Self-Similar Secondary Infall: A Physical Model of Halo Formation

Phillip Zukin Ed Bertschinger

IAP 9/1/11 z = 48.4

T = 0.05 Gyr

T = 3.37 Gyr

500 kpc

z = 0.3

 $T = 10.33 \, Gyr$

500 kpc

What do (Aquarius) simulations tell us?

- Halos have NFW (Einasto) density profiles.
- The density profile is (roughly) universal.
- The pseudo-phase-space density ρ/σ^3 is universal.

Secondary Infall

Self-Similarity

Self-Similar Secondary Infall

Self-Similar Secondary Infall

Why?

- Numerically (much) easier.
- Analytically tractable: $\frac{d\ln M}{d\ln r} \quad \frac{d\ln \sigma_r^2}{d\ln r} \quad \frac{d\ln \sigma_t^2}{d\ln r}$

(Some) Criticisms

- Spherical Halo?
- Box Orbits?

Model

- Initial density perturbation: $\delta \propto r^{-n}$
- Particles torqued throughout evolution.

$$L(r,t) = \frac{B}{t} \frac{r_{ta}^2}{t} \begin{cases} (r/r_{ta})^{-\gamma} & \text{if } t < t_*, \\ (t/t_*)^{\varpi + 1 - 2\beta} & \text{if } t > t_*. \end{cases}$$

- Parameters n, B, γ set by halo mass
- ϖ difficult to constrain analytically.

What do we do Numerically?

- Mass profile depends on the location of all shells.
- Trajectory of shells depends on internal mass profile.
 - 1) Start with an assumed mass profile.
 - 2) Solve for the trajectory of one shell using Newton's equation.
 - 3) Calculate new mass profile.
 - 4) Iterate.

What do we do Analytically?

• Parametrize mass profile and variation of apocenter distance:

$$M(r,t) = \kappa(t)r^{\alpha}$$

$$r_a/r_* = (t/t_*)^q$$

• Use adiabatic invariance and a mass consistency relationship to constrain both exponents.

Model Results: Mass Profile

Location of Shells

Model Results: Mass Profile

Model vs N-body

Model Results: Velocity Anisotropy

Model Results: Pseudo-Phase-Space Density

Model vs N-body: Velocity Anisotropy

Model vs N-body

Model vs N-body: Pseudo-Phase-Space Density

Initial Results

- Inner logarithmic slope of density and velocity profiles dependent on mass (n) and angular momentum evolution after turnaround (z).
- Model predicts that higher resolution simulations should see deviations from universal pseudo-phase-space density relationship.
- Model is too simplistic.

Constraining ϖ

- Analyze evolution of angular momentum distribution in simulations.
- Depend on evolution of substructure? Baryons?
- Calculate for different physical processes?

Angular Momentum Evolution

Wednesday, September 7, 2011

Understanding Phase Space Evolution: Brownian Motion Example

Understanding Phase Space Evolution: Brownian Motion Example

What would I like to know?

- Is there an equivalent (analytic) description for Dark Matter Halos?
- Is there relaxation in a halo?

Conclusions

- Self-Similar model works surprisingly well.
- How does angular momentum evolve in simulated halos (with baryons)?
- What about the phase space evolution?
- References:
 - Zukin & Bertschinger (arXiv:1008.0639, arXiv:1008.1980)
 - Navarro et. al. (arXiv:0810.1522)