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Evolution of  the Universe
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Dynamics of  the universe
On large scales, universe appears homogeneous and isotropic

This is an approximation: there exists structure (galaxies, 
stars, etc..), and CMB anisotropies

Dynamics of the universe governed by General Relativity

How to proceed?

- Fully inhomogeneous solution (extremely difficult in 
principle; impossible in practice?)

- Make an approximation and expand around a homogeneous 
solution: Cosmological Perturbation Theory
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Cosmological perturbation theory
Basic idea: expand around exact homogeneous solution

Geometry:

where         is Friedmann-Lemaître-Robertson-Walker 
spacetime

Matter:

Perturbations are then expanded in a series as
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Linear perturbation theory
Truncate the expansion after the first term. The most general 
linear scalar, vector and tensor perturbations to FLRW are

Scalars:       lapse,      curvature perturbation,      and      shear

Vectors,         and         are divergence-free

Tensor           is trace-less and divergence-free

At first order scalars, vectors and tensors all decouple.
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Covariance
Splitting of spacetime into 
background and perturbation 
introduces spurious 
coordinate dependence

GR is covariant and so these 
gauge modes are not physical

7

We can remove these gauge dependencies by inspecting the 
transformation behaviour of quantities and then constructing 
gauge invariant variables so that the gauge artefacts cancel.

where we note that we could not have done the subtraction if we had not pulled Tε back to M0. In an alternative
notation, commonly used in the literature, we include the ε with the T and write

T = T0 + δT , (2.5)

where

δT = T1 +
1

2
T2 +

1

3!
T3 + . . . , (2.6)

with Tn = εn (£n
XT )0.

In Ref. [4] the approach is as follows. On a single space-time manifold M with coordinates xµ define a background
model by assigning to all geometric fields Q a fixed background value (0)Q, which is not itself a geometric quantity,
at each point on the manifold. While the fields Q may transform as scalar, vector or tensor fields we require that the
(0)Q be fixed functions of the coordinates. Under a coordinates transformation the (0)Q will have the same functional
dependence on the new coordinates as they had on the old ones. A perturbation is then given by

δQ = Q − (0)Q . (2.7)

To relate the two approaches we can think of the (0)Q quantity playing the role of a quantity defined on M0

in the Stewart description and the coordinate change corresponding to a change of coordinates on Mε. But it is
important to note that the approach of Ref. [4] only one manifold is necessary. The Stewart approach [3] avoids the
need for the quantity (0)Q, which is not covariant and gives a simple diagrammatic representation at the price of
having to introduce the abstract 5-dimensional manifold N . However, note that it is the split into a background and
a perturbation which in general is not covariant. This split is common to both approaches and it gives rise to the
gauge dependence.

B. Gauge Transformations

Gauge is arguably the most over-used word in mathematics and physics. Sometimes the meanings are related but
often they are not and it is a waste of time trying to relate them. To avoid confusion we recommend that the word
“gauge” as used here is interpreted as defined and not related to other uses of the word. The choice of correspondence
between points on M0 with those on Mε or, equivalently, the choice of a vector field X is a gauge choice. The vector
field X is called the generator of the gauge.

Let us now turn to defining gauge dependence in a clearer way. Consider a point p in M0 and the generators X
and Y corresponding to two different gauge choices (see Fig. 2). The choice X will identify point p on M0 with a
point q on Mε and will assign to q the same xµ coordinates as at point p. On the other hand the gauge choice Y will
identify p with a different point u on Mε assigning in its turn the coordinates of p to u. Clearly the choice of gauge
induces a coordinate change (a gauge transformation) on Mε. This interpretation is called the passive view Ref. [4, 8].

xµ

XA

M0 Mε

Y A

q

up

N M0 Mε

up

q

XA

Y A

N

FIG. 2: On the left panel, the passive view : The point p on the manifold M0 is mapped to two different points q and u on Mε

depending on the choice of gauge, corresponding to the choice of vector field, we make. On the right panel, the active view :
the points p and q on M0 both map to the point u on Mε. Again the choice of gauge determines the mapping. The vector
fields generate the gauge choice. A change in gauge from XA to Y A produces a gauge transformation.



Gauge invariant variables

Consider behaviour under gauge transformation
  

Energy density transforms as 

Curvature perturbations transforms as 

Combine the two to get a gauge invariant variable, e.g., 
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Gauge choice 

Equivalently, choose a gauge; popular choices (scalars only):

- Flat gauge

- Longitudinal gauge 
scalar metric perturbations are the Bardeen potentials

- Synchronous gauge 

- Uniform density gauge

- Comoving gauge
in scalar field systems, 
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Governing equations
Evolution equations from energy-momentum conservation

Constraints from field equations
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Extension to second order

Truncate perturbative expansions after the second term

Gives,  e.g., energy conservation (flat gauge, no tensors)

cf. first order

Important difference: beyond linear order, perturbations no 
longer decouple. 
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Non-adiabatic pressure perturbation
Introducing the non-adiabatic pressure, for a single fluid

equation of state                        , expand to get

or rewriting,

where
                                        and 

NB. barotropic fluid,                  , has zero non-adiabatic pressure
12

�P =
@P

@S

�����
⇢

�S +
@P

@⇢

�����
S

�⇢

P ⌘ P (⇢, S)

�P = �Pnad + c2s�⇢

�Pnad =
@P

@S

�����
⇢

�S c2s =
@P

@⇢

�����
S

c2s =
Ṗ0
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For multiple fluids, expand non-adiabatic pressure as

the intrinsic part is then

where the intrinsic perturbation of each fluid,   , is

This term is zero for barotropic fluids, or for scalar fields on 
superhorizon scales.
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the relative entropy perturbation between two fluids is

this gives

Note that         , and the non-adiabatic pressure, are gauge 
invariant, so cannot be ‘gauged away’.
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Non-adiabatic pressure...

Should emphasise that single (barotropic) fluid systems have 
zero non-adiabatic pressure

- single scalar field, in superhorizon limit can be treated as a 
barotopic fluid

Focus on relative entropy/non-adiabatic pressure perturbation

Study:

- relative entropy between fluids in the usual cosmic fluid (i.e. 
baryons, cold dark matter, radiation, neutrinos ...)

- isocurvature perturbations in multi-field inflation model
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... in concordance cosmology

baryons, CDM have 

photons, neutrinos are relativistic:

use WMAP7 parameters

adiabatic initial conditions

i.e. 

solve using a modified version of CMBFast
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Power spectra of baryon density contrast                (left) and the 
non-adiabatic pressure perturbation                      (right)

Pb(k, ⌘)

P�Prel(k, ⌘)
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                   as a function of redshift for set wavenumber (left); and 
as a function of wavenumber for set redshift (right).
P�Prel(k, ⌘)

Brown, AJC & Malik (2011)



... in multi-field inflation
Consider two field inflation models with Lagrangian density

To compare with comoving curvature perturbation

introduce

Alternatively, field rotation

and then 
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Double quadratic 
inflation
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Double quartic inflation
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Product 
exponential
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Byrnes , Choi & Hall (2008)
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Application: vorticity
Classical fluid dynamics

Euler equation

Evolution:

- ‘source’ term zero if         and        are parallel

- i.e. barotropic fluid, no source term

The inclusion of entropy provides a source for vorticity
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Vorticity in cosmology

Define the vorticity tensor

projection tensor

expand order by order;      fluid four velocity 

first order vorticity:
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Vorticity evolution: first order

First order vorticity evolves as

Reproduces well known result that, in radiation domination,

i.e. in absence of anisotropic stress, no source term:                is 
a solution to the evolution equation            
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Vorticity evolution: second order

Second order vorticity,         , evolves as 

assuming zero first order vorticity.

For vanishing non-adiabatic pressure, vorticity decays as at 
first order

Including entropy gives a non-zero source term

This generalises Crocco’s theorem to an expanding framework
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‘Estimating’ the power spectrum
Work in radiation era, and define the power spectrum as

For the inputs:

- Can solve linear equation for       ; leading order for small 

- ‘Ansatz’ for non-adiabatic pressure
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These give the spectrum
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Observational signatures

For linear perturbations, B mode polarisation of the CMB only 
produced by tensor perturbations:

- scalar perturbations only produce E mode polarisation

- vectors produce B modes, but decay with expansion

Second order, vector perturbations produced by first order 
density and entropy perturbations source B mode polarisation

Important for current and future CMB polarisation expts

Could prove important for studying physics of primordial 
magnetic fields
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Fenu et. al. (2011)



Summary
Non-adiabatic pressure perturbations arise naturally in systems 
containing more than one fluid/field

- cosmic fluid containing relativistic/non-relativistic matter

- multi-field inflationary models

Vorticity generated at second order in perturbation theory 
from entropy perturbations

Future work: consider vorticity spectrum from

- cosmic fluid

- inflation
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Brown, AJC & Malik (in progress)

Alabidi, AJC & Huston (in progress)
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