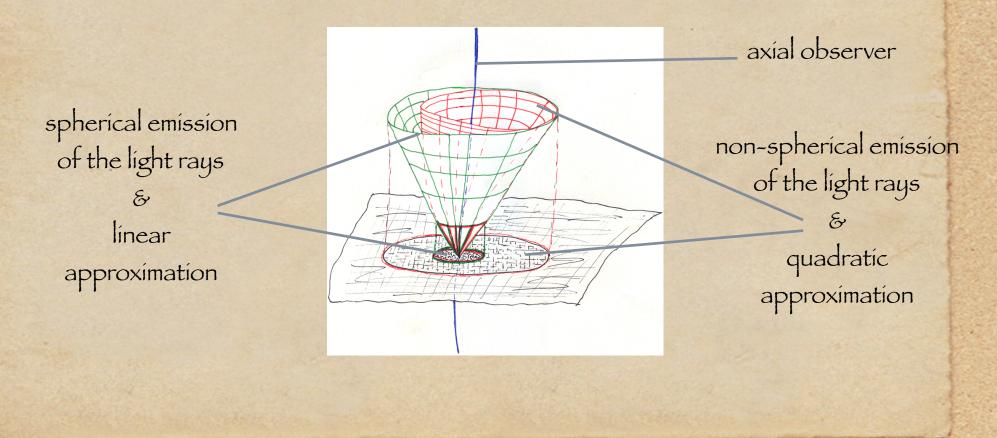


The Vertex - Problems

 a null cone is not differentiable at its vertex
 Bondi-Sachs metric is not defined at r=0
 require additional regular structure at the vertex with a Taylor expansion in regular coordinates
 order of approximation of the metric near the vertex determines how the light rays leave the axial observer

The Vertex - Problems

(4) order of approximation of the metric near the vertex determines how the light rays leave the axial observer

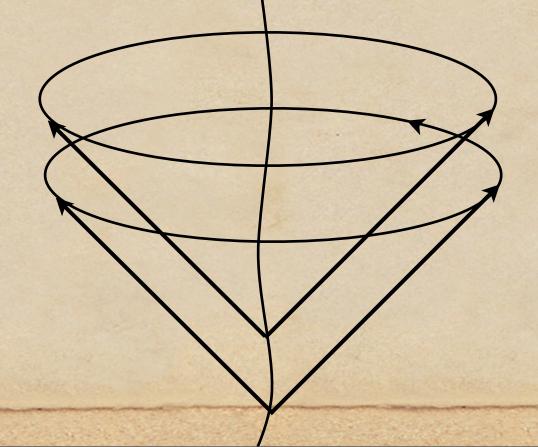


The Vertex - Problems

(5) How does one move the origin of the coordinate system along the time-like curve defining it ?

The Vertex - Problems

(5) How does one move the origin of the coordinate system along the time-like curve defining it ?



Solving the Vertex - Problem

... define a regular coordinate system along the axial geodesic

... define a null cone in the regular coordinate system

... transform the regular metric to a Bondi-Sachs metric

The Metric @ the Vertex

- The radial expansion of the Bondi-Sachs metric functions...
 - ...starts at different positive powers
 - ...shows a strict angular behaviour in terms of associated Legendre polynomials in the coefficients
 - ...contains at higher order coefficients time derivatives of the lower order ones

...contains strict numerical factors in the expansion coefficients

Example:
$$\gamma(u, r, \theta) = \left[\gamma_2(u)P_2^2(\theta)\right]r^2 + \left[\gamma_3(u)P_3^2(\theta) + \frac{5}{6}\frac{d\gamma_2}{du}(u)P_2^2(\theta)\right]r^3 + \mathcal{O}(r^4)$$

The Metric @ the Vertex

- The radial expansion of the Bondi-Sachs metric functions ...
 - ...starts at different positive powers
 - ...shows a strict angular behaviour in terms of associated Legendre polynomials in the coefficients
 - ...contains at higher order coefficients time derivatives of the lower order ones

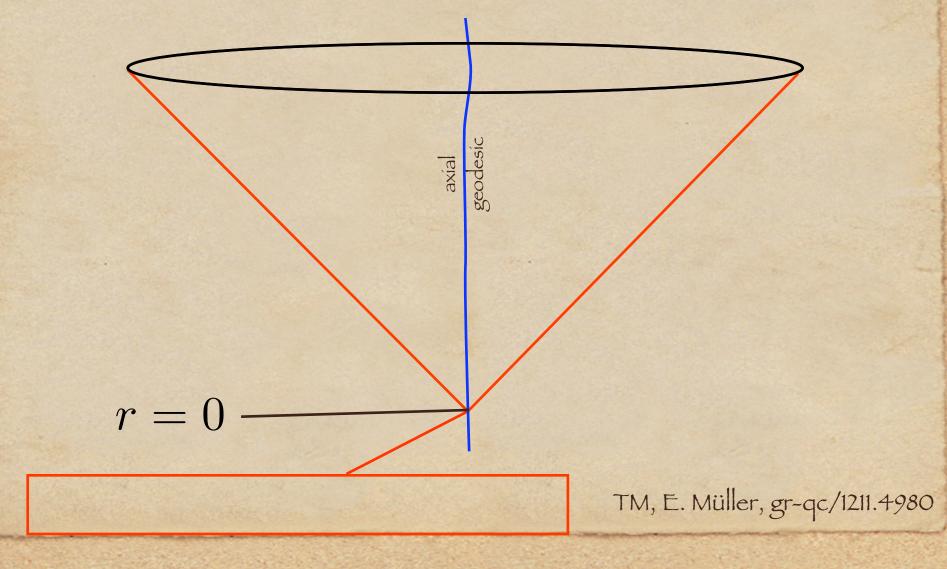
...contains strict numerical factors in the expansion coefficients

Example: $\gamma(u, r, \theta) = \left[\gamma_2(u)P_2^2(\theta)\right]r^2 + \left[\gamma_3(u)P_3^2(\theta) + \frac{5}{6}\frac{d\gamma_2}{du}(u)P_2^2(\theta)\right]r^3 + \mathcal{O}(r^4)$ The metric near the vertex is very rigidly fixed

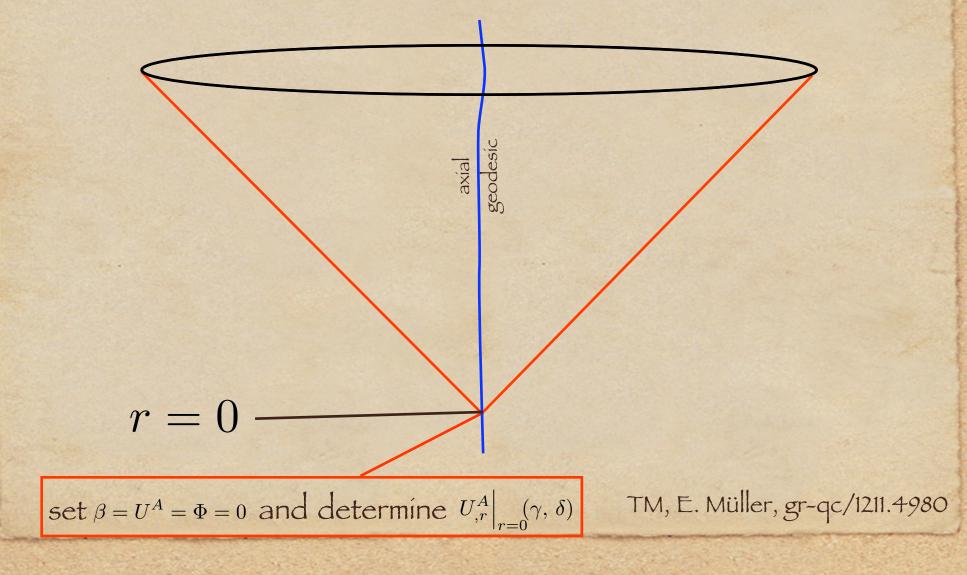
Initial values to Integrate the Einstein Equations (1)



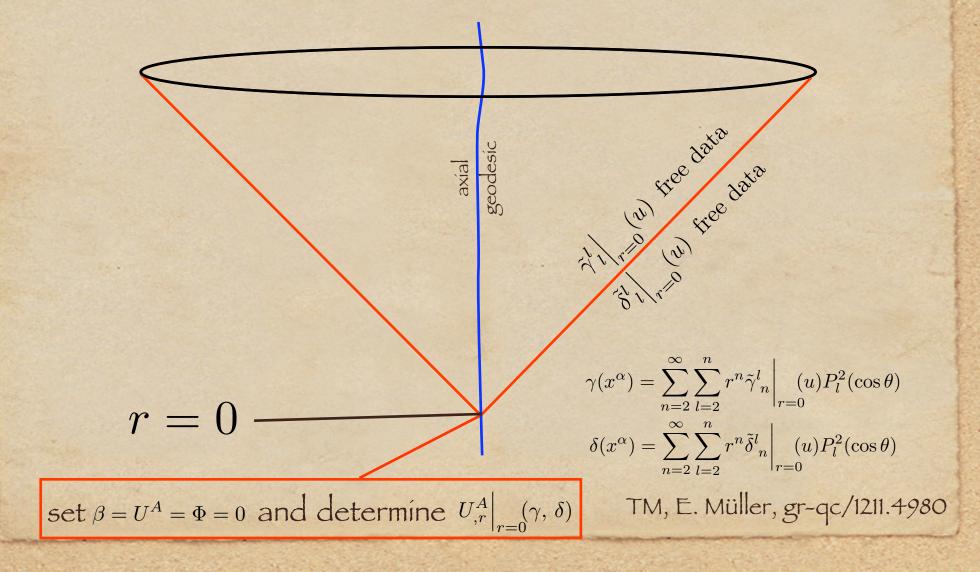
Implications from the Regularity Conditions at the Vertex for Initial Data on a Light Cone



Implications from the Regularity Conditions at the Vertex for Initial Data on a Light Cone



Implications from the Regularity Conditions at the Vertex for Initial Data on a Light Cone



Regularity conditions allow timedependent initial data that are

TM, gr-qc/1212.3316

Regularity conditions allow timedependent initial data that are

asymptotically flat

TM, gr-qc/1212.3316

Regularity conditions allow timedependent initial data that are

asymptotically flat

not-asymptotically flat

TM, gr-qc/1212.3316

Regularity conditions allow timedependent initial data that are

asymptotically flat

not-asymptotically flat

This can be demonstrated by solutions derived from a quasi-spherical approximation of the Bondi-Sachs metric

TM, gr-qc/1212.3316

Example: the Scalar Wave Equation in Flat-Space Null Coordinates

... the wave equation

$$0 = \Box \psi = \frac{1}{r} \Big[-2(r\psi)_{,ur} + (r\psi)_{,rr} + \frac{1}{r^2} \nabla^A \nabla_B(r\psi) \Big]$$

... a solution that is asymptotical flat

$$\psi = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_l \left[\frac{r}{u(u+2r)} \right]^{l+1} Y_{lm}(x^A)$$

... a solution that is not asymptotical flat

$$\psi = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} B_l \frac{e^{u+r} I_{l+\frac{1}{2}}(r)}{\sqrt{r}} Y_{lm}(x^A)$$

Summary

- In the Bondí-Sachs formulation it can be shown that an isolated system can only loose mass via gravitational radiation
- vacuum initial data on a light cone are fixed by the regularity conditions at the vertex
 - data are given by free functions along the curve tracing the vertex
- regularity conditions do not restrict whether the initial data are asymptotically flat or not