Odd Parity in the CMB and Stringy Topologies

Assaf Ben-David
Tel-Aviv University

IAP
September, 2012

Outline

- Introduction and motivation
- Anomalous parity in the CMB
- Non-trivial topologies
- Classical topologies
- Stringy topologies
- Orbifold point
- Orbifold line
- Conclusions

Introduction - The Standard Model

Assumption:
On large enough scales the universe is homogeneous and isotropic

- Quantum fluctuations of the inflaton field seed Gaussian fluctuations in the metric perturbation field Φ

$$
\left\langle\Phi_{\mathbf{k}}\right\rangle=0 \quad\left\langle\Phi_{\mathbf{k}} \Phi_{\mathbf{k}^{\prime}}^{*}\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) P_{\Phi}(k)
$$

- CMB temperature anisotropy $T(\hat{\mathbf{n}})=\sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$
- The coefficients are uncorrelated Gaussian random variables
$\left\langle a_{\ell m}\right\rangle=0 \quad\left\langle a_{\ell m} a_{\ell^{\prime} m^{\prime}}^{*}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}$

Motivation

- Short inflation is theoretically preferred.
- Pre-inflationary physics affect the largest scales.
- Test the assumption of isotropy on largest scales.
- Indeed, there are several large
 scale anomalies ($\sim 3 \sigma$).

Basic Deformations

- Example: Pre-inflationary particle model (Fialkov, Itzhaki and Kovetz, JCAP 2010) and the search for giant concentric rings (Kovetz, ABD and Itzhaki, ApJ 2010).

Anomalous Parity in the CMB

- Parity with respect to reflections through a plane:

$$
\mathcal{P}_{\hat{\mathbf{n}}}: \hat{\mathbf{r}} \longrightarrow \hat{\mathbf{r}}-2(\hat{\mathbf{r}} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}
$$

- "S" statistic:

```
de Oliveira-Costa, Smoot, Starobinsky, ApJ 1996
de Oliveira-Costa, Tegmark, Zaldarriaga, Hamilton, PRD 2004
```

$$
S(\hat{\mathbf{n}})=\int \mathrm{d}^{2} \hat{\mathbf{n}}^{\prime}\left[T\left(\hat{\mathbf{n}}^{\prime}\right)-T\left(\mathcal{P}_{\hat{\mathbf{n}}}\left(\hat{\mathbf{n}}^{\prime}\right)\right)\right]^{2} \quad \text { "S" Map }
$$

$$
S(\hat{\mathbf{n}})=\int \mathrm{d}^{2} \hat{\mathbf{n}}^{\prime} T\left(\hat{\mathbf{n}}^{\prime}\right) T\left(\mathcal{P}_{\hat{\mathbf{n}}}\left(\hat{\mathbf{n}}^{\prime}\right)\right)
$$

The Problems with Pixel-Space

- Difficult to study the scale dependence.
- There are two-point correlations $\left.C(\theta) \equiv\left\langle T(\hat{\mathbf{n}}) T\left(\hat{\mathbf{n}}^{\prime}\right)\right\rangle\right|_{\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}^{\prime}=\cos \theta}$
- Masking the galactic plane results in strong bias.

Harmonic Space Score $\quad T(\hat{\mathbf{n}})=\sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$

- Harmonic coefficients are uncorrelated $\left\langle a_{\ell m} a_{\ell^{\prime} m^{\prime}}^{*}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}$
- Under reflection through $\hat{\mathbf{z}}$ axis,

$$
Y_{\ell m}\left(\mathcal{P}_{\hat{\mathbf{z}}}(\hat{\mathbf{n}})\right)=(-1)^{\ell+m} Y_{\ell m}(\hat{\mathbf{n}})
$$

- For each direction $\hat{\mathbf{n}}$, compare for each ℓ the distribution of power between even and odd $\ell+m$ multipoles

$$
S(\hat{\mathbf{n}})=\sum_{\ell=2}^{\ell_{\text {max }}}\left[\sum_{m=-\ell}^{\ell}(-1)^{\ell+m} \frac{\left|a_{\ell m}(\hat{\mathbf{n}})\right|^{2}}{\hat{C}_{\ell}}-1\right] \quad \hat{C}_{\ell}=\frac{1}{2 \ell+1} \sum_{m}\left|a_{\ell m}\right|^{2}
$$

- Standard \wedge CDM signal should give $\langle S\rangle=0$.

Parity Score - Full Sky Results

- Results for WMAP 7-year ILC map, taking $\ell_{\max }=5$:

Parity Map

- A maximum at $(l, b) \simeq\left(260^{\circ}, 60^{\circ}\right)$, the direction of the "Axis of Evil".
- Planarity \longleftrightarrow high $\mathrm{m}=\underset{\substack{\text { (eg. de Olivera-Costa et al., PRD } \\ \text { 2004; Copi et al., PRD 2004) }}}{\longrightarrow}$
- Planarity \longleftrightarrow high $m= \pm l \longleftrightarrow$ even.
- A minimum at $(l, b) \simeq\left(266^{\circ},-19^{\circ}\right)$.

Masking Galactic Noise

- Masking is crucial!
- Reconstruct $a_{\ell m}$ using covariance inversion method. (de Oliveira-Costa, Tegmark, PRD 2006; Efftathiou et al., MNRAS 20IO; Aurich, Lustig, MNRAS 201I)
- Mask out a fixed total area A of most intensive pixels.

Parity Score - Masked Sky Results

- At $A \sim 7 \%$ jumps by almost 40°.
- Does not appear significant.
- Does not move, for all masks.
- Appears much more significant.

Separate Frequency Bands

Masked with KQ85

Significance of the Results

- Normalize score:

$$
\begin{aligned}
& S_{+}(A)=\max _{\hat{\mathbf{n}}} S(\hat{\mathbf{n}}, A) \\
& S_{-}(A)=\min _{\hat{\mathbf{n}}} S(\hat{\mathbf{n}}, A)
\end{aligned}
$$

$$
\bar{S}_{ \pm}(A)=\left|\frac{S_{ \pm}(A)-\mu(A)}{\sigma(A)}\right|
$$

$$
\begin{gathered}
0.03 \% \\
\hdashline-6 \sigma
\end{gathered}
$$

- Compare with random \wedge CDM simulations.

$$
\left(\ell_{\max }=6 \Rightarrow 4.3 \sigma\right)
$$

Basic Deformations

relics

- Example: Pre-inflationary particle model (Fialkov, Itzhaki and Kovetz, JCAP 2010) and the search for giant concentric rings (Kovetz, ABD and Itzhaki, ApJ 2010).
- Perturbation drops with ℓ.

Non-trivial topologies

- Can also change the correlations in small scales.
- S / N can be significantly higher.
- Planck

Non-Trivial Topologies

- GR only constrains geometry, not topology.
- Universe is flat, but not necessarily \mathbb{R}^{3}.
- Can identify points in space.
- Classically, no fixed points allowed.
- Compact dimensions.

Classical 3D Flat Spaces

Riazuelo, Weeks, Uzan, Lehoucq, and Luminet, PRD 2004

Chimney Space

Chimney Space with Half U飞n

Chimney Space with Horizontal Flip

Chimney Space w Half UTEn and Fl

Chimney Space with Vertical Flip
 Vertical Flip

The 3-Torus

- Fundamental domain with edges $L_{x} \times L_{y} \times L_{z}$ constrains

$$
\mathbf{k}=2 \pi\left(\frac{n_{x}}{L_{x}}, \frac{n_{y}}{L_{y}}, \frac{n_{z}}{L_{z}}\right) \quad n_{i} \in \mathbb{Z}
$$

- Breaks isotropy but not homogeneity.
- Observational signatures:
- Correlation matrix $C_{\ell m \ell^{\prime} m^{\prime}}=\left\langle a_{\ell m} a_{\ell^{\prime} m^{\prime}}^{*}\right\rangle$ is no longer diagonal. (Kunz, Aghanim, Cayón, Forni, Riazuelo, and Uzan, PRD 2006; Phillips and Kogut, ApJ 2006)
- Matched circles in the sky.

Cornish et al., CQG 1998, PRL 2004 Key et al., PRD 2007
Bielewicz and Banday, MNRAS 2011 Vaudrevange et al., arXiv: I 206.2939
$S_{p q}\left(\alpha, \phi_{*}\right)=\frac{2 \sum_{m} m T_{p, m}(\alpha) T_{q, m}^{*}(\alpha) e^{-i m \phi_{*}}}{\sum_{n} n\left(\left|T_{p, n}(\alpha)\right|^{2}+\left|T_{q, n}(\alpha)\right|^{2}\right)}$

Matched Circles - Results

Cornish, Spergel, Starkman, Komatsu, PRL 2004
Simulation with

$$
L_{x}=L_{y}=L_{z}=0.513 r_{\mathrm{LSS}}
$$

Stringy Topologies

- Identifications that include fixed points.
- DOF confined to the fixed points.
- As legitimate, in string theory, as the classical topologies.
- Doesn't have to include compact dimensions.
- Simplest examples:
- Orbifold point
- Orbifold line

Orbifold Point

- Universe is even with respect to some point.
- If the orbifold is located at \mathbf{r}_{0}, we identify

$$
\mathbf{r}-\mathbf{r}_{0} \sim \mathbf{r}_{0}-\mathbf{r}
$$

- The metric perturbation must then satisfy

$$
\Phi(\mathbf{r})=\Phi\left(2 \mathbf{r}_{0}-\mathbf{r}\right) \quad \Longrightarrow \quad \Phi_{\mathbf{k}}=e^{-2 i \mathbf{k} \cdot \mathbf{r}_{0}} \Phi_{\mathbf{k}}^{*}
$$

- The two-point function is now

$$
\left\langle\Phi_{\mathbf{k}} \Phi_{\mathbf{k}^{\prime}}^{*}\right\rangle=(2 \pi)^{3}\left(\delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)+e^{-2 i \mathbf{k} \cdot \mathbf{r}_{0}} \delta\left(\mathbf{k}+\mathbf{k}^{\prime}\right)\right) P_{\Phi}(k)
$$

- Observational signatures:
- Off-diagonal angular correlations
- A self matching circle
- Isotropy
- Homogeneity X
- Gaussianity

A Self Matching Circle (SMaC)

Angular Correlation Matrix

- Harmonic coefficients can be calculated as

$$
a_{\ell m}=-\frac{i^{\ell}}{2 \pi^{2}} \int \mathrm{~d}^{3} k \Phi_{\mathbf{k}} \Delta_{\ell}(k) Y_{\ell m}^{*}(\hat{\mathbf{k}})
$$

- Calculate angular correlation matrix $C_{\ell m \ell^{\prime} m^{\prime}} \equiv\left\langle a_{\ell m} a_{\ell^{\prime} m^{\prime}}^{*}\right\rangle$ using the two-point function $\left\langle\Phi_{\mathbf{k}} \Phi_{\mathbf{k}^{\prime}}^{*}\right\rangle$.
- We get

$$
C_{\ell m \ell^{\prime} m^{\prime}}\left(\mathbf{r}_{0}\right)=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{(0)}+\Delta C_{\ell m \ell^{\prime} m^{\prime}}\left(\mathbf{r}_{0}\right)
$$

where

$$
C_{\ell}^{(0)}=\frac{2}{\pi} \int k^{2} \mathrm{~d} k P_{\Phi}(k)\left|\Delta_{\ell}(k)\right|^{2}
$$

is the standard Λ CDM power spectrum.

Signal to Noise for Detection

- Since the theory is Gaussian, all statistical information is encoded in the correlation matrix.
- Ideal S / N for detection, to leading order

$$
\left(\frac{\mathrm{S}}{\mathrm{~N}}\right)^{2} \simeq \frac{1}{2} \sum_{\ell m \ell^{\prime} m^{\prime}} \frac{\left|\Delta C_{\ell m \ell^{\prime} m^{\prime}}\right|^{2}}{C_{\ell}^{(0)} C_{\ell^{\prime}}^{(0)}}
$$

Searching for a SMaC

- Use same score as for the matching circles of the torus $S_{p q}\left(\alpha, \phi_{*}\right)$, with $p=q$ and $\phi_{*}=\pi$

$$
S_{p}(\alpha)=\frac{\left\langle T_{p}(\alpha, \phi) T_{p}(\alpha, \phi+\pi)\right\rangle}{\left\langle T_{p}^{2}(\alpha, \phi)\right\rangle}
$$

- Fourier transform as $T_{p}(\alpha, \phi)=\sum_{m} T_{p, m}(\alpha) e^{i m \phi}$ and add weights

$$
S_{p}(\alpha)=\frac{\sum_{m}(-1)^{m} m\left|T_{p, m}(\alpha)\right|^{2}}{\sum_{n} n\left|T_{p, n}(\alpha)\right|^{2}}
$$

- Calculate $S_{\max }(\alpha)$, maximized over all pixels p.

SMaC Search - Simulations

SMaC Search - Simulations

Detection threshold $\sim 0.85 r_{\text {LSS }}$

SMaC Search - Results

WMAP 7yr ILC Map

SMaC Search - Results

WMAP 7yr ILC Map

$T(\phi) T(\phi+\pi)$ profile

Orbifold Line

- Fixed line, instead of a point.
- $\mathbb{R} \times \mathbb{R}^{2} / \mathbb{Z}_{p}$ - quotient space under the action of the cyclic group \mathbb{Z}_{p}, where p is prime.
- Space is divided to p replicated sectors.
- If the line is located at \mathbf{r}_{0}, pointing towards $\hat{\mathbf{n}}$, we identify

$$
\begin{gathered}
\mathbf{r}-\mathbf{r}_{0} \sim R_{\hat{\mathbf{n}}}(j \beta)\left[\mathbf{r}-\mathbf{r}_{0}\right] \\
(j=1,2, \ldots, p-1)
\end{gathered}
$$

- Isotropy
- Homogeneity
- Gaussianity

Orbifold Line - Observational Signatures

- Off-diagonal angular correlations
- Matched circles

Orbifold Line - Observational Signatures

- Off-diagonal angular correlations
- Matched circles

- Same detection score as before.
- Much more computationally intensive.
- So far - no detection.

Conclusions

- Large scale anomalies can be the result of pre-inflationary physics or a non-trivial topology.
- Search for parity: "Axis of Evil" \Rightarrow odd parity.
- Stringy topologies can also be considered.
- Orbifold point: No detection.
- Orbifold line: No detection, so far.
- Can also consider combinations of stringy and classical topologies.
- Data from Planck:
- Small scales: Better resolution for searches of matching patterns
- Weak lensing of small scales (Rathaus and Itzhaki, JCAP 20I2)
- Large scale anomalies

Thank You!

