The first law of binary black hole mechanics Applications to gravitational-wave source modeling

Alexandre Le Tiec

Maryland Center for Fundamental Physics University of Maryland, College Park

Based on collaborations with:

E. Barausse, L. Blanchet, A. Buonanno & B. F. Whiting

Applications to GW source modeling

Outline

- Black hole binaries and gravitational waves
- 2 The first law of binary black hole mechanics
 - 1. Derivation of the first law
 - 2. Consequences of the first law
 - 3. Verification of the first law in PN theory
- ③ Applications to gravitational-wave source modeling
 - 1. High-order PN coefficients in the binding energy
 - 2. Frequency shift of the Schwarzschild ISCO
 - 3. Perturbation theory for comparable mass binaries
 - 4. EOB potentials at linear order in the mass ratio

Applications to GW source modeling

Outline

Black hole binaries and gravitational waves

² The first law of binary black hole mechanics

- 1. Derivation of the first law
- 2. Consequences of the first law
- 3. Verification of the first law in PN theory

³ Applications to gravitational-wave source modeling

- 1. High-order PN coefficients in the binding energy
- 2. Frequency shift of the Schwarzschild ISCO
- 3. Perturbation theory for comparable mass binaries
- 4. EOB potentials at linear order in the mass ratio

First law of binary BH mechanics

Applications to GW source modeling

Interferometric detectors of gravitational waves (GW)

Virgo (Cascina, Italy)

High frequency band: 10 Hz $\lesssim f \lesssim 10^3$ Hz

LISA (sketch)

Low frequency band: 10^{-4} Hz $\lesssim f \lesssim 10^{-1}$ Hz

First law of binary BH mechanics

Applications to GW source modeling

Interferometric detectors of gravitational waves (GW)

Virgo (Cascina, Italy)

High frequency band: 10 Hz $\lesssim f \lesssim 10^3$ Hz

eLISA (sketch)

Low frequency band: 10^{-4} Hz $\lesssim f \lesssim 10^{-1}$ Hz

Applications to GW source modeling

Main sources of GW for LIGO/Virgo and eLISA

- Binary neutron stars $(2 imes \sim 1.4 M_{\odot})$
- Stellar mass black hole binaries $(2 imes \sim 10 M_{\odot})$
- Supermassive black hole binaries $(2 imes \sim 10^6 M_{\odot})$
- Extreme mass ratio inspirals ($\sim 10 M_{\odot} + \sim 10^6 M_{\odot}$)

First law of binary BH mechanics

Applications to GW source modeling

Methods to compute GW templates for compact binaries

Applications to GW source modeling

Methods to compute GW templates for compact binaries

First law of binary BH mechanics

Applications to GW source modeling

Methods to compute GW templates for compact binaries Post-Newtonian (PN) theory

Applications to GW source modeling

Methods to compute GW templates for compact binaries

First law of binary BH mechanics

Applications to GW source modeling

Methods to compute GW templates for compact binaries Perturbation theory and the gravitational self-force (GSF)

Spacetime metric

First law of binary BH mechanics

Applications to GW source modeling

Methods to compute GW templates for compact binaries Perturbation theory and the gravitational self-force (GSF)

Spacetime metric

$$g_{\alpha\beta} = \bar{g}_{\alpha\beta}$$

Perturbation parameter
 $q \equiv \frac{m_1}{m_2} \ll 1$

First law of binary BH mechanics

Applications to GW source modeling

Methods to compute GW templates for compact binaries Perturbation theory and the gravitational self-force (GSF)

Spacetime metric

$$g_{\alpha\beta} = \bar{g}_{\alpha\beta} + h_{\alpha\beta}$$

Perturbation parameter

$$q\equiv \frac{m_1}{m_2}\ll 1$$

First law of binary BH mechanics

Applications to GW source modeling

Methods to compute GW templates for compact binaries Perturbation theory and the gravitational self-force (GSF)

Spacetime metric

$$g_{\alpha\beta} = \bar{g}_{\alpha\beta} + h_{\alpha\beta}$$

Perturbation parameter

$$q\equiv \frac{m_1}{m_2}\ll 1$$

First law of binary BH mechanics

Applications to GW source modeling

Methods to compute GW templates for compact binaries Perturbation theory and the gravitational self-force (GSF)

Spacetime metric

$$g_{\alpha\beta} = \bar{g}_{\alpha\beta} + h_{\alpha\beta}$$

Perturbation parameter

$$q \equiv \frac{m_1}{m_2} \ll 1$$

Gravitational self-force
 $\dot{u}^{\alpha} = f^{\alpha} = \mathcal{O}(q)$

Applications to GW source modeling

Methods to compute GW templates for compact binaries

Applications to GW source modeling

Methods to compute GW templates for compact binaries

First law of binary BH mechanics

Applications to GW source modeling

Outline

① Black hole binaries and gravitational waves

^② The first law of binary black hole mechanics

- 1. Derivation of the first law
- 2. Consequences of the first law
- 3. Verification of the first law in PN theory

③ Applications to gravitational-wave source modeling

- 1. High-order PN coefficients in the binding energy
- 2. Frequency shift of the Schwarzschild ISCO
- 3. Perturbation theory for comparable mass binaries
- 4. EOB potentials at linear order in the mass ratio

First law of binary BH mechanics

Applications to GW source modeling

Outline

1 Black hole binaries and gravitational waves

^② The first law of binary black hole mechanics

1. Derivation of the first law

- 2. Consequences of the first law
- 3. Verification of the first law in PN theory

³ Applications to gravitational-wave source modeling

- 1. High-order PN coefficients in the binding energy
- 2. Frequency shift of the Schwarzschild ISCO
- 3. Perturbation theory for comparable mass binaries
- 4. EOB potentials at linear order in the mass ratio

Applications to GW source modeling

Generalized first law of mechanics

[Friedman, Uryū & Shibata, PRD (2002)]

- Spacetimes with black holes + perfect fluid matter sources
- One-parameter family of solutions {g_{αβ}(λ), u^α(λ), ρ(λ), s(λ)}
- Globally defined Killing vector field $K^{lpha}
 ightarrow$ conserved charge Q

$$\delta Q = \sum_{i} \frac{\kappa_{i}}{8\pi} \, \delta A_{i} + \int_{\Sigma} \left[\bar{h} \, \Delta(\mathrm{d}M_{\mathrm{b}}) + \bar{T} \, \Delta(\mathrm{d}S) + v^{\alpha} \Delta(\mathrm{d}C_{\alpha}) \right]$$

Application to compact binaries on circular orbits

• For circular orbits, the geometry admits a helical Killing vector

 ${\it K}^lpha o (\partial_t)^lpha + \Omega \, (\partial_arphi)^lpha \quad ({
m when} \, \, r o +\infty)$

• For asymptotically flat spacetimes [Friedman et al., PRD (2002)]

 $\delta Q = \delta M - \Omega \, \delta J$

- In the exact theory of GR, helically symmetric spacetimes are not asymptotically flat [Klein, PRD (2004)]
- Asymptotic flatness can be recovered if gravitational radiation can be "turned off":
 - Conformal Flatness Condition
 - Post-Newtonian theory

Applications to GW source modeling

Application to compact binaries on circular orbits [Le Tiec, Blanchet & Whiting, PRD (2012)]

- Conservative dynamics only \rightarrow no gravitational radiation
- Non-spinning compact objects modeled as point masses *m_A*:

$$T^{\alpha\beta} = \sum_{A=1}^{2} \frac{m_{A} \, \mathbf{z}_{A}}{\sqrt{-g}} \, u_{A}^{\alpha} u_{A}^{\beta} \, \delta(\mathbf{x} - \mathbf{y}_{A})$$

• For two point masses on a circular orbit, the first law becomes

$$\delta M - \Omega \,\delta J = z_1 \,\delta m_1 + z_2 \,\delta m_2$$

First law of binary BH mechanics

Applications to GW source modeling

Outline

1 Black hole binaries and gravitational waves

^② The first law of binary black hole mechanics

- 1. Derivation of the first law
- 2. Consequences of the first law
- 3. Verification of the first law in PN theory

³ Applications to gravitational-wave source modeling

- 1. High-order PN coefficients in the binding energy
- 2. Frequency shift of the Schwarzschild ISCO
- 3. Perturbation theory for comparable mass binaries
- 4. EOB potentials at linear order in the mass ratio

First law of binary BH mechanics

Applications to GW source modeling

Physical interpretations of the "redshift observable"

• It measures the redshift of light emitted from the particle [Detweiler, PRD (2008)]:

$$rac{\mathcal{E}_{
m obs}}{\mathcal{E}_{
m em}} \equiv rac{(p^lpha u_lpha)_{
m obs}}{(p^lpha u_lpha)_{
m em}} = z_1$$

• It is a constant of the motion associated with the helical symmetry:

$$z_1 = -u_1^{\alpha} K_{\alpha}$$

• In a gauge such that $K^{\alpha}\partial_{\alpha} = \partial_t + \Omega \, \partial_{\varphi}$ everywhere,

$$z_1 = \left(u_1^t\right)^{-1} = \frac{\mathrm{d}\tau_1}{\mathrm{d}t}$$

Applications to GW source modeling

First integral associated with the variational law

[Le Tiec, Blanchet & Whiting, PRD (2012)]

- Variational first law: $\delta M \Omega \, \delta J = z_1 \, \delta m_1 + z_2 \, \delta m_2$
- Since $\{M, J, z_A\}$ are all functions of $\{\Omega, m_A\}$, we have

$$rac{\partial M}{\partial \Omega} = \Omega rac{\partial J}{\partial \Omega}$$
 and $z_A = rac{\partial (M - \Omega J)}{\partial m_A}$

• After a few algebraic manipulations, we obtain

$$M-2\Omega J=m_1z_1+m_2z_2$$

- Alternative derivations based on:
 - Euler's theorem applied to the function $M(J^{1/2}, m_1, m_2)$
 - The combination $M_{\rm K} 2\Omega J_{\rm K}$ of the Komar quantities

Applications to GW source modeling

Analogies with single and binary black holes

$$M - 2\Omega_{\rm H}J = \frac{\kappa A}{4\pi}$$
[Smarr (1973)]

$$\delta M - \Omega \, \delta J = \sum_{i=1}^{2} \frac{\kappa_i \, \delta A_i}{8\pi}$$
[Friedman *et al.* (2002)]

$$M - 2\Omega J = \sum_{i=1}^{2} \frac{\kappa_i A_i}{4\pi}$$

[Le Tiec *et al.* (2012)]

 m_1^{\bullet}

$$\delta M - \frac{\Omega}{2} \, \delta J = \sum_{i=1}^{2} z_i \, \delta m_i$$

$$M-2\Omega J=\sum_{i=1}^2 z_i m_i$$

Applications to GW source modeling

Analogies with single and binary black holes

• Irreducible mass of a BH [Christodoulou & Ruffini, PRL (1971)]

$$m_{\rm irr} = \sqrt{\frac{A}{16\pi}} \implies \frac{\kappa}{8\pi} \,\delta A = (4\kappa m_{\rm irr}) \,\delta m_{\rm irr}$$

- We notice the formal analogies $m \longleftrightarrow m_{irr}$ and $z \longleftrightarrow 4\kappa m_{irr}$ $m \overset{m}{\longleftarrow} z \overset{m}{\longleftrightarrow} x \overset{m}{\longleftarrow} x \overset{m}{\longrightarrow} x \overset{$
- · For large separations, we recover the correct limits

$$z \longrightarrow 1$$
 and $\kappa \longrightarrow (4m_{irr})^{-1}$

• Extension of the first law to spinning point particles needed

First law of binary BH mechanics

Applications to GW source modeling

Outline

① Black hole binaries and gravitational waves

^② The first law of binary black hole mechanics

- 1. Derivation of the first law
- 2. Consequences of the first law
- 3. Verification of the first law in PN theory

③ Applications to gravitational-wave source modeling

- 1. High-order PN coefficients in the binding energy
- 2. Frequency shift of the Schwarzschild ISCO
- 3. Perturbation theory for comparable mass binaries
- 4. EOB potentials at linear order in the mass ratio

Applications to GW source modeling

A short history of the conservative PN dynamics

	Total mass M (and J)	Redshift observable z _A
2PN	[Damour & Deruelle (1982)]	[Detweiler (2008)]
	[Jaranowski & Schäfer (1999)]	
	[Damour <i>et al.</i> (2000)]	[Blanchet, Detweiler,
3PN	[Blanchet & Faye (2000)]	Le Tiec & Whiting (2010a)]
	[Itoh & Futamase (2003)]	
	[Foffa & Sturani (2011)]	
4PN +	[Blanchet <i>et al.</i> (2010b)]	[Blanchet <i>et al.</i> (2010b)]
$5 PN_{log}$	[Le Tiec <i>et al.</i> (2012)]	[Le Tiec <i>et al.</i> (2012)]

Verification of the first law in PN theory

[Le Tiec, Blanchet & Whiting, PRD (2012)]

 The PN results for M(Ω, m_A), J(Ω, m_A) and z_A(Ω, m_A) are expressed in terms of

$$m\equiv m_1+m_2\,,\quad
u\equiv m_1m_2/m^2\equiv \mu/m\,,\quad ext{and}\quad x\equiv (m\Omega)^{2/3}$$

• For instance, the binding energy $E \equiv M - m$ reads

$$E = -\frac{1}{2} \mu x \left\{ 1 + \left(-\frac{3}{4} - \frac{\nu}{12} \right) x + \dots + \frac{448}{15} \nu x^4 \ln x + \dots \right\}$$

• The first law is satisfied up to 3PN order included, as well as by the 4PN+5PN logarithmic terms:

$$\frac{\partial M}{\partial \Omega} = \Omega \frac{\partial J}{\partial \Omega} \quad \text{and} \quad z_A = \frac{\partial (M - \Omega J)}{\partial m_A}$$

Applications to GW source modeling

Outline

- Black hole binaries and gravitational waves
- 2 The first law of binary black hole mechanics
 - 1. Derivation of the first law
 - 2. Consequences of the first law
 - 3. Verification of the first law in PN theory

③ Applications to gravitational-wave source modeling

- 1. High-order PN coefficients in the binding energy
- 2. Frequency shift of the Schwarzschild ISCO
- 3. Perturbation theory for comparable mass binaries
- 4. EOB potentials at linear order in the mass ratio

Putting the first law at work using GSF results

- In the extreme mass ratio limit $\nu \rightarrow$ 0, the redshift observable can be expanded as

$$z_1 = \sqrt{1 - 3x} + \nu \, z_{\mathsf{GSF}}(x) + \mathcal{O}(\nu^2)$$

- The self-force contribution $z_{GSF}(x)$ is known numerically
- The first law provides relationships between the binding energy, angular momentum, and redshift observable:

$$E \leftrightarrow J$$
, $E \leftrightarrow z_1$, and $J \leftrightarrow z_1$

• These can be used to gain information about *E* and *J* beyond the test-mass limit

Applications to GW source modeling

Outline

- Black hole binaries and gravitational waves
- 2 The first law of binary black hole mechanics
 - 1. Derivation of the first law
 - 2. Consequences of the first law
 - 3. Verification of the first law in PN theory

③ Applications to gravitational-wave source modeling

- 1. High-order PN coefficients in the binding energy
- 2. Frequency shift of the Schwarzschild ISCO
- 3. Perturbation theory for comparable mass binaries
- 4. EOB potentials at linear order in the mass ratio

High-order PN coefficients in the redshift observable

[Blanchet, Detweiler, Le Tiec & Whiting, PRD (2010)]

• The numerical GSF data is fitted to a PN series of the type

$$z_{\text{GSF}} = \sum_{n \ge 0} \alpha_n x^{n+1} + \ln x \sum_{n \ge 4} \beta_n x^{n+1}$$

- The exact values of all analytically known PN coefficients α_n and β_n are used
- The best fit yields for the unkown higher order coefficients:

PN order	Coeff.	Value
4	$lpha_{4}$	+53.43220(5)
5	$lpha_{5}$	-37.72(1)
6	$lpha_{6}$	+123(2)
6	β_{6}	-311.9(5)

First law of binary BH mechanics

Applications to GW source modeling

High-order PN coefficients in the binding energy

[Le Tiec, Blanchet & Whiting, PRD (2012)]

$$\begin{split} \frac{E}{\mu} &= -\frac{x}{2} \left\{ 1 + \left(-\frac{3}{4} - \frac{\nu}{12} \right) x \\ &+ \left(-\frac{27}{8} + \frac{19}{8}\nu - \frac{\nu^2}{24} \right) x^2 \\ &+ \left(-\frac{675}{64} + \left[\frac{34445}{576} - \frac{205}{96}\pi^2 \right] \nu - \frac{155}{96}\nu^2 - \frac{35}{5184}\nu^3 \right) x^3 \\ &+ \left(-\frac{3969}{128} + \frac{e_4(\nu)}{128} + \frac{448}{15}\nu \ln x \right) x^4 \\ &+ \left(-\frac{45927}{512} + \frac{e_5(\nu)}{124} + \left[-\frac{4988}{35} - \frac{656}{5}\nu \right] \nu \ln x \right) x^5 \\ &+ \left(-\frac{264627}{1024} + \frac{e_6(\nu)}{6} + \frac{e_6(\nu)}{6} \ln x \right) x^6 \Big\} \end{split}$$

First law of binary BH mechanics

Applications to GW source modeling

High-order PN coefficients in the binding energy

[Le Tiec, Blanchet & Whiting, PRD (2012)]

$$\begin{split} \frac{E}{\mu} &= -\frac{x}{2} \left\{ 1 + \left(-\frac{3}{4} - \frac{\nu}{12} \right) x \\ &+ \left(-\frac{27}{8} + \frac{19}{8}\nu - \frac{\nu^2}{24} \right) x^2 \\ &+ \left(-\frac{675}{64} + \left[\frac{34445}{576} - \frac{205}{96}\pi^2 \right] \nu - \frac{155}{96}\nu^2 - \frac{35}{5184}\nu^3 \right) x^3 \\ &+ \left(-\frac{3969}{128} + 153.8803(1)\nu + \frac{448}{15}\nu\ln x \right) x^4 \\ &+ \left(-\frac{45927}{512} - 55.13(3)\nu + \left[-\frac{4988}{35} - \frac{656}{5}\nu \right]\nu\ln x \right) x^5 \\ &+ \left(-\frac{264627}{1024} + 588(7)\nu - 1144(2)\nu\ln x \right) x^6 + \mathcal{O}(\nu^2) \right\} \end{split}$$

Applications to GW source modeling

Outline

- 1 Black hole binaries and gravitational waves
- 2 The first law of binary black hole mechanics
 - 1. Derivation of the first law
 - 2. Consequences of the first law
 - 3. Verification of the first law in PN theory

③ Applications to gravitational-wave source modeling

- 1. High-order PN coefficients in the binding energy
- 2. Frequency shift of the Schwarzschild ISCO
- 3. Perturbation theory for comparable mass binaries
- 4. EOB potentials at linear order in the mass ratio

Applications to GW source modeling

Binding energy and total angular momentum

[Le Tiec, Barausse & Buonanno, PRL (2012)]

• In the extreme mass ratio limit $\nu
ightarrow 0$:

$$z_1 = \sqrt{1 - 3x} + \nu z_{\mathsf{GSF}}(x) + \mathcal{O}(\nu^2)$$
$$\frac{E}{\mu} = \left(\frac{1 - 2x}{\sqrt{1 - 3x}} - 1\right) + \nu E_{\mathsf{GSF}}(x) + \mathcal{O}(\nu^2)$$

• The first law provides a relationship $E \leftrightarrow z_1$, which implies

$$E_{GSF}(x) = \frac{1}{2} z_{GSF}(x) - \frac{x}{3} z'_{GSF}(x) + f(x)$$

- The self-force contribution $E_{GSF}(x)$ is known numerically, even for highly relativistic circular orbits
- A similar result holds for the angular momentum $J/(m\mu)$

First law of binary BH mechanics

Applications to GW source modeling

GSF correction to the Schwarzschild ISCO frequency

• The orbital frequency of the Schwarzschild ISCO is shifted under the effect of the conservative self-force:

$$m\Omega_{\rm ISCO} = \underbrace{6^{-3/2}}_{\substack{\rm Schwarz.\\ \rm result}} \left\{ 1 + \underbrace{\nu \ C_{\Omega}}_{\substack{\rm Conservative\\ \rm GSF \ effect}} + \mathcal{O}(\nu^2) \right\}$$

 A stability analysis of slightly eccentric orbits near the ISCO yields [Barack & Sago, PRL (2009)]

 $C_{\Omega}^{\text{BS}} = 1.2512(4)$

 Strong-field benchmark used for comparison with PN/NR/EOB

GSF correction to the Schwarzschild ISCO frequency

• The angular frequency of the minimum energy circular orbit (MECO) is solution of

$$\left. \frac{\partial E}{\partial \Omega} \right|_{\Omega_{\mathsf{MECO}}} = 0$$

- Hamiltonian system: ISCO ⇔ MECO [Buonanno et al. (2003)]
- Our result for the energy $E_{GSF}(x)$ yields [Le Tiec et al. (2012)]

$$C_{\Omega} = rac{1}{2} + rac{1}{4\sqrt{2}} \left\{ rac{1}{3} \, z_{\mathsf{GSF}}'(1/6) - z_{\mathsf{GSF}}'(1/6)
ight\}$$

• Using accurate numerical self-force data for $z_{GSF}(x)$, we find

$$C_{\Omega} = 1.2510(2)$$
 $\left[C_{\Omega}^{\mathsf{BS}} = 1.2512(4)
ight]$

Applications to GW source modeling

Outline

- 1 Black hole binaries and gravitational waves
- 2 The first law of binary black hole mechanics
 - 1. Derivation of the first law
 - 2. Consequences of the first law
 - 3. Verification of the first law in PN theory

③ Applications to gravitational-wave source modeling

- 1. High-order PN coefficients in the binding energy
- 2. Frequency shift of the Schwarzschild ISCO
- 3. Perturbation theory for comparable mass binaries
- 4. EOB potentials at linear order in the mass ratio

First law of binary BH mechanics

Applications to GW source modeling

ADM mass, Bondi mass, and binding energy

Conservation of mass-energy

$$M_{\mathsf{ADM}} = M_{\mathsf{B}}(U) + \int_{-\infty}^{U} \mathcal{F}(U') \,\mathrm{d}U'$$

Bondi-Sachs mass loss formula

$$\frac{\mathrm{d}M_{\mathrm{B}}}{\mathrm{d}U} = -\mathcal{F}(U)$$

• Binding energy of the binary

$$\boldsymbol{E}(T) = \boldsymbol{M}_{\mathrm{B}}(U) - \boldsymbol{m}$$

Applications to GW source modeling

NR/EOB comparison for an equal mass binary

[Damour, Nagar, Pollney & Reisswig, PRL (2012)]

First law of binary BH mechanics

Applications to GW source modeling

NR/GSF comparison for an equal mass binary

[Le Tiec, Barausse & Buonanno, PRL (2012)]

First law of binary BH mechanics

Applications to GW source modeling

Periastron advance in black hole binaries

[Le Tiec, Mroué et al., PRL (2011)]

Why do the GSF ν results perform so well?

• In perturbation theory, one traditionally expands as

$$\mathsf{GSF} q$$
: $\sum_{k=0}^{k_{\mathsf{max}}} A_k(m_2 \Omega) \, q^k$ where $q \equiv m_1/m_2 \in [0,1]$

- However, the relations K(Ω; m_A), E(Ω; m_A), and J(Ω; m_A) must be symmetric under exchange m₁ ↔ m₂
- Hence, a better-motivated expansion is

GSF
$$\nu$$
: $\sum_{k=0}^{k_{\max}} B_k(m\Omega) \nu^k$ where $\nu \equiv m_1 m_2/m^2 \in [0, 1/4]$

- In a PN expansion, we have $B_n = \mathcal{O}ig(1/c^{2n}ig) = n\mathsf{PN} + \cdots$
- Previously noticed for dissipative GSF [Detweiler & Smarr (1979)]

Applications to GW source modeling

Perturbation theory for comparable mass binaries

Applications to GW source modeling

Outline

Black hole binaries and gravitational waves

^② The first law of binary black hole mechanics

- 1. Derivation of the first law
- 2. Consequences of the first law
- 3. Verification of the first law in PN theory

③ Applications to gravitational-wave source modeling

- 1. High-order PN coefficients in the binding energy
- 2. Frequency shift of the Schwarzschild ISCO
- 3. Perturbation theory for comparable mass binaries
- 4. EOB potentials at linear order in the mass ratio

Applications to GW source modeling

The Effective-One-Body (EOB) model

[Buonanno & Damour, PRD (1999)]

• Motion of a test-particle of mass $\mu = m_1 m_2/m = \nu m$ in a static and spherically symmetric effective metric

$$\mathrm{d}s_{\mathrm{eff}}^2 = -A(r;\nu)\,\mathrm{d}t^2 + B(r;\nu)\,\mathrm{d}r^2 + r^2\,\mathrm{d}\Omega^2$$

• Reduces to the Schwarzschild metric of a black hole of mass $m=m_1+m_2$ in the limit u
ightarrow 0

- Potentials A and B determined by mapping the effective Hamiltonian of μ to the known PN Hamiltonian of the binary
- Additional free parameters are calibrated to NR simulations

EOB potentials at linear order in the mass ratio

[Barausse, Buonanno & Le Tiec, PRD (2012)]

• 3PN expansion in powers of $u \equiv m/r$ of the potential A:

$$A(u;\nu) = 1 - 2u + 2\nu u^{3} + \left(\frac{94}{3} - \frac{41}{32}\pi^{2}\right)\nu u^{4} + \mathcal{O}(u^{5})$$

• Mass ratio expansion in powers of ν of the potential A:

$$A(u; \nu) = 1 - 2u + \nu A_{\mathsf{GSF}}(u) + \mathcal{O}(\nu^2)$$

• Using the 1st law we can compute the exact GSF contribution:

$$A_{\mathsf{GSF}}(u) = \sqrt{1 - 3u} \, \mathsf{z}_{\mathsf{GSF}}(u) - u \left(1 + \frac{1 - 4u}{\sqrt{1 - 3u}}\right)$$

• We also computed the exact GSF contribution to the potential *B* using results for the periastron advance

First law of binary BH mechanics

Applications to GW source modeling

Summary and prospects

• The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes

First law of binary BH mechanics

Applications to GW source modeling

- The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes
- It holds up to very high orders in post-Newtonian theory

Applications to GW source modeling

- The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes
- It holds up to very high orders in post-Newtonian theory
- Formal relations between black holes and point masses in GR

Applications to GW source modeling

- The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes
- It holds up to very high orders in post-Newtonian theory
- Formal relations between black holes and point masses in GR
- Numerous applications to GW source modeling:

- The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes
- It holds up to very high orders in post-Newtonian theory
- Formal relations between black holes and point masses in GR
- Numerous applications to GW source modeling:
 - $\circ~$ New high-order PN coefficients in binding energy E

- The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes
- It holds up to very high orders in post-Newtonian theory
- Formal relations between black holes and point masses in GR
- Numerous applications to GW source modeling:
 - New high-order PN coefficients in binding energy E
 - $\circ~E$ and J at leading order beyond the test-mass results

- The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes
- It holds up to very high orders in post-Newtonian theory
- Formal relations between black holes and point masses in GR
- Numerous applications to GW source modeling:
 - \circ New high-order PN coefficients in binding energy E
 - \circ E and J at leading order beyond the test-mass results
 - EOB potentials at linear order in the mass ratio

- The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes
- It holds up to very high orders in post-Newtonian theory
- Formal relations between black holes and point masses in GR
- Numerous applications to GW source modeling:
 - \circ New high-order PN coefficients in binding energy E
 - \circ E and J at leading order beyond the test-mass results
 - EOB potentials at linear order in the mass ratio
- Some directions for future research include:

- The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes
- It holds up to very high orders in post-Newtonian theory
- Formal relations between black holes and point masses in GR
- Numerous applications to GW source modeling:
 - New high-order PN coefficients in binding energy E
 - \circ E and J at leading order beyond the test-mass results
 - EOB potentials at linear order in the mass ratio
- Some directions for future research include:
 - Extending the first law to spinning point particles

- The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes
- It holds up to very high orders in post-Newtonian theory
- Formal relations between black holes and point masses in GR
- Numerous applications to GW source modeling:
 - New high-order PN coefficients in binding energy E
 - \circ *E* and *J* at leading order beyond the test-mass results
 - EOB potentials at linear order in the mass ratio
- Some directions for future research include:
 - Extending the first law to spinning point particles
 - $\circ\,$ A better understanding of the links black hole $\leftrightarrow\,$ point mass

- The first law uncovers deep relations between local and global physical quantites in binary black hole spacetimes
- It holds up to very high orders in post-Newtonian theory
- Formal relations between black holes and point masses in GR
- Numerous applications to GW source modeling:
 - New high-order PN coefficients in binding energy E
 - \circ E and J at leading order beyond the test-mass results
 - EOB potentials at linear order in the mass ratio
- Some directions for future research include:
 - Extending the first law to spinning point particles
 - $\circ\,$ A better understanding of the links black hole $\leftrightarrow\,$ point mass
 - Using perturbation theory to model comparable-mass binaries

First law of binary BH mechanics

Applications to GW source modeling

EXTRA SLIDES

Séminaire $\mathcal{GR} \in \mathbb{CO}$ — April 16, 2012

First law of binary BH mechanics

Applications to GW source modeling

Relativistic perihelion advance of Mercury

- Observed anomalous precession of Mercury's perihelion of ~ 43"/cent.
- Accounted for by the leading-order relativisic angular advance per orbit

$$\Delta \Phi_{\rm GR} = \frac{6\pi G M_{\odot}}{c^2 a \left(1 - e^2\right)}$$

- One of the first successes of Einstein's general theory of relativity
- Relativisic periastron advance of $\sim ^{\circ}/\rm{yr}$ now measured in binary pulsars

Applications to GW source modeling

Periastron advance in black hole binaries

- Conservative part of the dynamics only
- Generic non-circular orbit parametrized by the two invariant frequencies

$$\Omega_r = \frac{2\pi}{P}, \quad \Omega_{\varphi} = \frac{1}{P} \int_0^P \dot{\varphi}(t) \, \mathrm{d}t$$

• Periastron advance per radial period

$${m K}\equiv {\Omega_arphi\over\Omega_r}=1+{\Delta\Phi\over2\pi}$$

 In the circular orbit limit e → 0, the relation K(Ω_φ) is coordinate invariant

First law of binary BH mechanics

Applications to GW source modeling

Periastron advance in black hole binaries

[Le Tiec, Mroué et al., PRL (2011)]

Applications to GW source modeling

GSF/PN comparison based on the redshift observable

[Blanchet, Detweiler, Le Tiec & Whiting, PRD (2010)]

Applications to GW source modeling

GSF/PN comparison based on the redshift observable

[Blanchet, Detweiler, Le Tiec & Whiting, PRD (2010)]

