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Dynamics of the unmiverse

* On large scales, universe appears homogeneous and isotropic

* This is an approximation: there exists structure (galaxies,
stars, etc..), and CMB anisotropies

* Dynamics of the universe governed by General Relativity
* How to proceed?

- Fully inhomogeneous solution (extremely difficult in
principle; impossible in practice?)

- Make an approximation and expand around a homogeneous
solution: Cosmological Perturbation Theory
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Cosmological perturbation theory

Basic idea: expand around exact homogeneous solution

¥ Geometry: Gy = 9;(3) i 59#!/

where 9,8(1)/) is Friedmann-Lemaitre-Robertson-Walker

spacetime

* Matter: — p(z',t) = po(t) + dp(z, t)

% Perturbations are then expanded in a series as

. 0 1 1
op(x’, ) :ZG = —5/014‘55,024-—

slost s
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Linear perturbation theory

Truncate the expansion after the first term. The most general
linear scalar, vector and perturbations to FLRW are

ds® = CL2(77) [ — (1 -+ 2¢1)d772 -+ Q(Bl’r,; = Slz)da:’dn

+ {1 = 201)ds5 + 2E0 45 + 2F1(5,5) + 1ij)}d5€id$j]
Bardeen (1980), Kodama & Sasaki (1984), Stewart (1990)

% Scalars: 1 lapse, ¥1 curvature perturbation, £1 and B1 shear
¥ Vectors, S1; and Fj; are divergence-free
% Tensor Ni;; is trace-less and divergence-free

At first order scalars, vectors and tensors all decouple.
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Covanance

* Splitting of spacetime into
background and perturbation
introduces spurious
coordinate dependence

* GR is covariant and so these
gauge modes are not physical

We can remove these gauge dependencies by inspecting the
transformation behaviour of quantities and then constructing
gauge invariant variables so that the gauge artefacts cancel.



(Gauge invariant variables

Consider behaviour under gauge transformation
B — ot ="+ & &Y = (om, 0x*)

% Energy density transforms as

0p1 = dp1 + pedn

% Curvature perturbations transforms as

Y1 = Y1 — Hom
¥ Combine the two to get a gauge invariant variable, e.g.,

—~ 0
—C = = 7'[—',0
0p Po

g Bardeen (1980), Bardeen, Steinhardt, Turner (1983)



(auge choice

Equivalently, choose a gauge; popular choices (scalars only):
- Flat gauge (E; = ¢ = 0)

- Longitudinal gauge (FE; = B; = 0)
scalar metric perturbations are the Bardeen potentials ©, W

- Synchronous gauge (¢1 = B; = 0)
- Uniform density gauge (dp; = E; = 0)

- Comoving gauge (v1 =0=V; =v; + B; = 0)
in scalar field systems,

e 0Pl o dorad
Y0

e.g. Malik & Wands (2009)



(Governing equations

* Evolution equations from energy-momentum conservation

0py + 3H(6p1 + 0P1) = (po + Po) (3] — V2E] — v1,.°)

0P
v,—|‘7‘[ 1 — 2V2+ | — 0
12 ( Cs) 1 _/00‘|_PO ¢1

_,’I,

* Constraints from field equations

SH(Y, + Hor) — V(Y1 + HE)) + HV? By = —41Ga’dp;

1
wll,i R Z(VzBli = Blsz) + Ho1,; = _477Ga2(/00 + Po)Vii

I0



Extension to second order

* ‘Truncate perturbative expansions after the second term

* Gives, e.g., energy conservation (flat gauge, no tensors)

0py + 3H (6p2 + 6P2) + (po + Po)var,” + 2 [Wl + 3Py ] K

+ 2(po + Pp) [(Vf + 07 )V + 07 o1 + 207 b1k + AHOT (Vig + vlk)] —
cf. first order
0py + 3H(0p1 + 6P1) + (po + Po)vri, =0

* Important difference: beyond linear order, perturbations no
longer decouple.
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Non-adiabatic pressure perturbation

Introducing the non-adiabatic pressure, for a single fluid

% equation of state P = P(p,5), expand to get

0P OP
OP = —| 05 0
S ap | °F |
0 S e.g. AJC & Malik (2008)
¥ or rewriting, OP = 0P ,q + cg 0p
where 9p p : Py
i 2 _ i 2= —
OPua = 55| 85 0 &=, =W o
I,

NB. barotropic fluid, P = P(p), has zero non-adiabatic pressure
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For multiple fluids, expand non-adiabatic pressure as

0P, nad = 0 Pintr
Kodama & Sasaki (1984)

Intrinsic non-adiabatic pressure Relative non-adiabatic
pressure

¥ the intrinsic part is then

5Pintr — Z 5Pintr,a
(8%
where the intrinsic perturbation of each fluid, ¢, is
_ 2
5f)intr,oz — 5Poz - Caépa

% This term is zero for barotropic fluids, or for scalar fields on
superhorizon scales.
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* the relative entropy perturbation between two fluids is

0P 0
Saﬁ =—— O 10 /05
Po Pp

* this gives
1 , 5
5Prel . 6H,0 ;papﬁ (COé - Cﬁ) Saﬁ
1 . .
=55 2 (ca = €5) (Ppdpa — Padpp)

Note that Sa8 , and the non-adiabatic pressure, are gauge
invariant, so cannot be ‘gauged away’.
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Non-adiabatic pressure...

* Should emphasise that single (barotropic) fluid systems have
zero non-adiabatic pressure

- single scalar field, in superhorizon limit can be treated as a
barotopic fluid

* Focus on relative entropy/non-adiabatic pressure perturbation

* Study:

- relative entropy between fluids in the usual cosmic fluid (.e.
baryons, cold dark matter, radiation, neutrinos ...)

- isocurvature perturbations in multi-field inflation model
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... In concordance cosmology

® baryons, CDM have Wy = W, = c="es -0

. S— -
* photons, neutrinos are relativistic: W~y = w, = c% = - -

X use WMAP7 parameters
Oph® = 2.253 x 1072, Q.h% =0.112, O = 0.728, h = 0.704

* adiabatic initial conditions

4 4 2
60, =0, = —0 = -0. = ——Ck*n?
" 3% 7 3 3 ORI

1.€. Sag =)

* solve using a modified version of CMBFast
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Power spectra of baryon density contrast £ b(K,71) (left) and the
non-adiabatic pressure perturbation Psp _ (k,n) (right)
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... In multi-field inflation

* Consider two field inflation models with Lagrangian density

1

L = §(¢2 + >’<2) + V(g, x)

* To compare with comoving curvature perturbation

R = 72 HXQ (gb(?ga + Xéx)

introduce S = E.(SPnad

P
* Alternatively, field rotation Gordon et. al, (2001)

00 = cosbop +sinfoy, 0s = —sin 00w + cos B0y

and then o E = =l G, g inslowroll

& large scale limit
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Application: vorticity

* Classical fluid dynamics w =V X v

: 1
* Euler equation Ov - (v-V)v=—-VP
ot P
n 1
* Evolution: %_‘;’ =V x (v X w)+ ?vlg ¥ VP
- ‘source’ term zero if VP and Vp are parallel

- i.e. barotropic fluid, no source term

¥ The inclusion of entropy provides a source for vorticity

Crocco (1937)

26






Vorticity evolution: first order

* First order vorticity evolves as

/ 2 _
wy;; — SHCcswii5 =0
Kodama & Sasaki (1984)

* Reproduces well known result that, in radiation domination,

\wlijwlij\ X CL_2

* i.e. in absence of anisotropic stress, no source term: wi;; = Uis
a solution to the evolution equation
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Vorticity evolution: second order

¢ Second order vorticity, w2;;, evolves as

assuming zero first order vorticity.

* For vanishing non-adiabatic pressure, vorticity decays as at

first order
Lu et. al. (2009)

* Including entropy gives a non-zero source term

AJC, Malik & Matravers (2009)

* This generalises Crocco’s theorem to an expanding framework
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‘Estimating’ the power spectrum

* Work in radiation era, and define the power spectrum as

27

<("J>2I< (klvn)w2(k27n)> — E5(k1 — kQ)Pw(kan)

* For the inputs:

- Can solve linear equation for 0p1; leading order for small £7

stk = () ()

- Ansatz’ for non-adiabatic pressure
o) ~2( L) (2)
nadl\~, 1)) = ]{50 o
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Observational signatures

* For linear perturbations, B mode polarisation of the CMB only
produced by tensor perturbations:

- scalar perturbations only produce E mode polarisation
- vectors produce B modes, but decay with expansion

¥ Second order, vector perturbations produced by first order
density and entropy perturbations source B mode polarisation

% Important for current and future CMB polarisation expts

% Could prove important for studying physics of primordial
magnetic fields

Fenu et. al. Gor1)
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Summary

* Non-adiabatic pressure perturbations arise naturally in systems
containing more than one fluid/field

- cosmic fluid containing relativistic/non-relativistic matter
- multi-field inflationary models

% Vorticity generated at second order in perturbation theory
from entropy perturbations

% Future work: consider vorticity spectrum from
- cosmic fuid Brown, AJC & Malik (in progress)

- inflation Alabidi, AJC & Huston (in progress)
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