GBAR

Gravitational Behaviour of Antihydrogen at Rest

CERN AD-7 Approved 30/05/2012

- Motivation
- Principle and goal of the experiment
- Experimental techniques
- Schedule and perspectives

Outline

• Motivation

- Principle and goal of the experiment
- Experimental techniques
- Schedule and perspectives

Motivation

<u>A direct test</u> of the Equivalence Principle with antimatter

The acceleration imparted to a body by a gravitational field is independent of the nature of the body :

Inertial mass = gravitational mass

Tested to a very high precision with many materials

Weak Equivalence Principle (torsion pendulum)

$$(\Delta a / a)_{Be/Ti} = (0.3 \pm 1.8) x 10^{-13}$$

S.Schlamminger et al, Phys Rev Lett 100 (2008) 041101

Strong Equivalence Principle (Lunar Laser Ranging)

$$(\Delta a / a)_{\text{Earth/Moon}} = (-1.0 \pm 1.4) \times 10^{-13}$$

J.G.Williams et al, Phys Rev Lett 93 (2004) 261101

Discussion and experimental constraints : M. Nieto and T. Goldman, Phys. Rep. 205 (1991) 221

Morrison argument(1958) :

antigravity in General relativity \rightarrow violation of Energy conservation

if
$$m_G(+) = -m_G(-)$$
:
 $E_A = E_B = 2m_Ic^2 = hv_C$
 $h\Delta v_{CD} = hv_C(gL/c^2) = 2m_IgL$
 $E_D = E_A + 2m_IgL$

 \rightarrow not excluded ? see :

G. Chardin et J.M. Rax, Phys Lett B282 (1992) 256 G. Chardin, Hyperfine Interactions 109 (1997) 83

 \rightarrow introduce new gravi-vector and scalar fields not coupled to γ to distinguish m_G et \overline{m}_G

(seminal article: J. Scherk, Phys. Lett. B (1979) 265)

Field	Scalar	Vector
matter	attractive	repulsive
antimatter	attractive	attractive

$$V = -G \frac{mm'}{r} (1 \underbrace{\mp a \exp(-r/v) + b \exp(-r/s)}_{\text{supergravity : one repulsive contribution}})$$

Tests with matter only constrain |b-a|

Antimatter content of ordinary matter (« Schiff argument »)

FIG. 2: Loop contribution to the electrostatic self-energy of the nucleus

Scenario	Argument	Bound on $ g_{\rm H} - g_{\overline{\rm H}} /g_{\rm H}$
Modification of CB	Lamb shift	$\lesssim 10^{-2}$
Modification of Gift	Electrostatic self-energies of nuclei	$\lesssim 10^{-7}$
	Antiquarks in nucleons	$\lesssim 10^{-9}$
Scalar vector	Radiative damping of binary systems	$\lesssim 10^{-4}$
Dealar-vector	Scalar charges are not vector charges	$\lesssim 10^{-8}$
	Velocity dependence	$\lesssim 10^{-7}$

Exact scalar/vector cancellation impossible (*D.S.M.Alves et al SU-ITP-09/36*)

 η^{\pm} and Φ^{\pm} measurements as a function of time by CPLEAR $K^0-\overline{K}^0$ oscillations depend upon $\delta m_{eff} = M_{K^0} (g - \overline{g}) \frac{U}{c^2} \exp(-r/r_I) f(I)$ *A. Apostolakis et al., Phys Lett B 452 (1999) 425*

	Summary of limits on $ g - \overline{g} $ for spin 0, 1 and 2 interactions			
	Source	Spin 0	Spin 1	Spin 2
Potentiel variation \rightarrow with time	Earth	6.4×10^{-5}	4.1×10^{-5}	1.7×10^{-5}
	Moon	1.8×10^{-4}	7.4 × 10 ⁻⁵	4.8×10^{-5}
	Sun	6.5×10^{-9}	4.3 × 10 ⁻⁹	1.8×10^{-9}
Use of an absolute \rightarrow potential	Galaxy	1.4×10^{-12}	9.1×10^{-13}	3.8×10^{-13}
	Supercluster	7.0 × 10^{-14}	4.6×10^{-14}	1.9×10^{-14}

Cyclotron frequency measururement of p (H⁻) et \bar{p} in the same magnetic field *R. Hughes and M. Holzscheiter, Phys Rev Lett 66 (1991) 854 G. Gabrielse et al. Phys Rev Lett 82 (1999) 3198*

 $\omega = qB / 2\pi m + \alpha U / c^{2} \quad \left| \omega - \overline{\omega} \right| / \omega = (9 \pm 9) x 10^{-11} \rightarrow \left| g - \overline{g} \right| / g \le 10^{-6}$

A direct limit ???

Arrival time of one (?: 90 % CL) neutrino and 18 antineutrinos from SN1987a (S. Paksava et al. Phys Rev D 39 (1989) 1761)

gravitational delay: $\delta t = MG\left[-R / \sqrt{R^2 + b^2} + (1 + \gamma)\ln\left|R + \sqrt{R^2 + b^2} / b\right|\right]$

 $\left| \delta t(\upsilon_e) - \delta t(\overline{\upsilon}_e) \right| / \delta t(\overline{\upsilon}_e) < 10^{-6} \rightarrow \left| \gamma(\upsilon_e) - \gamma(\overline{\upsilon}_e) \right| / \gamma(\overline{\upsilon}_e) < 10^{-6}$

Cosmology:

- -Matter antimatter asymmetry in the Universe
- -Need of dark energy + dark matter + inflation
- Is there a repulsive antimatter-matter interaction ???

Paris XI thesis - A. Benoît-Lévy director G. Chardin (2009)

\rightarrow Dirac Milne Universe

Attempt to build a cosmology with

- matter antimatter symmetry content
- and a mechanism to separate matter and antimatter

SNIa ok

CMB ~ ok except at small l

Primordial nucleosynthesis ~ imperfect (excess of ³He) But no BAO acoustic peak at ~ 100 Mpc/h

Pascal Debu - CEA Saclay / Irfu

Past Attempts and proposals

- **positrons**: proposed by W. Fairbank

tests with electrons: F. Witteborn and W. Fairbank, Phys Rev Lett 19 (1967) 1049

- antiprotons: PS200 Proposal Los Alamos Report LA-UR 86-260

-<u>Very hard</u>: $m_e g / e = 5.6 \times 10^{-11} V / m$ (one elementary charge 5 m away)

- antineutrons: hard to slow down T. Brando et al, NucI. Instrum. Methods 180 (1981) 461

- **positronium**: short life time (142 ns) if n = 1possibility if n >>1 ($\tau \simeq (n/25)^{5.236} \ge 2.25 \text{ ms}$) Pbs: cooling, polarisability, ionisation... *A.P. Mills, M. Leventhal, Nucl. Instrum. Meth. in Phys. Research. B192 (2002) 102*

To conclude :All theoretical arguments have assumptions
(CPT...)05/11/2012No direct measurement available yet10

Outline

• Motivation

- Principle and goal of the experiment
- Experimental techniques
- Schedule and perspectives

Next simplest system: **H** Two experiments in preparation

 $-L = 1 m \& v_h = 500 m/s \rightarrow h = 20 \mu m$

GBAR : produce first COld $\overline{H}^+ \rightarrow$ very slow \overline{H} T(\overline{H}) ~ 10 μ K ~ 1 neV - L = 0.1 m & v_h = 0.5 m/s \rightarrow h = 20 cm

Goal : phase 1 : $\Delta \bar{g}/\bar{g} \sim 1\%$; phase 2 : $\Delta \bar{g}/\bar{g} < 10^{-3}$

Gbar : use H⁺ **to get H atoms**

- Produce ion H+
- Capture ion H+
- \bullet Sympathetic cooling 20 μK
- Photodetachment of e+
- Time of flight

Error dominated by temperature of \overline{H}^{+}

Relative Precision on \bar{g} :

$\overline{\mathrm{H}}^{+}$ in ion trap	∆g/g
5 10 ⁵	0.001
10 ⁴	0.006
10 ³	0.02
05/11/2012	Pascal Debu - CEA

Synoptic Scheme

Outline

- Motivation
- Principle and goal of the experiment
- Experimental techniques
- Schedule and perspectives

Synoptic Scheme

Prototype at Saclay

Present slow e^+ rate : ~ 4 10⁶ s⁻¹ Extrap. to 10 MeV : ~ 5 10⁷ s⁻¹ $: \sim 3 \ 10^8 \ s^{-1}$ **Target value** (higher energy, frequency, moderation)

separator

Pascal Debu - CEA Saclay / Irfu

Synoptic Scheme

RIKEN Multi Ring Trap

• Cooling by e⁻ plasma, 10^6 e⁺ stored, trapping efficiency $\varepsilon_{trapping} \sim 1\%$

N. Oshima et al., Phys. Rev. Lett. 93 19 (2004)

• Trap now at Saclay: start test accumulation with pulsed e⁺

 $\epsilon_{\text{trapping}} \approx 50\%$ expected, few 10^{10} e⁺ needed 05/11/2012 Pascal Debu - CEA Saclay / Irfu

Trapping pulsed e+ beam

Synoptic Scheme

Production of 10¹² Ps/cm²

Positronium target is produced with a porous SiO₂ converter:

dump few $10^{10} e^+$ +in less than ~ 140 ns onto converter e⁺ converter \rightarrow Ps

Experiments at CERN: Irfu/ETHZ (e⁺ beam) and at UCR Cassidy et al. (trap)

- Ps in fundamental state
- Ec ~40 meV
- Efficiency of Ps production in vacuum > 30%

No loss in conversion efficiency in spite of the 10¹¹ intensity factor

Pascal Debu - CEA Saclay / Irfu

p

Ħ

$\overline{\mathbf{H}}^+$ production

e⁺ trap Dump ~ $10^{10} e^+$ in accumulate ~ 2 $10^{10} e^+$ Linac Ps converter $3 \ 10^8$ slow e⁺/s every \bar{p} burst ~ 2' $in < \tau_{Ps} = 142 \text{ ns}$ RIKEN test : $1.3 \times 10^{10} e^{-} / 75 \text{ ns}$ + Ps \rightarrow \overline{H} +e⁻ Si substrate Positronium cloud + $Ps \rightarrow \overline{H}^+$ + e⁻ Н Antiproton beam Positron beam (3 keV) (1 keV) closed geometry to keep density (SiO₂, reflects Ps) Mesoporous film

Cross-sections on Ps

05/11/2012

Pascal Debu - CEA Saclay / Irfu

Synoptic Scheme

Pascal Debu - CEA Saclay / Irfu

Deceleration & focusing of p

Method used at ISOLDE :

60 keV ion beams delivered in 2 keV bunches of < 50 ns

Transport to Ps^{*} reaction chamber

Full simulation with SIMION

preliminary transmission: 44%

CEA

Saclay

Lefa - Saclay

\overline{H}^+ cooling

- Segmented RF Paul Trap, well depth ~1 eV
- Sympathetic cooling using Be⁺ ions
 - ≻ Laser cooled Be⁺ ions
 - ≻Coulomb interaction of \overline{H}^+ and Be⁺

NIST group M. D. Barrett, D. Wineland, PRA 68, 042302 (2003) Sympathetic cooling of ⁹Be⁺ and ²⁴Mg⁺ for quantum logic

Photodetachment

 $\overline{\rm H}^{\scriptscriptstyle +}\, binding \,\, energy \,\, 0.76 \,\, eV \ \ => \ \ p_{\gamma} \ \ \sim 0.76 \,\, eV/c$

Recoil due to absorption: $v_{recoil} = p_{\gamma} / m_{H} = 0.2 \text{ m/s} => 4 \text{ cm for } 0.2 \text{ s fall}$

Recoil due to e⁺ emission: y must be very close to threshold

$$E_{c} = E_{\gamma} - 0.76 \Longrightarrow v_{recoil} = \sqrt{\frac{2m_{e}E_{c}}{m_{H}}} \sim 1 \text{ m/s for } E_{c} = 10 \text{ } \mu\text{eV}$$

$$\overline{H} \text{ free fall detection}$$

-arrival position x,y (mm) => v_x, v_y -TOF (140 ms)

=> cross-check of initial temperature

Free fall measurement

Efficiencies

			Electrons			
Linac frequency	Mean current	Pulse current	Pulse duration	Electrons per pulse	Electron rate (s^{-1})	
300 Hz	0.2 mA	0.33 A	$2\mu s$	4.2×10^{12}	1.25×10^{15}	
			Positrons			
Production efficiency (at 10 MeV)	Transport efficiency	Fast positrons per pulse	Fast positron rate (s^{-1})	Moderation efficiency	Slow positrons per pulse	Slow positron rate (s^{-1})
5.5×10^{-4}	80 %	1.8×10^9	$5.5 imes 10^{11}$	5×10^{-4}	9.2×10^5	2.8×10^8
			Positron storage			
Trapping efficiency	Injection time	Stored positrons				
70 %	110 s	2.1×10^{10}				
			Positronium			
Production efficiency	Tube section	Tube length	Positronium density	Loss fraction from Ps decay		
$35 \ \%$	1 mm^2	1 cm	$7.4 imes 10^{11} m \ cm^{-3}$	0.5		
Antihydrogen positive ions						
Antiprotons per pulse	Deceleration and bunching efficiency	Production cross section of the \overline{H} atom	Production cross section of the \overline{H}^+ ion	$\overline{\mathbf{H}}$ per pulse	$\overline{\mathrm{H}}^+$ per pulse	
6×10^6	80 %	$4.4 \ 10^{-16} \ {\rm cm}^2$	$8.8 \ 10^{-15} \ {\rm cm}^2$	$3.9 imes 10^2$	0.32	
Antihydrogen atoms						
$\overline{\mathrm{H}}^+$ Trapping efficiency	Cooling efficiency	$\operatorname{cold} \overline{\mathrm{H}}^+$ per pulse	Photodetachment efficiency	Detector acceptance	$\overline{\mathbf{H}}$ events per pulse	$\overline{\mathrm{H}}$ event rate (s ⁻¹)
100 %	70 %	0.2	99 %	65 %	0.14	1.3×10^{-3}

A few weeks of running to get 1500 events

All details in : P. Pérez et al, Proposal CERN - SPSC- 029 (2011)

Outline

- Motivation
- Principle and goal of the experiment
- Experimental techniques
- Schedule and perspectives

Perspective: beyond 1 % precision

Gravitational quantum states of Antihydrogen A. Yu. Voronin, P. Froelich, and V. V. Nesvizhevsky, Phys. Rev. A **83**, 032903 (2011)

- H Source:
 - very low temperature
 - high phase-space density
 - compact system

• Improve the precision on \overline{g} with the spectroscopy of gravitational levels of \overline{H} above the annihilation plane : similar method as for UCN neutrons (GRANIT spectrometer)

Towards a higher precision on **g**

Put the detection plane at z very close to the Paul trap Center hight

Casimir effect Perfect surface 0.9 Silicon surface 3.0 Quantum reflection coefficient 9.0 2.0 9.0 7.0 9.0 7.0 9.0 7.0 9.0 7.0 9.0 7.0 9.0 7.0 9.0 10.0 9. 1 um 1 mm 1 m 0.1 0 10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁰ 10^{-2} 10^{-1} 10¹ 10^{2} gz (J/Kg)

Annihilation rate vs time

few tens of events needed to reach $\sim 10^{-3}$ precision !

Figure 53: Evolution of the annihilation rate of $\overline{\rm H}$ atoms for a superposition of the 3 lowest gravitational states.

Reflection probability

Synoptic Scheme

Coming soon : ELENA (Extra Low ENergy Antiproton ring)

• New ring under construction to decelerate antiprotons from AD (efficiency gain ~10 for antihydrogen ecperiments)

• AD:

 $\circ\ \bar{p}$ 5,5MeV, 1 line at a time during 6, 12, 24h...

• ELENA:

p 100 keV continuous
several extraction lines

- Commissionning 2016
- Start physics in 2017

GBAR Schedule

- 05/2012: approval by CERN Research Board
- 12/2012: e+ trapping
- 06/2013: deceleration technique demonstration with protons
- 06/2014: Ps production and excitation
- 06/2014: detector tests with cosmics
- 12/2014: sympathetic cooling demonstration with matter (H_2^+)
- 06/2015: Installation at CERN
- 03/2016: Commissionning
- 01/2017: ELENA starts and later... first measurements

The GBAR collaboration

14 institutes46 physicisists

Variety of physics fields

Particle Accelerator Plasmas and ions trapping Cold atoms Positronium Material science Cold neutrons Theory

Country	Institute	Members
-		
FRANCE	CSNSM	G. Chardin, P. Dupré, D. Lunney, V. Manea
FRANCE	ILL	V. Nesvizhevsky
FRANCE	IPCMS	P-A. Hervieux, G. Manfredi
FRANCE	IRFU	P. Debu, L. Liszkay, B. Mansoulié, P. Pérez, Y. Sacquin, B. Vallage
FRANCE	LKB	F. Biraben, P. Cladé, A. Douillet, A. Gérardin, S. Guellati, L. Hilico, P. Indelicato, A. Lambrecht, R. Guérout, J-P. Karr, F. Nez, S. Reynaud, V-Q. Tran
GERMANY	JGU	J. Walz, F. Schmidt-Kaler
JAPAN	RIKEN	A. Mohri, Y. Yamazaki
JAPAN	U. Tokyo	N. Kuroda, H. Torii
JAPAN	TUS	Y. Nagashima
POLAND	NCBJ	S. Wronka
RUSSIA	Lebedev	A. Voronin
SWEDEN	Uppsala	P. Froelich
SWITZERLAND	ETHZ	A. Badertscher, P. Crivelli, A. Curioni, A. Marchionni, B. Rossi, A. Rubbia
UNITED KINGDOM	Swansea	M. Charlton, S. Eriksson, N. Madsen, D.P. van der Werf