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• Quantum fluctuations of the inflaton field seed Gaussian fluctuations 
in the metric perturbation field

• CMB temperature anisotropy

• The coefficients are uncorrelated                                           
Gaussian random variables

Introduction – The Standard Model
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On large enough scales the universe is 
homogeneous and isotropic

Assumption:

ΛCDM

Larson et al., ApJS (2011)



Motivation

Smaller scales exit
the horizon

Large scales exit
the horizon

Slow roll region
Pre-inflationary

physics

V (�)

• Short inflation is theoretically 
preferred.

• Pre-inflationary physics affect 
the largest scales.

• Test the assumption of 
isotropy on largest scales.

• Indeed, there are several large 
scale anomalies (      ).⇠ 3�

Inflation CMB 
LSS

?



• Example: Pre-inflationary particle 
model (Fialkov, Itzhaki and Kovetz, JCAP 

2010) and the search for giant 
concentric rings (Kovetz, ABD and 

Itzhaki, ApJ 2010).

Basic Deformations

h�ki = 0

Pre-inflationary 
relics



• Parity with respect to reflections through a plane:

• “S” statistic:

Anomalous Parity in the CMB
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“S” Map

ABD, Kovetz and Itzhaki, ApJ 2012



• Difficult to study the scale dependence.

• There are two-point correlations

• Masking the galactic plane results in strong bias.

The Problems with Pixel-Space
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Harmonic Space Score

• Harmonic coefficients are uncorrelated

• Under reflection through     axis,

• For each direction   , compare for each    the distribution of power 
between even and odd             multipoles

• Standard ΛCDM signal should give           .
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• Results for WMAP 7-year ILC map, taking             :

• A maximum at                       , the direction of the “Axis of Evil”.

• Planarity               high                              even.

• A minimum at                         .

Parity Score – Full Sky Results
`
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“S” Map

(l, b) ' (260�, 60�)

Parity Map

(l, b) ' (266�,�19�)

(e.g. de Oliveira-Costa et al., PRD 
2004; Copi et al., PRD 2004)



Masking Galactic Noise

• Masking is crucial!

• Reconstruct        using covariance inversion method.
(de Oliveira-Costa, Tegmark, PRD 2006; Efstathiou et al., MNRAS 2010; Aurich, Lustig, 
MNRAS 2011)

• Mask out a fixed total area     of most intensive pixels.

Bennett et al., 
ApJS 2011

a`m
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• Does not move, for all masks.

• Appears much more significant.

• At              jumps by almost      .

• Does not appear significant.

12%12%

Parity Score – Masked Sky Results

A ⇠ 7% 40�



Separate Frequency Bands

V

W

Masked with KQ85

12%



Significance of the Results
S̄+(A)

S̄�(A)
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0.03%
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• Normalize score:

• Compare with 
random ΛCDM 
simulations.
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• Example: Pre-inflationary particle 
model (Fialkov, Itzhaki and Kovetz, JCAP 

2010) and the search for giant 
concentric rings (Kovetz, ABD and 

Itzhaki, ApJ 2010).

• Perturbation drops with   .

• Can also change the 
correlations in small scales.

• S/N can be significantly higher.

• Planck

Basic Deformations

h�ki = 0

Pre-inflationary 
relics

Non-trivial 
topologies

h�k�⇤
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• GR only constrains geometry, not topology.

• Universe is flat, but not necessarily    .

• Can identify points in space.

• Classically, no fixed points allowed.

• Compact dimensions.

Non-Trivial Topologies

R3



Classical 3D Flat Spaces

Slab Space Slab Space with Fli

Chimney Space Chimney Space with
Half Turn

Chimney Space with
Horizontal Flip

Chimney Space wi
Half Turn and Fl

Chimney Space with
Vertical Flip

3-Torus Quarter Turn Space Half Turn Space

Sixth Turn Space Third Turn Space Hantzsche-Wendt Space

Klein Space Klein Space
with Horizontal Flip

Klein Space
with Vertical Flip

Klein Space
with Half Turn

Riazuelo, Weeks, Uzan, Lehoucq, 
and Luminet, PRD 2004



• Fundamental domain with edges                        constrains

• Breaks isotropy but not homogeneity.

• Observational signatures:

• Correlation matrix                                 is no longer diagonal.
(Kunz, Aghanim, Cayón, Forni, Riazuelo, and Uzan, PRD 2006; Phillips and Kogut, ApJ 2006)

• Matched circles in the sky.

The 3-Torus
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Matched Circles – Results
Cornish, Spergel, Starkman, Komatsu, PRL 2004

ILC Map

> 24 Gpc
Simulation with
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Size of fundamental 
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• Identifications that include fixed points.

• DOF confined to the fixed points.

• As legitimate, in string theory, as the classical topologies.

• Doesn’t have to include compact dimensions.

• Simplest examples:

• Orbifold point

• Orbifold line

Stringy Topologies ABD, Rathaus and Itzhaki, arXiv:1207.6218



• Universe is even with respect to some point.

• If the orbifold is located at    , we identify

• The metric perturbation must then satisfy

• The two-point function is now

• Observational signatures:

• Off-diagonal angular correlations

• A self matching circle

Orbifold Point
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A Self Matching Circle (SMaC)



Angular Correlation Matrix
• Harmonic coefficients can be calculated as

• Calculate angular correlation matrix                                using the 
two-point function            .

• We get

where

is the standard ΛCDM power spectrum.
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Signal to Noise for Detection
• Since the theory is Gaussian, all statistical information is encoded in 

the correlation matrix.

• Ideal S/N for detection, to leading order
✓

S
N

◆2

' 1
2

X

`m`0m0

|�C`m`0m0 |2

C(0)
` C(0)

`0

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

r0/r∗

A
cc
u
m
u
la
te
d
S
/N

101 102
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Multipole moment !

(S
/N

)2

 

 
r0 = 0.5
r0 = 0.7
r0 = 1.1



Searching for a SMaC

• Use same score as for the matching
circles of the torus              , with         
and

• Fourier transform as                                      and add weights

• Calculate            , maximized over all pixels   .S
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SMaC Search – Simulations
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SMaC Search – Simulations

Detection threshold ⇠ 0.85 rLSS
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SMaC Search – Results
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SMaC Search – Results
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• Fixed line, instead of a point.

•                – quotient space under 
the action of the cyclic group     , 
where    is prime.

• Space is divided to    replicated 
sectors.

• If the line is located at    , pointing 
towards   , we identify

Orbifold Line Work in progress, with 
B. Rathaus and N. Itzhaki
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• Off-diagonal angular correlations

• Matched circles

Orbifold Line – Observational Signatures
Work in progress



• Off-diagonal angular correlations

• Matched circles

Orbifold Line – Observational Signatures

• Same detection score 
as before.

• Much more 
computationally 
intensive.

• So far – no detection.

Work in progress



• Large scale anomalies can be the result of pre-inflationary physics or a non-trivial topology.

• Search for parity: “Axis of Evil” ⇒ odd parity.

• Stringy topologies can also be considered.

• Orbifold point: No detection.

• Orbifold line: No detection, so far.

• Can also consider combinations of stringy and classical
topologies.

• Data from Planck:

• Small scales: Better resolution for searches of
matching patterns

• Weak lensing of small scales
(Rathaus and Itzhaki, JCAP 2012)

• Large scale anomalies

Conclusions



Thank You!


