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Proliferation of inflationary models1

A (partial?) list of ever-increasing number of inflationary models. May be,
we should look for models that permit deviations from the standard
picture of slow roll inflation.

1From E. P. S. Shellard, The future of cosmology: Observational and

computational prospects, in The Future of Theoretical Physics and Cosmology, Eds.

G. W. Gibbons, E. P. S. Shellard and S. J. Rankin (Cambridge University Press,

Cambridge, England, 2003).
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Based on work with M. Aich, R. K. Jain, L. Sriramkumar and T. Souradeep
Ref: JCAP 1010:008, 2010



Angular power spectrum from the WMAP 7-year data
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WMAP-7 year data: What outliers may indicate

Features

Theoretical primordial power spectrum predicted by conventional slow
roll inflation matches the CMB data very well

There exists some outliers in the data that may indicate features in
the primordial power spectrum

It has been shown in earlier literature that certain features in the PPS
can lead to an improvement in fit when compared with the standard
featureless PPS generated by slow roll inflation

Features might indicate certain non-trivial inflationary dynamics

Indication

This may lead to certain deviation from the conventional slow roll inflation



The scalar power spectrum in slow roll inflation

The power law scalar power spectrum, and the spectrum from the
quadratic potential (m2φ2/2) are shown below. They are almost
indistinguishable, and they fit the data to the same extent.

Blue = m2φ2/2 case
Red = The powerlaw primordial power spectrum
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Angular power spectrum in slow roll inflation

Standard slow roll inflation produces almost the same angular power
spectrum as a power law primordial spectrum

We have plotted below the CMB angular power spectrum for the best
fit values of the canonical scalar field described by the quadratic
potential.
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For example, punctuated inflationa is
known to lead to a better fit to the
outliers near ℓ = 2 and ℓ = 22 than
the standard power law spectrum

The oscillatory features can also be
generated with the introduction of a
stepb in a potential which provides
better fit to the CMB data near
ℓ = 22 and ℓ = 40

a
Jain et. al.(2009)

b
Adams et. al.(2001); Covi et. al.(2006);

Mortonson et. al.(2009); Hazra et. al.(2010)
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The slow roll parameters

The following two parameters characterize slow roll inflation

The Hubble slow-roll parameters

ǫ = − Ḣ

H2
, η = − φ̈

Hφ̇

If the inflaton is rolling slowly down a potential, then (ǫ, η) << 1

When we introduce a step in the potential, the field experiences a fast
roll near the location of the step (φ0)

The parameter α determines the strength of the step and ∆φ
characterizes its width

These parameters can be used to can tune the location, the strength
and the duration of the fast roll period



Behavior of ǫ and η during fast roll
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Quadratic model Small field model Tachyon model

The behavior of the first two slow roll parameters for a few different
models as the field crosses the step



Effects of α
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Effects of φ0
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Effects of ∆φ
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Which of these oscillations are favored by the CMB data?

In the case of quadratic potential, it is known that introduction of the
step improves the fit to the outliers near ℓ = 22 and 40

For example, it is found that χ2
eff reduces by 7-8 when compared with

a featureless, power law scalar spectrum



Aims of the work

The aims of our work are twofold:

Firstly, we wish to examine whether, with the introduction of a step,
other inflationary models too perform equally well against the CMB
data, as the quadratic potential does.

Secondly, the quadratic potential leads to a reasonable amount of
tensors, and such a model will be ruled out if tensors are not detected
corresponding to a tensor-to-scalar ratio of, say, r ≃ 0.1. So, we
would also like to consider models that leads to a tensor-to-scalar
ratio of r < 0.1, so that suitable alternative models exist if the
tensors turn out to be small.

We have evaluated the tensor contribution exactly for all the models,
and have included it in our analysis



The inflationary models we have considered

1 Canonical scalars: Here we have considered the quadratic model
V (φ) = (m2 φ2/2)
and the small field model
V (φ) = V0 [1− (φ/µ)p]

2 Tachyon models2: In this case, the potentials we have considered are

V (φ) =
(

λ
cosh (φ/φ∗)

)

and
V (φ) =

(

λ
1+(φ/φ∗)

4

)

All of them lead to slow roll

We have introduced the step in each of these models and have
compared them with the data.

2Steer et. al.(2004)



The tensor contribution

As we mentioned, the quadratic model leads to a tensor-to-scalar
ratio r ≃ 0.1

The tachyon models too lead to a tensor-to-scalar ratio of r ≃ 0.1

As we had pointed out, such models will be ruled out, if the tensors
remain undetected at a level corresponding to a tensor-to-scalar ratio
of, say, r ≃ 0.1

Keeping this in mind, we have studied a small field model in our
analysis where by choosing a specific µ and p we have restricted
ourselves to a lower tensor-to-scalar ratio of r ≃ 0.01



The tensor amplitude in small field models1

1
Efstathiou et. al.(2006)



Methodology and datasets

For our analysis, we have made use of the following datasets:
1 WMAP-5
2 WMAP-5 + QUaD-2009
3 WMAP-5 + QUaD-2009 + ACBAR-2008
4 WMAP-7

We have calculated the scalar and tensor power spectra for all the
models numerically with high accuracy.

We have used publicly available CAMB and CosmoMC to compare
our models with the data.

We should mention that we have taken gravitational lensing and the
SZ effect into account.



One dimensional likelihoods for the background

parameters

The one dimensional likelihood for the background parameters for the case
of the small field model with the step.



One dimensional likelihood for α, φ0 and ∆φ



The χ2
eff for the different models and datasets

Datasets WMAP-5 WMAP-5 WMAP-5+QUaD WMAP-7
Models +QUaD +ACBAR

PL (4, 4) 2658.40 2757.34 2779.12 7474.48
QP (1, 1) 2658.22 (−0.18) 2757.54 (+0.20) 2779.02 (−0.10) 7474.78 (+0.30)

QP+ step (4, 4) 2651.00 (−7.40) 2750.38 (−6.96) 2771.72 (−7.40) 7466.28 (−8.20)
SFM (3, 1) 2658.26 (−0.14) 2757.46 (+0.12) 2779.06 (−0.06) 7474.78 (+0.30)

SFM+ step (6, 4) 2650.96 (−7.44) 2750.26 (−7.08) 2771.92 (−7.20) 7466.00 (−8.48)
TM (2, 1) 2658.26 (−0.14) 2757.60 (+0.26) 2779.10 (−0.02) 7474.56 (+0.08)

TM+ step (5, 4) 2651.14 (−7.26) 2750.50 (−6.84) 2772.06 (−7.06) 7465.92 (−8.56)

With the introduction of the step, χ2
eff improves by 7-9 in all the cases.

Note that the improvement is better for the WMAP-7 data than the
WMAP-5 data.



Best fit primordial power spectra for all the models
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The CTT
ℓ for the best fit featureless power spectrum
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The CTT
ℓ for the best fit power spectrum with features
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The CTT
ℓ for the best fit power spectrum with features
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Improvement in fit as a function of ℓ (WMAP-7)

With the introduction of the step, we find that that most of the
improvement in χ2

eff (by about 5-7) occurs over ℓ < 32.

For ℓ > 32, the χ2
eff improvement changes with ℓ as follows for the

quadratic and the small field models.
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Summary and discussion

Along with the quadratic model we have studied the effect of the step
in a small field model and a tachyon model

The step introduces a burst of oscillations and thus leaves its imprints
on the CMB angular power spectrum

Most of the improvement of fit come from the ℓ < 32 and the rest
comes from ℓ = 40 (from the CTT

ℓ spectrum only)

Comparison with other datasets indicate that introduction of the step
doesn’t improve fits at higher ℓ ’s (at least not as good as low ℓ)

If ongoing (PLANCK) and/or future observations indicate that the
amplitude of the tensor perturbations are rather small, then the
quadratic potential and the tachyonic potentials will be ruled out,
while a suitable small field model with a step will perform well against
the data.

Detection of large non-gaussianities will also put a restriction on the
kind of inflation
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Based on work with M. Aich, L. Sriramkumar and T. Souradeep
Ref: arXiv:1106.2798v1 [astro-ph.CO]
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Angular power spectrum from the WMAP 7-year data
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Scope of this work: Can the spectrum contain non-local

features?

Apart from localized features, it is interesting to examine whether the
CMB data also point to non-local features—i.e. certain characteristic
and repeated behavior that extend over a wide range of scales—in the
primordial spectrum

A quick glance at the unbinned CMB data seems to suggest that,
after all, such an eventuality need not altogether be surprising.

As the features we have considered in this work extends over all the
scales it is important to have small scale CMB data to compare these
features



WMAP-7 year data + ACT data

Constraint on Tensors

Till now the tensor contribution from inflation is undetermined

The tensor to scalar ratio r < 0.3 from WMAP-7

Atacama Cosmology Telescope (ACT) probes as small scales data as
ℓ ∼ 10000

The joint constraint on r from WMAP-7 and ACT is < 0.24

Indication

As all the upper-bound quoted are at 95% CL Models with lower tensor
contributions are becoming important to study



Does the data support non-local features?

Examples of certain non-local features

1 Superimposed Oscillations in the WMAP Data?3

2 Chaotic model with sinusoidal modulation4

Potential

V (φ) =
1

2
m2 φ2

[

1 + α sin

(

φ

β
+ δ

)]

3 The axion monodromy model5

Potential

V (φ) = µ3φ+Λ4 cos

(

φ

γ
+ δ

)

= λ

[

φ+ α cos

(

φ

β
+ δ

)]

3Martin et. al. 2003
4Pahud et. al. 2008
5Flauger et. al. 2009



Non-local features: The slow roll parameters

The following two parameters
characterize slow roll inflation

Hubble slow roll parameters

ǫ = −Ḣ/H2, η = −φ̈/Hφ̇

If the inflaton is rolling slowly
down a potential, then
(ǫ, η) << 1

These models have oscillations in
the potential and so the slow roll
parameters are also oscillatory
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The spectral tilt, tensor to scalar ratio

The spectral tilt in the case of the chaotic model with sine
modulation comes out to be ns ≃ 0.96

Axion monodromy model produces a spectral tilt of ns ≃ 0.97

The tensor to scalar ratio (r) in the sine potential is ≃ 0.16 over the
scales of cosmological interest

Monodromy model produce r ≃ 0.05 − 0.07 over the same scales

This model may perform better if the future CMB observations like
PLANCK do not see a high tensor to scalar ratio

We have evaluated the tensor modes for the two models exactly and
used them to produce the angular power spectrum and included in
our analysis



Aims of the work

The aims of our work are threefold:

Aims

1 We want to see how each model perform against the CMB datasets
both at large and small scales. If the models perform better than the
standard power law primordial spectrum we want to examine where
from the improvements come

2 We have taken the tensor power spectrum into account to have a
more realistic comparison

3 If the oscillations do give a better fit to the data than the standard
case we would like to see if the oscillations can be constrained using
the present datasets
If not, then to forecast if the future datasets can, we have produced
and used PLANCK mock data and have tested the models with the
data



Methodology and datasets

For our analysis, we have made use of the following datasets:
1 WMAP-7
2 WMAP-7 + Atacama Cosmology Telescope 148 GHz spectrum

As the resulting PPS may contain violent oscillations depending on
the frequency parameter β in the potential we must compute the PPS
accurately

We have calculated the scalar and tensor power spectra for all the
models numerically with high accuracy

We have used publicly available CAMB and CosmoMC to compare
our models with the data

We should mention that we have taken gravitational lensing and the
SZ effect into account.



Results: The χ2
eff for the different models and datasets

Datasets WMAP-7 WMAP-7+ACT

Power law case 7468.3 7500.4

Chaotic model with sine 7467.6 (∆χ2
eff = 0.7) 7498.2 (∆χ2

eff = 2.2)

Axion monodromy model 7462.1 (∆χ2
eff = 6.2) 7495.2 (∆χ2

eff = 5.2)

The chaotic model with the sinusoidal modulation provides a better fit of
0.7 over power law case

But the monodromy model provides a better fit of ≃ 6 over the same. So
the oscillations here indeed provide a reasonable better fit to the data



Best fit primordial power spectra for all the models

The sine model, the axion monodromy model
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The CTT
ℓ for the best fit models

The power law
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The CTT
ℓ for the best fit models

The power law, the chaotic model with sine modulation
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The CTT
ℓ for the best fit models

The power law, the chaotic model with sine modulation, the axion monodromy model
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The C
TE/EE
ℓ best fit curves: The difference

The power law, the chaotic model with sine modulation, the axion monodromy model
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Improvement in fit as a function of ℓ (WMAP-7): TT

Sine model Monodromy model
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Improvement in fit as a function of ℓ (WMAP-7): TE

Sine model Monodromy model
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For the sine model we get an overall improvement ∆χ2
eff(TE) ≃ 1

In the case of monodromy model the improvement at high ℓ (ℓ > 24) is nearly 3
But if we consider the low ℓ (ℓ < 24) then there is no overall improvement from
the TE spectrum



Forecast for PLANCK

It is expected that data from current missions such as Planck would
be able to constrain the cosmological parameters better

We have used FuturCMB1 add on with the CosmoMC to arrive at
constraints on parameters

The CMB angular power spectrum generated from the best fit
parameters of the models using the WMAP seven year data is treated
as the fiducial power spectrum for generating the PLANCK mock data

1
Perotto et. al. (2006)



One dimensional likelihood



Two dimensional contours
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Summary

In this work we have studied the effect of the oscillations in the inflaton potential
which creates oscillations in the primordial power spectrum and thereby produces
oscillations in the CMB angular power spectrum

These oscillations fit the CMB data better than the power law primordial power
spectrum

The better fit comes from both the low ℓ and the high ℓ s

The ∆χ2
eff(TT ) suggests that the monodromy model is in better agreement with

the data

The improvement from the Atacama Cosmology Telescope data tells us that the
sine model is more favored in the small scales than the monodromy model

While the current data is not able to constrain the frequency of the models well
enough, our result suggests with the future PLANCK data it will be possible to
constrain the frequency

If PLANCK is unable to see a high tensor to scalar ratio r < 0.1, the sine model
will be discarded while the monodromy model will perform better than the
conventional models
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Non-Gaussianities: Motivation

The WMAP seven year data constrains the parameter f
NL

that is
often introduced to characterize the extent of non-Gaussianity in the
primordial scalar power spectrum to be f

NL
= (26 ± 140) in the

equilateral limit, at 68% confidence level

It is often said that a large amount of non-Gaussianity, as possibly
implied by the above mean value, will rule out inflationary models
involving the canonical scalar field.

Of course with the data form PLANCK we shall have a much better
constraint on the parameter f

NL

It is known that single field inflationary models that lead to features
in the scalar power spectrum (due to departures from slow roll) can
produce large levels of non-Gaussianity



Non-Gaussianity: Essentials

The scalar power spectrum PS(k) and the bi-spectrum BS(k1,k2,k3)
are defined in terms of the two and three point correlation functions
of the Fourier modes of the curvature perturbation R as follows

Three point correlation functions

〈R̂k R̂p〉 =
(2π)2

2 k3
P

S
(k) δ(3) (k+ p) ,

〈R̂k1 R̂k2 R̂k3〉 = (2π)3 B
S
(k1,k2,k3)

× δ(3) (k1 + k2 + k3) ,

where k = |k|. The non-Gaussianity parameter f
NL

is introduced
through the relation

The f
NL

R = RG − 3 fNL

5

[

RG
]2



Non-Gaussianity: Essentials

Upon using this relation, and the definitions of the power spectrum and
the bi-spectrum above, one can arrive at the expression for the
parameter f

NL
in terms of the power spectrum and the bi-spectrum

In the equilateral limit , i.e. when k1 = k2 = k3 = k, it is found to be

Expression of f
NL

f
NL

= −
(

10

9

) (

1

(2π)4

) (

k6 G(k)

P2
S
(k)

)

,

where G(k) = [(2π)9/2 B
S
(k)].



Calculating non-Gaussianity: The standard procedure

There now exists a standard procedure for evaluating the scalar
bi-spectrum in inflationary models1

The quantity G(k), evaluated towards the end of inflation at the
conformal time, say, η = ηe, can be written as

Definition of G(k)

G(k) ≡
6
∑

C=1

G
C
(k)

= M2
Pl

6
∑

C=1

[

f3
k (ηe) GC (k) + f∗

k
3 (ηe) G∗

C
(k)
]

1Maldacena (2003)



The action at the cubic order1

It can be shown that the third order term in the action describing the
curvature perturbations is given by

S3[R] = M2
Pl

∫

dη

∫

d3x

[

a2 ǫ21 RR′2 + a2 ǫ21 R (∂R)2 − 2 a ǫ1R′ (∂iR) (∂iχ)

+
a2

2
ǫ1 ǫ

′

2R2 R′ +
ǫ1
2
(∂iR) (∂iχ) (∂

2χ) +
ǫ1
4
(∂2R) (∂χ)2 + F

(

δL2

δR

)

]

where F(δL2/δR) denotes terms involving the variation of the second
order action with respect to R, while χ is related to the curvature
perturbation R through the relations

Λ = a ǫ1R′ and ∂2χ = Λ.

1Maldacena(2003); Seery et. al. (2005); Chen et.al. (2007)



All contributions

G1(k) = 2i

∫ ηe

ηin

dτ a2 ǫ21
(

f∗

k1 f
′∗

k2 f
′∗

k3 + two perm
)

G2(k) = −2i

∫ ηe

ηin

dτa2 ǫ21 f
∗

k1 f
∗

k2 f
∗

k3 (k1 · k2 + two perm)

G3(k) = −2i

∫ ηe

ηin

dτ a2 ǫ21

[

f∗

k1 f
′∗

k2 f
′∗

k3

(

k1 · k2

k22

)

+ five perm

]

G4(k) = i

∫ ηe

ηin

dτ a2 ǫ1 ǫ
′

2

(

f∗

k1 f
∗

k2 f
′∗

k3 + two perm
)

G5(k) =
i

2

∫ ηe

ηin

dτ a2 ǫ31

[

f∗

k1 f
′∗

k2 f
′∗

k3

(

k1 · k2

k22

)

+ five perm

]

G6(k) =
i

2

∫ ηe

ηin

dτ a2 ǫ31

[

f∗

k1 f
′∗

k2 f
′∗

k3

(

k21
k22 k

2
3

)

(k2 · k3) + two perm

]

G7(k) =
ǫ2
2

(

|fk2 |2 |fk3 |2 + two perm
)



The Starobinsky model1

The Starobinsky model involves the canonical scalar field which is
described by the potential

V (φ) =

{

V0 +A+ (φ− φ0) for φ > φ0,
V0 +A− (φ− φ0) for φ < φ0.

1Starobinsky(1992); Work of Martin and Sriramkumar (in preparation)



Assumptions and properties1

It is assumed that the constant V0 is the dominant term in the
potential for a range of φ near φ0. As a result, over the domain of our
interest, the expansion is of the de Sitter form corresponding to a
Hubble parameter H0 determined by V0.

The scalar field rolls slowly until it reaches the discontinuity in the
potential. It then fast rolls for a brief period as it crosses the
discontinuity before slow roll is restored again.

Since V0 is dominant, the first slow roll parameter ǫ1 remains small
even during the transition. This property allows the background to be
evaluated analytically to a good approximation.

1Work of Martin and Sriramkumar (in preparation)



Analytic expressions for the slow roll parameters

Under the assumptions and approximations described above, the slow roll
parameters remain small before the transition.



Analytic expressions for the slow roll parameters

Under the assumptions and approximations described above, the slow roll
parameters remain small before the transition.

One can show that, after the transition, the evolution of the first slow roll
parameter ǫ1 can be expressed in terms of the number of e-folds N as
follows:

ǫ1− ≃ A2
−

18M2
Pl H

4
0

[

1− ∆A

A−

e−3 (N−N0)

]2

,

where ∆A = (A− −A+), while N0 is the e-fold at which the field crosses
the discontinuity.



Analytic expressions for the slow roll parameters

Under the assumptions and approximations described above, the slow roll
parameters remain small before the transition.

One can show that, after the transition, the evolution of the first slow roll
parameter ǫ1 can be expressed in terms of the number of e-folds N as
follows:

ǫ1− ≃ A2
−

18M2
Pl H

4
0

[

1− ∆A

A−

e−3 (N−N0)

]2

,

where ∆A = (A− −A+), while N0 is the e-fold at which the field crosses
the discontinuity.

It is found that, immediately after the transition, the second slow roll
parameter ǫ2 is given by

ǫ2− ≃ 6∆A

A−

e−3 (N−N0)

1− (∆A/A−) e−3 (N−N0)
.



Evolution of the slow roll parameters1

The evolution of the first slow roll parameter ǫ1 on the left, and the
second slow roll parameter ǫ2 on the right in the Starobinsky model. While
the blue curves describe the numerical results, the dotted red curves
represent the analytical expressions mentioned in the previous slide.

1Work of Martin and Sriramkumar (in preparation)



The modes before and after the transition
It can be shown that, under the assumptions that one is working with, the
quantity z = aMPl

√
2 ǫ1, which determines the evolution of the

perturbations, simplifies to

z′′/z ≃ 2H2

both before as well as after the transition with the overprime denoting the
derivative with respect to the conformal time, while H is the conformal
Hubble parameter.



The modes before and after the transition
It can be shown that, under the assumptions that one is working with, the
quantity z = aMPl

√
2 ǫ1, which determines the evolution of the

perturbations, simplifies to

z′′/z ≃ 2H2

both before as well as after the transition with the overprime denoting the
derivative with respect to the conformal time, while H is the conformal
Hubble parameter.

As a result, while the solution to the Mukhanov-Sasaki variable vk before
the transition is given by

v+k (η) =
1√
2 k

(

1− i

k η

)

e−i k η,

after the transition, it can be expressed as a linear combination of the
positive and the negative frequency modes as follows:

v−k (η) =
αk√
2 k

(

1− i

k η

)

e−i k η +
βk√
2 k

(

1 +
i

k η

)

ei k η

where αk and βk are the usual Bogoliubov coefficients.



The scalar power spectrum in the Starobinsky model

The Bogoliubov coefficients αk and βk can be obtained by matching the
mode vk and its derivative at the transition.



The scalar power spectrum in the Starobinsky model

The Bogoliubov coefficients αk and βk can be obtained by matching the
mode vk and its derivative at the transition.

The scalar power spectrum, given by

P
S
(k) = (k3/2π2) |Rk|2 = (k3/2π2) (|vk|/z)2

where Rk is the curvature perturbation, can be evaluated at late times to
be

P
S
(k) =

(

9H6
0

4 π2 A2
−

)

{

1− 3∆A

A+

k0
k

[

(

1− k20
k2

)

sin

(

2 k

k0

)

+
2 k0
k

cos

(

2 k

k0

)

]

+
9∆A2

2A2
+

k20
k2

(

1 +
k20
k2

)

[

(

1 +
k20
k2

)

− 2 k0
k

sin

(

2 k

k0

)

+

(

1− k20
k2

)

cos

(

2 k

k0

)

]}

where k0 is the wavenumber of the mode that crosses the Hubble radius
when the field crosses the discontinuity. Note that the power spectrum
depends on the wavenumber only through the ratio (k/k0).



Comparison with the numerical result1

The scalar power spectrum in the Starobinsky model. While the blue solid curve denotes

the analytic result, the red dots represent the corresponding numerical scalar power

spectrum

1Work of Martin and Sriramkumar (in preparation)



The non-Gaussian terms for the Starobinsky model1

1Work of Martin and Sriramkumar (in preparation)



The fNL for the Starobinsky model1

1Work of Martin and Sriramkumar (in preparation)



Numerical calculation of non-Gaussianities: Our work

1 With the PLANCK map it might be possible to detect the
non-Gaussianities (specifically the fNL) O(1)

2 The error bars are expected to shrink to ±3

3 Now it is very important to develop a platform to calculate the fNL

with high accuracy

4 Our recent work has been based on the the complete numerical
evaluation of non-Gaussianities for a general single canonical scalar
field driven inflation

5 We have developed a very fast code which can calculate the all
contributions of the three point correlation function for any single
canonical scalar field inflation

6 This code does not assume any approximation such as slow roll etc.
We have used the adaptive quadrature routine to calculate the three
point function and we have used e− folds as the parameter of
integration.



Inflationary models leading to features1
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1Jain et al. (2009); Hazra et al (2010); Aich et al. (2011)



Comparison with the analytical results: The Starobinsky model
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and (G5 +G6) (in purple) have been plotted as a function of (k/k0) for the Starobinsky model.

Note that k0 is the wavenumber which leaves the Hubble radius when the scalar field crosses the

break in the potential.



The non-Gaussian contributions for the punctuated Inflation model
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The non-Gaussian contributions for the quadratic potential with a step
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The non-Gaussian contributions for the axion monodromy model
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The fNL for the punctuated inflation model
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The fNL for the models with step
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The fNL for the axion monodromy model
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Summary and discussion

We have produced a fast and accurate code to calculate the
non-Gaussianities for every single canonical scalar field driven inflation
in the equilateral limit

Given a potential and the initial field value it can calculate all the
non-Gaussian contribution that arise from the cubic order action

We have extended the code and produced a distributed memory
parallel program to calculate the fNL for arbitrary configuration (i.e.
squeezed, scalene etc.)

As we are going to have much better data with the PLANCK results
very soon, along with the angular power spectrum the fNL can
become an useful factor to constraining the list of inflationary models



Thank you for your attention
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